
 
 

 

 

Abstract—This paper is concerned with the incorporation of 
new time processing capacities to the Neuroevolution of 
Augmenting Topologies (NEAT) algorithm. This algorithm is 
quite popular within the robotics community for the production 
of trained neural networks without having to determine a priori 
their size and topology. However, and even though the 
algorithm can address temporal processing issues through its 
capacity of establishing feedback synaptic connections, that is, 
through recurrences, there are still instances where more 
precise time processing may go beyond its limits. In order to 
address these cases, in this paper we describe a new 
implementation of the NEAT algorithm where trainable 
synaptic time delays are incorporated into its toolbox. This 
approach is shown to improve the behavior of neural networks 
obtained using NEAT in many instances. Here, we provide some 
of these results using a series of typical complex time processing 
tasks related to chaotic time series modeling and consider an 
example of the integration of this new approach within a robotic 
cognitive architecture. 

I. INTRODUCTION 

ithin the robotics community there has always been a 
need for algorithms that allow to automatically obtain 

neural network based structures that permit performing 
different control and perception tasks. In fact, this need has 
become even more pressing as more and more work has been 
devoted to obtaining Cognitive Architectures (CAs). These 
architectures are the computational implementation of 
cognitive models [1], and as such, constitute the substrate of 
functionalities like perception, attention, action selection, 
learning, reasoning, etc. In the last few years the subfield of 
Cognitive Developmental Robotics (CDR) [2] has become a 
source of many of the most popular CAs. The bases of CDR 
were articulated by Weng in [3] who indicated that "a 
developmental architecture requires not only a specification 
of processors and their interconnections, but also their online, 
incremental, automatic generation from real-time 
experience". That is, the control structure of the robot must be 
obtained autonomously by the robot through interaction with 
its environment and not produced through some explicit prior 
design. 

Thus, when considering neural network based controllers, 
a need for algorithms that can produce them with the 
appropriate size and structure for a given set of input-output 
relationships is evident. In this line, Neuroevolution of 
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Augmenting Topologies (NEAT) [4][5]  has been a very 
successful algorithm for evolving Artificial Neural Networks 
(ANNs) that adapt their structure and processing to the task 
that is required from them. This evolutionary algorithm has 
been applied successfully for obtaining the weights and 
structure of ANNs in different domains going from data 
classification [6][7] to evolutionary robotic design [8]. 
However, its main application field has been that of learning 
in dynamic domains, like video games [9][10][11] or vehicle 
crash simulation [12]. Its operation is based on the use of 
history markers in genes to promote crossover between 
similar topologies. Thus, species or niches in the population 
are preserved by avoiding reproduction between historically 
different individuals. Moreover, NEAT starts with simple 
feed-forward ANNs that contain only input and output 
neurons and it incrementally increases their complexity 
through structural mutation operators, the add connection 
mutation and the add node mutation [13]. This way, a 
designer does not need to predetermine the architecture and 
number of nodes of the ANN needed for a given task or 
function. 

In the domain of ANN based cognitive architectures, one 
of the primary functions of many of the networks developed 
is to produce models of reality that can be used by the robot’s 
cognitive architecture when deciding on its actions and 
strategies. These models often have to deal with temporal 
relationships and, consequently, the ANNs produced must be 
able to somehow model these temporal aspects in an intrinsic 
manner.  NEAT is able to manage time dependent phenomena 
through recurrent or feedback connections inserted between 
neurons using its add connection mutation operator. 
Therefore, it intrinsically supports the generation and training 
of classical Recurrent Neural Networks. However, classical 
Recurrent Neural Networks (RNN) present several 
drawbacks when dealing with problems that require precise 
timing [14], especially when modeling the underlying 
structure of complex time series, and different approaches 
have been developed to address them [14][15]. It turns out 
that one of the most popular implies introducing controllable 
time delays in the feedforward or feedback synapses of the 
networks, leading to the concept of Time Delay Recurrent 
Neural Networks (TDRNN) [16][17][18]. 

The underlying theoretical results in signal processing that 
support their use are based on the embedding theorem 
[19][20] which states that an unambiguous model of any 
dynamical system characterized by a measured signal can be 
obtained by embedding this signal in a higher dimensional 
space of dimension D. This embedding can be achieved by 
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taking D samples of the signal spaced by an amount . In 
signal processing terminology, the dynamic reconstruction of 
the signal is possible this way. 

