



Abstract—This paper is concerned with the incorporation of
new time processing capacities to the Neuroevolution of
Augmenting Topologies (NEAT) algorithm. This algorithm is
quite popular within the robotics community for the production
of trained neural networks without having to determine a priori
their size and topology. However, and even though the
algorithm can address temporal processing issues through its
capacity of establishing feedback synaptic connections, that is,
through recurrences, there are still instances where more
precise time processing may go beyond its limits. In order to
address these cases, in this paper we describe a new
implementation of the NEAT algorithm where trainable
synaptic time delays are incorporated into its toolbox. This
approach is shown to improve the behavior of neural networks
obtained using NEAT in many instances. Here, we provide some
of these results using a series of typical complex time processing
tasks related to chaotic time series modeling and consider an
example of the integration of this new approach within a robotic
cognitive architecture.

I. INTRODUCTION

ithin the robotics community there has always been a
need for algorithms that allow to automatically obtain

neural network based structures that permit performing
different control and perception tasks. In fact, this need has
become even more pressing as more and more work has been
devoted to obtaining Cognitive Architectures (CAs). These
architectures are the computational implementation of
cognitive models [1], and as such, constitute the substrate of
functionalities like perception, attention, action selection,
learning, reasoning, etc. In the last few years the subfield of
Cognitive Developmental Robotics (CDR) [2] has become a
source of many of the most popular CAs. The bases of CDR
were articulated by Weng in [3] who indicated that "a
developmental architecture requires not only a specification
of processors and their interconnections, but also their online,
incremental, automatic generation from real-time
experience". That is, the control structure of the robot must be
obtained autonomously by the robot through interaction with
its environment and not produced through some explicit prior
design.

Thus, when considering neural network based controllers,
a need for algorithms that can produce them with the
appropriate size and structure for a given set of input-output
relationships is evident. In this line, Neuroevolution of

All authors are with the Integrated Group for Engineering Research,

University of A Coruña, Ferrol, Spain (phone: +34981337400, e-mail:
{pcsobrino, fran, richard}@ udc.es).

This work was partially funded by the Spanish MICINN and European
Regional Development Funds through project TIN2011-28753-C02-01.

Augmenting Topologies (NEAT) [4][5] has been a very
successful algorithm for evolving Artificial Neural Networks
(ANNs) that adapt their structure and processing to the task
that is required from them. This evolutionary algorithm has
been applied successfully for obtaining the weights and
structure of ANNs in different domains going from data
classification [6][7] to evolutionary robotic design [8].
However, its main application field has been that of learning
in dynamic domains, like video games [9][10][11] or vehicle
crash simulation [12]. Its operation is based on the use of
history markers in genes to promote crossover between
similar topologies. Thus, species or niches in the population
are preserved by avoiding reproduction between historically
different individuals. Moreover, NEAT starts with simple
feed-forward ANNs that contain only input and output
neurons and it incrementally increases their complexity
through structural mutation operators, the add connection
mutation and the add node mutation [13]. This way, a
designer does not need to predetermine the architecture and
number of nodes of the ANN needed for a given task or
function.

In the domain of ANN based cognitive architectures, one
of the primary functions of many of the networks developed
is to produce models of reality that can be used by the robot’s
cognitive architecture when deciding on its actions and
strategies. These models often have to deal with temporal
relationships and, consequently, the ANNs produced must be
able to somehow model these temporal aspects in an intrinsic
manner. NEAT is able to manage time dependent phenomena
through recurrent or feedback connections inserted between
neurons using its add connection mutation operator.
Therefore, it intrinsically supports the generation and training
of classical Recurrent Neural Networks. However, classical
Recurrent Neural Networks (RNN) present several
drawbacks when dealing with problems that require precise
timing [14], especially when modeling the underlying
structure of complex time series, and different approaches
have been developed to address them [14][15]. It turns out
that one of the most popular implies introducing controllable
time delays in the feedforward or feedback synapses of the
networks, leading to the concept of Time Delay Recurrent
Neural Networks (TDRNN) [16][17][18].

The underlying theoretical results in signal processing that
support their use are based on the embedding theorem
[19][20] which states that an unambiguous model of any
dynamical system characterized by a measured signal can be
obtained by embedding this signal in a higher dimensional
space of dimension D. This embedding can be achieved by

Augmenting the NEAT Algorithm to Improve its Temporal
Processing Capabilities

Pilar Caamaño, Francisco Bellas, and Richard J. Duro

W

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1467

taking D samples of the signal spaced by an amount . In
signal processing terminology, the dynamic reconstruction of
the signal is possible this way.