From this point of view, the only problem that remains is 
how to obtain D and , and most time delay based ANNs 
assume that by appropriately training a set of synaptic delays 
in the networks, one automatically obtains these two 
parameters in an intrinsic manner. That is, these delays can be 
taken as a representation of the different lengths of these 
connections and different synaptic lengths imply different 
amounts of time for the signals to traverse them.  

In fact, lower dimensional embedding spaces could be used 
if the samples were not evenly spaced in time and, thus, by 
considering an uneven distribution of delays, many dynamic 
processes could be modeled unambiguously using a smaller 
number of signal points [21]. 

Most current TDRNN training algorithms do not provide 
for these networks to be grown and adapt their topology and 
weights to the problems they try to solve as the NEAT 
algorithm does. Consequently, in this paper, we argue that by 
adding the capability of incorporating and managing delays to 
NEAT, better signal modelling ANNs can be obtained. In 
fact, we discuss how this capability may be added to NEAT 
and present some experimental results showing how this 
improves the networks obtained. 

The rest of the paper is organized as follows. Section 2 
presents the -NEAT algorithm, which is our proposal for 
adding the capability of introducing time delays to NEAT. 
Section 3 shows the results of some experiments carried out 
over a series of chaotic time series often used in order to test 
temporal modeling structures. In Section 4 we apply τ-NEAT 
to a real robotic cognitive architecture. Finally, section 5 
presents a series of conclusions. 

II. MODIFICATION OF THE NEAT ALGORIHTM 

As commented above, this section is devoted to the 
presentation of how the NEAT algorithm has been extended 
in order to be able to manage synaptic delays. This extension 
of the NEAT algorithm is called -NEAT.  
-NEAT is, basically, a neuroevolutionary algorithm for 

growing neural networks that may include recurrent 
connections and synaptic delays. Fig. 1 displays the structure 
of a general or prototypic neural network that-NEAT may 
obtain. For every synapse between neurons i and j, this 
network includes a synaptic delay ij, in addition to the 
synaptic weight wij.  This time delay is modeled by means of a 
FIFO buffer containing the last ij input values to that 
synapsis. 

Concerning the operation of the algorithm, it follows the 
same basic structure as NEAT (described in [4]) with some 
slight modifications. On the one hand, and as indicated 
before, the synaptic delays have been included in the NEAT 
chromosome and their value determines the size of the buffer 
and, consequently, the length of the synaptic connection and 
or the time the signal needs to traverse it. They are handled 

much in the same way as if they were synaptic weights in the 
original implementation with the limitation that they are 
integer numbers. Thus, in terms of evolution, the -NEAT 
approach works in a very similar manner to the original 
NEAT algorithm with the exception of the operators that are 
necessary to evolve and manage the  value. That is, it was 
necessary to extend the synaptic connection to deal with the 
delays and, as a consequence, a new mutation operator that 
modifies the values each generation was added.

Obviously, the delays affect the inputs to each neuron, that 
is, the time at which each output of the previous neuron 
reaches the target neuron. The inputs to the target neuron are 
now dependent on the  values which determine the length in 
time steps of a buffer these values have to traverse to reach 
the targets. The new input is stored in the buffer, which works 
as a FIFO with a maximum capacity of ij.  

Another consideration to take into account when working 
with this new model is that its behavior depends on values in 
previous temporal instants. Due to this fact, the outputs of 
-NEAT cannot be considered as valid until every buffer is 
filled. This is, in order to produce significant outputs, every 
neuron in the network must have a complete set of inputs and, 
as there are synaptic delays throughout the network, it takes a 
given number of iterations for all the neurons to have relevant 
values in all of their inputs, that is, to fill the synaptic buffers.  

 

 
 

Fig 1. Structure of an example -NEAT neural network 

III. SOME TESTS 

This section is devoted to the presentation of the results of 
a series of tests over benchmark functions that were carried 
out in order to compare the performance of the -NEAT 
algorithm to that of the standard NEAT algorithm when 
modeling temporal series. As indicated before, the objective 
here is to produce ANNs that are able to model temporal 
processes learning from a signal produced by measuring the 
corresponding dynamic system. Thus, we have chosen a set of 
well-known benchmark signals used in many signal 
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processing tasks, the Logistic map and the Mackey Glass time 
series. These series are chaotic, at least for some parameter 
intervals, and we have chosen these intervals for the tests. The 
Logistic map is a very nice signal for benchmarking as its 
state space can be plotted in two and three dimensions and, 
consequently, it is easy to see if the networks have really 
captured the underlying system from the signal they were 
presented with. On the other hand, the Mackey Glass time 
series is much more complex to model and visualize. In most 
implementations, in order to disambiguate a value it is usually 
necessary to consider 17 or more previous values. This makes 
it more interesting for testing signal modelers, at the expense 
of not being able to plot its state space and of having to 
analyze the performance of different approaches over the 
observable signal. In every case, we have compared the 
results of the -NEAT algorithm to those provided by the 
original NEAT algorithm as presented in [4]. 