From this point of view, the only problem that remains is
how to obtain D and , and most time delay based ANNs
assume that by appropriately training a set of synaptic delays
in the networks, one automatically obtains these two
parameters in an intrinsic manner. That is, these delays can be
taken as a representation of the different lengths of these
connections and different synaptic lengths imply different
amounts of time for the signals to traverse them.

In fact, lower dimensional embedding spaces could be used
if the samples were not evenly spaced in time and, thus, by
considering an uneven distribution of delays, many dynamic
processes could be modeled unambiguously using a smaller
number of signal points [21].

Most current TDRNN training algorithms do not provide
for these networks to be grown and adapt their topology and
weights to the problems they try to solve as the NEAT
algorithm does. Consequently, in this paper, we argue that by
adding the capability of incorporating and managing delays to
NEAT, better signal modelling ANNs can be obtained. In
fact, we discuss how this capability may be added to NEAT
and present some experimental results showing how this
improves the networks obtained.

The rest of the paper is organized as follows. Section 2
presents the -NEAT algorithm, which is our proposal for
adding the capability of introducing time delays to NEAT.
Section 3 shows the results of some experiments carried out
over a series of chaotic time series often used in order to test
temporal modeling structures. In Section 4 we apply τ-NEAT
to a real robotic cognitive architecture. Finally, section 5
presents a series of conclusions.

II. MODIFICATION OF THE NEAT ALGORIHTM

As commented above, this section is devoted to the
presentation of how the NEAT algorithm has been extended
in order to be able to manage synaptic delays. This extension
of the NEAT algorithm is called -NEAT.
-NEAT is, basically, a neuroevolutionary algorithm for

growing neural networks that may include recurrent
connections and synaptic delays. Fig. 1 displays the structure
of a general or prototypic neural network that-NEAT may
obtain. For every synapse between neurons i and j, this
network includes a synaptic delay ij, in addition to the
synaptic weight wij. This time delay is modeled by means of a
FIFO buffer containing the last ij input values to that
synapsis.

Concerning the operation of the algorithm, it follows the
same basic structure as NEAT (described in [4]) with some
slight modifications. On the one hand, and as indicated
before, the synaptic delays have been included in the NEAT
chromosome and their value determines the size of the buffer
and, consequently, the length of the synaptic connection and
or the time the signal needs to traverse it. They are handled

much in the same way as if they were synaptic weights in the
original implementation with the limitation that they are
integer numbers. Thus, in terms of evolution, the -NEAT
approach works in a very similar manner to the original
NEAT algorithm with the exception of the operators that are
necessary to evolve and manage the  value. That is, it was
necessary to extend the synaptic connection to deal with the
delays and, as a consequence, a new mutation operator that
modifies the values each generation was added.

Obviously, the delays affect the inputs to each neuron, that
is, the time at which each output of the previous neuron
reaches the target neuron. The inputs to the target neuron are
now dependent on the  values which determine the length in
time steps of a buffer these values have to traverse to reach
the targets. The new input is stored in the buffer, which works
as a FIFO with a maximum capacity of ij.

Another consideration to take into account when working
with this new model is that its behavior depends on values in
previous temporal instants. Due to this fact, the outputs of
-NEAT cannot be considered as valid until every buffer is
filled. This is, in order to produce significant outputs, every
neuron in the network must have a complete set of inputs and,
as there are synaptic delays throughout the network, it takes a
given number of iterations for all the neurons to have relevant
values in all of their inputs, that is, to fill the synaptic buffers.

Fig 1. Structure of an example -NEAT neural network

III. SOME TESTS

This section is devoted to the presentation of the results of
a series of tests over benchmark functions that were carried
out in order to compare the performance of the -NEAT
algorithm to that of the standard NEAT algorithm when
modeling temporal series. As indicated before, the objective
here is to produce ANNs that are able to model temporal
processes learning from a signal produced by measuring the
corresponding dynamic system. Thus, we have chosen a set of
well-known benchmark signals used in many signal

1468

processing tasks, the Logistic map and the Mackey Glass time
series. These series are chaotic, at least for some parameter
intervals, and we have chosen these intervals for the tests. The
Logistic map is a very nice signal for benchmarking as its
state space can be plotted in two and three dimensions and,
consequently, it is easy to see if the networks have really
captured the underlying system from the signal they were
presented with. On the other hand, the Mackey Glass time
series is much more complex to model and visualize. In most
implementations, in order to disambiguate a value it is usually
necessary to consider 17 or more previous values. This makes
it more interesting for testing signal modelers, at the expense
of not being able to plot its state space and of having to
analyze the performance of different approaches over the
observable signal. In every case, we have compared the
results of the -NEAT algorithm to those provided by the
original NEAT algorithm as presented in [4].

A. Logistic Map

The logistic map chaotic time series is defined by the
following equation:

௡ାଵݔ ൌ ௡ሺ1ݔݎ െ ௡ሻݔ

Where xn is the current value of the signal and xn+1 the next

one. Its behavior depends on the value of r, which is a positive
number that represents a combined rate for reproduction and
starvation in population dynamics. However, as we are only
interested in having a chaotic signal, we have fixed this value
to r=4 and the starting value to x0=0.1. The phase diagram of
the logistic map is displayed Fig. 2. The left graph provides a
two-dimensional representation showing its quadratic
behavior while the three-dimensional representation is shown
in the right graph.

Fig 2. Logistic map time series phase diagram. Two-dimensional
representation (left). Three-dimensional representation (right).

The experiment seeks to establish a comparison between

the performance of the τ-NEAT and standard NEAT
algorithms. Consequently, the two models were tested:

 The original NEAT model that uses recurrences in
its networks in order to model temporal processes.

 The τ-NEAT approach presented in this work which,
in addition to the recurrences used in the original
NEAT model, includes time delays in its synapses.

 The common parameters used in the configuration of
these models are displayed in Table 1. Those are the values

recommended by the NEAT authors, except in the case of the
mutation operator.

As modeling chaotic time series requires a good precision
level and due to the influence on result precision of the
mutation operators, here we have resorted to the Michalewicz
non-uniform mutation operator [22] in order to improve the
precision of the results. This mutation operator automatically
adjusts the mutation step size during the evolutionary process.
It makes it large at the beginning of the evolutionary process,
allowing the algorithm to extensively explore the search
space, and then it decreases it with the number of generations.
In the last generations of the evolutionary process, the
mutation step size takes low values and, consequently, only
small changes of the weights take place, thus permitting a
more precise honing of the final values.

TABLE I

COMMON CONFIGURATION PARAMETERS

Generations 1000

Population size 500

Topology Mutation Classic

Add Connection Rate 0.1

Remove Connection Rate 0.01

Remove Connection Max Weight 5.0

Add Neuron Rate 0.1

Prune Mutation Rate 1.0

Weight Mutation
Michalewicz Non
Uniform Mutation

Weight Mutation B parameter 5.0

Weight Range [-10.0:10.0]

Survival Rate 0.1

Elitism True

Selection operator Roulette

Elitism species minimum size 1

The fitness value used to compare the individuals of the

population was the MSE error in a minimization process.
These errors are only taken into account from the moment the
buffers of the time-delayed synapses are filled. This is done
because it would make no sense to consider errors in instants
when some of the neurons may not have any input, as the
corresponding buffer position has not yet been filled.

Finally, the number of recurrences and the maximum
buffer size (maximum time delay) used in the time-delayed
synapses are presented in Table 2.

TABLE II

SPECIFIC CONFIGURATION PARAMETERS

 NEAT τ-NEAT

Recurrence Type Best Guess Best Guess

Recurrence Cycles 5 2

Time-Delayed Synapsis buffer size 0 2

1469

With these configurations, the two models were evolved.
The results obtained after 50 independent evolutions are
displayed in Fig. 3, Fig. 4 and Fig. 5. The first one represents
the evolution of the average MSE error. Whereas Fig. 4 and
Fig. 5 show the phase diagrams after applying the best
individuals obtained in each case to the prediction of the
logistic map. The left graphs correspond to the NEAT
algorithm and the right ones to τ-NEAT.

Fig. 3. Average MSE error for 50 independent evolutions of the logistic

map prediction experiment.

Each of the graphs in figs. 4 and 5 display three data sets.
The small blue dots represent the original time series to be
predicted. The red crosses correspond to the outputs of the
ANN when the inputs used by the network are the values of
the original time series, that is, for a prediction one instant
into the future. This test permits analyzing how well the
resulting ANN approximates the time series that it has to
predict. Finally, the green xs have to do with the time series
obtained by the ANN when the output in time t is used as
input for obtaining the new output in time t+1 in a multistep
prediction fashion, that is, when we are using the network as
an autonomous signal generator. This permits ascertaining
how well the network has captured the underlying dynamic
system.