A. Logistic Map 

The logistic map chaotic time series is defined by the 
following equation: 

 
௡ାଵݔ ൌ ௡ሺ1ݔݎ െ  ௡ሻݔ

 
Where xn is the current value of the signal and xn+1 the next 

one. Its behavior depends on the value of r, which is a positive 
number that represents a combined rate for reproduction and 
starvation in population dynamics. However, as we are only 
interested in having a chaotic signal, we have fixed this value 
to r=4 and the starting value to x0=0.1. The phase diagram of 
the logistic map is displayed Fig. 2. The left graph provides a 
two-dimensional representation showing its quadratic 
behavior while the three-dimensional representation is shown 
in the right graph. 

 
Fig 2. Logistic map time series phase diagram. Two-dimensional 
representation (left). Three-dimensional representation (right). 

 
The experiment seeks to establish a comparison between 

the performance of the τ-NEAT and standard NEAT 
algorithms. Consequently, the two models were tested: 

 The original NEAT model that uses recurrences in 
its networks in order to model temporal processes. 

 The τ-NEAT approach presented in this work which, 
in addition to the recurrences used in the original 
NEAT model, includes time delays in its synapses. 

 The common parameters used in the configuration of 
these models are displayed in Table 1. Those are the values 

recommended by the NEAT authors, except in the case of the 
mutation operator.  

As modeling chaotic time series requires a good precision 
level and due to the influence on result precision of the 
mutation operators, here we have resorted to the Michalewicz 
non-uniform mutation operator [22] in order to improve the 
precision of the results. This mutation operator automatically 
adjusts the mutation step size during the evolutionary process. 
It makes it large at the beginning of the evolutionary process, 
allowing the algorithm to extensively explore the search 
space, and then it decreases it with the number of generations. 
In the last generations of the evolutionary process, the 
mutation step size takes low values and, consequently, only 
small changes of the weights take place, thus permitting a 
more precise honing of the final values.  

TABLE I 

COMMON CONFIGURATION PARAMETERS 

Generations 1000

Population size 500

Topology Mutation Classic

Add Connection Rate 0.1

Remove Connection Rate 0.01

Remove Connection Max Weight 5.0

Add Neuron Rate 0.1

Prune Mutation Rate 1.0

Weight Mutation  
Michalewicz Non 
Uniform Mutation

Weight Mutation B parameter 5.0

Weight Range [-10.0:10.0]

Survival Rate 0.1

Elitism True

Selection operator Roulette

Elitism species minimum size 1

 
 
The fitness value used to compare the individuals of the 

population was the MSE error in a minimization process. 
These errors are only taken into account from the moment the 
buffers of the time-delayed synapses are filled. This is done 
because it would make no sense to consider errors in instants 
when some of the neurons may not have any input, as the 
corresponding buffer position has not yet been filled. 

Finally, the number of recurrences and the maximum 
buffer size (maximum time delay) used in the time-delayed 
synapses are presented in Table 2. 

 
TABLE II 

SPECIFIC CONFIGURATION PARAMETERS 

   NEAT τ-NEAT 

Recurrence Type Best Guess Best Guess 

Recurrence Cycles 5 2 

Time-Delayed Synapsis buffer size 0 2 
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With these configurations, the two models were evolved. 
The results obtained after 50 independent evolutions are 
displayed in Fig. 3, Fig. 4 and Fig. 5. The first one represents 
the evolution of the average MSE error. Whereas Fig. 4 and 
Fig. 5 show the phase diagrams after applying the best 
individuals obtained in each case to the prediction of the 
logistic map. The left graphs correspond to the NEAT 
algorithm and the right ones to τ-NEAT. 

  

 
Fig. 3.  Average MSE error for 50 independent evolutions of the logistic 

map prediction experiment. 
 

Each of the graphs in figs. 4 and 5 display three data sets. 
The small blue dots represent the original time series to be 
predicted. The red crosses correspond to the outputs of the 
ANN when the inputs used by the network are the values of 
the original time series, that is, for a prediction one instant 
into the future. This test permits analyzing how well the 
resulting ANN approximates the time series that it has to 
predict. Finally, the green xs have to do with the time series 
obtained by the ANN when the output in time t is used as 
input for obtaining the new output in time t+1 in a multistep 
prediction fashion, that is, when we are using the network as 
an autonomous signal generator. This permits ascertaining 
how well the network has captured the underlying dynamic 
system. 