As the results show, the model that best fits the Logistic
Map time series is the one obtained using τ-NEAT, i.e., the
one that uses recurrences and time-delayed synapsis. This is
the case both for one-step ahead prediction or when using a
multistep approach as a signal generator. From the error plots
of Fig. 3, this can also become clear, as τ-NEAT achieves an
error value that is more than one order of magnitude better
than NEAT in the allotted number of generations. The
network that was obtained at the end of the process is made up
of 13 hidden neurons and 27 connections.

Fig. 4. Logistic map two dimensional phase diagram results. From left to

right, results obtained by the NEAT model, and by τ-NEAT.

Fig. 5. Logistic map three dimensional phase diagram results. From left to

right, results obtained by the NEAT model, and by τ-NEAT.

B. Mackey-Glass Time Series

As a second comparison, were carried out an experiment
using the Mackey-Glass delay differential equation as the
underlying dynamical system. This equation is given by:

ሻݐሺݔ݀
ݐ݀

ൌ െܾݔሺݐሻ ൅ ܽ
ݐሺݔ െ ߬ሻ

1 ൅ ݐሺݔ െ ߬ሻଵ଴

which is a rather complex chaotic time series for values of ߬
of 17 or more. It presents non-linearities, limit cycle
oscillations and aperiodic waveforms. For these tests the
values for ߬, a, b and x0 were set to 17, 0.2, 0.1 and 0.8,
respectively, and the step size Δݐ was set to 1. Moreover, we
have used the same algorithm configuration as in the previous
case, except for the maximum delay or buffer size, which was
set to 18.

Fig. 6 displays the evolution of the average MSE error after
50 independent evolutions. Again, τ-NEAT outperforms
NEAT in terms of the error level produced by the final ANN.
In terms of the behavior of the best networks obtained by the
two approaches, Fig. 7 presents the results of applying them
to this problem. Once more, results of the approaches with
time-delayed synapses are more precise, being this more

1470

noticeable in the case of the peaks. The τ-NEAT model
obtained in this experiment consists of 11 hidden nodes and
32 connections.

Fig. 6. Average MSE Error evolution for the Mackey-Glass time series
prediction experiment.

Fig. 7. Mackey-Glass predition results for the three ANN models. From top
to bottom, NEAT and τ-NEAT.

IV. ROBOTIC EXPERIMENT

A robotic experiment has been implemented to analyze the
relevance of using the τ-NEAT algorithm in the Multilevel
Darwinist Brain (MDB) cognitive architecture [23]. This
experiment involves the robot deciding when to traverse a
corridor that is being monitored by a “security guard” that
moves across it with different motion patterns. For the robot
to cross safely, it must avoid touching the guard. However, as
it takes some time to move across the monitored section, the
decision to move must come about as a consequence of
predicting the motion of the guard several instants in advance.
In terms of the MDB, this means creating a model of the
guard’s motion, that is, producing an ANN that can be used to
provide a prediction of when the guard will not be in the
robot’s path.

Fig. 8 displays six snapshots of the "safe crossing"
experiment. We have an Aibo ERS-7 robot and an e-puck
robot with a pink ball on its top (guard) that crosses in front of
the Aibo. As indicated in the previous paragraph, the
objective of the MDB is to learn the models required by the

Aibo to advance without running over the guard using, in this
case, the τ-NEAT algorithm. The desirable situation is the one
shown in the bottom left image while an undesirable one is
that displayed in the bottom right image. A schematic
overview of this setup can be observed in the top image of
Fig. 9. As shown, the robot is placed at a fixed distance from
the guard, which performs a continuous and linear movement
in front of the robot according to a pre-specified temporal
pattern. The Aibo must select the appropriate instant to move
and cross without running over the guard. Depending on the
temporal pattern followed by the guard, this selection may
become very complex requiring a precise temporal modeling
to anticipate the guard’s position.

Fig. 8. Snapshots of the Aibo robot "safe crossing" experiment.

In this configuration, the robot has a permanent vision of

the guard (pink ball) from its starting position. The Aibo
employs its camera, placed in its head, to obtain an estimation
of the distance and the angle to the ball. Specifically, in each
iteration, the robot moves its neck from 90º left to 90º right
having a complete view of the environment in front of it. If a
ball is detected during this neck displacement, the robot
centers this ball in the camera image. After that, the distance
is calculated as a function of the size of the detected ball and
the angle to the ball is the angle of the neck actuator.

The robot can perform two actions: move forward or not
move. If the robot decides to move forward when the guard is
crossing the "y" axis, it collides with it and, consequently, the
distance and the angle are zero. In any other case, when the
robot moves forward, it reaches the origin of coordinates but
cannot see the guard, so the distance the sensor returns after
processing the image is 3 meters (out of range). Otherwise,
the specific values of distance and angle vary in a continuous
range from 0 to 1 (distance) and from -1 to 1 (angle).

We have implemented four different patterns of guard
motions to illustrate τ-NEAT’s response in different
situations. They are precise temporal patterns, so it is
assumed that τ-NEAT will perform successfully over them.

1471

For each case, the position of the guard in each iteration can
be viewed in the four bottom graphs of Fig. 9 (for example,
Function 0 corresponds to a repetitive movement of the guard
from [0,0] to [1,0] and back to [0,0]). To be able to address
this experiment in the MDB, two models must be considered
and learned: a world model and a satisfaction model. Here we
will concentrate on the world model.

Fig. 9. Top: "Safe crossing" experiment schematic overview. Bottom:
Guard position with respect to the AIBO position in the four movement

patterns considered.

The world model has three inputs (distance, angle and
action) and two outputs (predicted distance and angle). This
model is represented by means of an ANN obtained by the
τ-NEAT algorithm.

Fig. 10 displays the evolution of the mean squared error
averaged for the two outputs of the world model provided by
the NEAT (with recurrent connections but no delays) and
τ-NEAT algorithms when the guard follows the four dynamic
patterns shown in the bottom plots of Fig. 9. It can be clearly
observed that the τ-NEAT algorithm outperforms the original
one in all cases, which was the main objective of this
experiment. In practical terms, the AIBO robot successfully
accomplished the task when the error level was below 1e-03,
while in any other case the robot behavior was unstable. As
displayed in Fig. 10, such error level was obtained by the
τ-NEAT algorithm in all the experiments.

Fig. 10. Evolution of the error provided by NEAT and τ-NEAT.

 0.0

 0.5

 1.0

 0 2 4 6 8 10 12B
al

l p
os

it
io

n
(m

)

Iteration

Function 0

 -1.0
 -0.5
 0.0
 0.5
 1.0

 0 2 4 6 8 10 12B
al

l p
os

it
io

n
(m

)

Iteration

Function 1

 0.0

 0.5

 1.0

 0 2 4 6 8 10 12B
al

l p
os

it
io

n
(m

)

Iteration

Function 2

 -1.0
 -0.5
 0.0
 0.5
 1.0

 0 2 4 6 8 10 12B
al

l p
os

it
io

n
(m

)

Iteration

Function 3

M
ea

n
sq

ua
re

d
er

ro
r

M
ea

n
sq

ua
re

d
er

ro
r

M
ea

n
sq

ua
re

d
er

ro
r

M
ea

n
sq

ua
re

d
er

ro
r

1472

V. CONCLUSIONS

This paper presents an extension to the NEAT algorithm in
order to allow it to produce better signal modelers, which are
often required when trying to obtain cognitive architectures
for robots. To this end, we have proposed the incorporation to
NEAT of the capability of including and managing synaptic
delays in the synapses it introduces in its networks, whether
feedforward or feedback. The introduction of these terms and
capabilities does not change the NEAT algorithm very much
and it just requires a few new operators to be able to handle
the adaptation of these delays to the problem in hand. This
new extension of the algorithm has been called τ-NEAT.

τ-NEAT has been described in the paper and its
performance compared favorably to the standard NEAT
algorithm over a set of signal modeling cases involving two
standard benchmark chaotic time series. In addition, as this
work has the objective of producing algorithms that can be
used in robot cognitive architectures, a third experiment was
carried out where the τ-NEAT algorithm was incorporated to
the Multilevel Darwinist Brain (MDB) robotic cognitive
architecture for world modeling tasks that require precise
temporal processing. In the experiment, τ-NEAT again
outperformed the standard NEAT algorithm.

We are now working on more complex robotic tasks and on
the integration of τ-NEAT at other levels of the cognitive
architecture.