As the results show, the model that best fits the Logistic 
Map time series is the one obtained using τ-NEAT, i.e., the 
one that uses recurrences and time-delayed synapsis. This is 
the case both for one-step ahead prediction or when using a 
multistep approach as a signal generator. From the error plots 
of Fig. 3, this can also become clear, as τ-NEAT achieves an 
error value that is more than one order of magnitude better 
than NEAT in the allotted number of generations. The 
network that was obtained at the end of the process is made up 
of 13 hidden neurons and 27 connections. 

 
Fig. 4. Logistic map two dimensional phase diagram results. From left to 

right, results obtained by the NEAT model, and by τ-NEAT. 
 

 
Fig. 5. Logistic map three dimensional phase diagram results. From left to 

right, results obtained by the NEAT model, and by τ-NEAT. 

B. Mackey-Glass Time Series 

As a second comparison, were carried out an experiment 
using the Mackey-Glass delay differential equation as the 
underlying dynamical system. This equation is given by: 

 
ሻݐሺݔ݀
ݐ݀

ൌ െܾݔሺݐሻ ൅ ܽ
ݐሺݔ െ ߬ሻ

1 ൅ ݐሺݔ െ ߬ሻଵ଴
 

 
which is a rather complex chaotic time series for values of  ߬ 
of 17 or more. It presents non-linearities, limit cycle 
oscillations and aperiodic waveforms. For these tests the 
values for ߬, a, b and x0 were set to 17, 0.2, 0.1 and 0.8, 
respectively, and the step size Δݐ was set to 1. Moreover, we 
have used the same algorithm configuration as in the previous 
case, except for the maximum delay or buffer size, which was 
set to 18.  

Fig. 6 displays the evolution of the average MSE error after 
50 independent evolutions. Again, τ-NEAT outperforms 
NEAT in terms of the error level produced by the final ANN. 
In terms of the behavior of the best networks obtained by the 
two approaches, Fig. 7 presents the results of applying them 
to this problem. Once more, results of the approaches with 
time-delayed synapses are more precise, being this more 
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noticeable in the case of the peaks. The τ-NEAT model 
obtained in this experiment consists of 11 hidden nodes and 
32 connections. 

 
Fig. 6. Average MSE Error evolution for the Mackey-Glass time series 
prediction experiment. 

 

Fig. 7. Mackey-Glass predition results for the three ANN models. From top 
to bottom, NEAT and τ-NEAT. 

IV. ROBOTIC EXPERIMENT 

A robotic experiment has been implemented to analyze the 
relevance of using the τ-NEAT algorithm in the Multilevel 
Darwinist Brain (MDB) cognitive architecture [23]. This 
experiment involves the robot deciding when to traverse a 
corridor that is being monitored by a “security guard” that 
moves across it with different motion patterns. For the robot 
to cross safely, it must avoid touching the guard. However, as 
it takes some time to move across the monitored section, the 
decision to move must come about as a consequence of 
predicting the motion of the guard several instants in advance. 
In terms of the MDB, this means creating a model of the 
guard’s motion, that is, producing an ANN that can be used to 
provide a prediction of when the guard will not be in the 
robot’s path.  

Fig. 8 displays six snapshots of the "safe crossing" 
experiment. We have an Aibo ERS-7 robot and an e-puck 
robot with a pink ball on its top (guard) that crosses in front of 
the Aibo. As indicated in the previous paragraph, the 
objective of the MDB is to learn the models required by the 

Aibo to advance without running over the guard using, in this 
case, the τ-NEAT algorithm. The desirable situation is the one 
shown in the bottom left image while an undesirable one is 
that displayed in the bottom right image. A schematic 
overview of this setup can be observed in the top image of 
Fig. 9. As shown, the robot is placed at a fixed distance from 
the guard, which performs a continuous and linear movement 
in front of the robot according to a pre-specified temporal 
pattern. The Aibo must select the appropriate instant to move 
and cross without running over the guard. Depending on the 
temporal pattern followed by the guard, this selection may 
become very complex requiring a precise temporal modeling 
to anticipate the guard’s position. 
 

 
Fig. 8. Snapshots of the Aibo robot "safe crossing" experiment. 