REFERENCES
[1] Byrne, M.D: Cognitive architecture, The humancomputer interaction

handbook, Taylor & Francis, vol. 44, no. 1, 97-117 (2003)
[2] Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T.,

Yoshikawa, Y.; Ogino, M.; Yoshida, C.: Cognitive Developmental
Robotics: A Survey, IEEE Trans. On Autonomous Mental
Development, vol. 1, no. 1, 12-34, (2009)

[3] Weng, J: On developmental mental architectures, Neurocomputing,
vol. 70, no.13-15, 2303-2323, (2007).

[4] Stanley, K.O., Miikkulainen, R., Evolving neural networks through
augmenting topologies. Evolutionary Computation 10 (2), (2002), pp.
99–127.

[5] Stanley, K.O., Miikkulainen, R., Efficient evolution of neural networks
topologies. In: Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02), (2002), pp. 569-577

[6] Wang, G., Cheng, G., Carr, T.R., The application of improved
NeuroEvolution of Augmenting Topologies neural network in
Marcellus Shale lithofacies prediction, Computers and Geosciences,
54, (2013), pp. 50-65.

[7] Chen, L., Alahakoon, D., NeuroEvolution of augmenting topologies
with learning for data classification, 2nd International Conference on
Information and Automation, ICIA 2006, (2006), pp. 367-371

[8] Krčah, P., Towards efficient evolution of morphology and control,
GECCO'08: Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation 2008, (2008), pp. 287-288.

[9] Stanley, K.O., Bryant, B.D., Miikkulainen, R., Real-time
neuroevolution in the NERO video game, IEEE Transactions on
Evolutionary Computation, 9 (6), (2005), pp. 653-668

[10] Raffe, W.L., Zambetta, F., Li, X., Neuroevolution of content layout in
the PCG: Angry bots video game, 2013 IEEE Congress on
Evolutionary Computation, CEC 2013, (2013), pp. 673-680.

[11] Cardamone, L., Loiacono, D., Lanzi, P.L., Evolving competitive car
controllers for racing games with neuroevolution, Proceedings of the
11th Annual Genetic and Evolutionary Computation Conference,
GECCO-2009, (2009), pp. 1179-1186

[12] Kohl, N., Stanley, K., Miikkulainen, R., Samples, M., Sherony, R.,
Evolving a real-world vehicle warning system, GECCO 2006 - Genetic
and Evolutionary Computation Conference, 2, (2006), pp. 1681-1688.

[13] Stanley, K.O., Miikkulainen, R., Competitive coevolution through
evolutionary complexification, Journal of Artificial Intelligence
Research, 21, (2004), pp. 63-100.

[14] Gers, F.A., Schraudolph, N., Schmidhuber, J., Learning precise timing
with lstm recurrent networks. Journal of Machine Learning Research
vol 3 (2003), pp. 115-143

[15] Renart, A., Recurrent networks learn to tell time, Nature Neuroscience
16, (2013), pp. 772–774

[16] Marom E, Saad D, Cohen B., Efficient Training of Recurrent Neural
Network with Time Delays, Neural Networks vol 10(1), (1997), pp.
51-59.

[17] Sung-Suk Kim, Time-delay recurrent neural network for temporal
correlations and prediction, Neurocomputing Vol 20, Issues 1–3,
(1998), pp. 253-263

[18] Boné, R., Crucianu, M. de Beauville, J.P., Learning long-term
 dependencies by the selective addition of time-delayed connections to
recurrent neural network, Neurocomputing, vol. 48, no. 1-4, (2002) pp.
229–250

[19] Mañé, R., On the dimension of the compact invariant sets of certain
non-linear maps, Dynamical Systems and Turbulence, vol. 898, (1981)
pp. 230-242.

[20] Takens, F., On the numerical determination of the dimension of an
attractor, Dynamical Systems and Bifurcations, vol. 1125 (1985), pp.
99-106.

[21] Duro, R. J., Reyes, J.S, Discrete-time backpropagation for training
synaptic delay-based artificial neural networks, IEEE Transactions on
Neural Networks, vol. 10, no. 4, (1999) pp. 779-789

[22] Michalewicz, Zbigniew. Genetic algorithms+ data structures=
evolution programs. Springer, (1996).

[23] Bellas, F., Duro, R.J., Faina, A., Souto, D.: Multilevel Darwinist Brain
(MDB): Artifcial Evolution in a Cognitive Architecture for Real
Robots, IEEE Trans. On Autonomous Mental Development, vol. 2, no.
4, 340-354, (2010).

1473