 
In this configuration, the robot has a permanent vision of 

the guard (pink ball) from its starting position. The Aibo 
employs its camera, placed in its head, to obtain an estimation 
of the distance and the angle to the ball. Specifically, in each 
iteration, the robot moves its neck from 90º left to 90º right 
having a complete view of the environment in front of it. If a 
ball is detected during this neck displacement, the robot 
centers this ball in the camera image. After that, the distance 
is calculated as a function of the size of the detected ball and 
the angle to the ball is the angle of the neck actuator.  

The robot can perform two actions: move forward or not 
move. If the robot decides to move forward when the guard is 
crossing the "y" axis, it collides with it and, consequently, the 
distance and the angle are zero. In any other case, when the 
robot moves forward, it reaches the origin of coordinates but 
cannot see the guard, so the distance the sensor returns after 
processing the image is 3 meters (out of range). Otherwise, 
the specific values of distance and angle vary in a continuous 
range from 0 to 1 (distance) and from -1 to 1 (angle). 

We have implemented four different patterns of guard 
motions to illustrate τ-NEAT’s response in different 
situations. They are precise temporal patterns, so it is 
assumed that τ-NEAT will perform successfully over them. 
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For each case, the position of the guard in each iteration can 
be viewed in the four bottom graphs of Fig. 9 (for example, 
Function 0 corresponds to a repetitive movement of the guard 
from [0,0] to [1,0] and back to [0,0]). To be able to address 
this experiment in the MDB, two models must be considered 
and learned: a world model and a satisfaction model. Here we 
will concentrate on the world model. 

 

 
 

Fig. 9. Top: "Safe crossing" experiment schematic overview. Bottom: 
Guard position with respect to the AIBO position in the four movement 

patterns considered. 
 

The world model has three inputs (distance, angle and 
action) and two outputs (predicted distance and angle). This 
model is represented by means of an ANN obtained by the 
τ-NEAT algorithm. 

Fig. 10 displays the evolution of the mean squared error 
averaged for the two outputs of the world model provided by 
the NEAT (with recurrent connections but no delays) and 
τ-NEAT algorithms when the guard follows the four dynamic 
patterns shown in the bottom plots of Fig. 9. It can be clearly 
observed that the τ-NEAT algorithm outperforms the original 
one in all cases, which was the main objective of this 
experiment. In practical terms, the AIBO robot successfully 
accomplished the task when the error level was below 1e-03, 
while in any other case the robot behavior was unstable. As 
displayed in Fig. 10, such error level was obtained by the 
τ-NEAT algorithm in all the experiments. 

 
 

 

 
Fig. 10. Evolution of the error provided by NEAT and τ-NEAT. 
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V. CONCLUSIONS 

This paper presents an extension to the NEAT algorithm in 
order to allow it to produce better signal modelers, which are 
often required when trying to obtain cognitive architectures 
for robots. To this end, we have proposed the incorporation to 
NEAT of the capability of including and managing synaptic 
delays in the synapses it introduces in its networks, whether 
feedforward or feedback. The introduction of these terms and 
capabilities does not change the NEAT algorithm very much 
and it just requires a few new operators to be able to handle 
the adaptation of these delays to the problem in hand. This 
new extension of the algorithm has been called τ-NEAT. 

τ-NEAT has been described in the paper and its 
performance compared favorably to the standard NEAT 
algorithm over a set of signal modeling cases involving two 
standard benchmark chaotic time series. In addition, as this 
work has the objective of producing algorithms that can be 
used in robot cognitive architectures, a third experiment was 
carried out where the τ-NEAT algorithm was incorporated to 
the Multilevel Darwinist Brain (MDB) robotic cognitive 
architecture for world modeling tasks that require precise 
temporal processing. In the experiment, τ-NEAT again 
outperformed the standard NEAT algorithm. 

We are now working on more complex robotic tasks and on 
the integration of τ-NEAT at other levels of the cognitive 
architecture. 

REFERENCES 
[1] Byrne, M.D: Cognitive architecture, The humancomputer interaction 

handbook, Taylor & Francis, vol. 44, no. 1, 97-117 (2003) 
[2] Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., 

Yoshikawa, Y.; Ogino, M.; Yoshida, C.: Cognitive Developmental 
Robotics: A Survey, IEEE Trans. On Autonomous Mental 
Development, vol. 1, no. 1, 12-34, (2009) 

[3] Weng, J: On developmental mental architectures, Neurocomputing, 
vol. 70, no.13-15, 2303-2323, (2007). 

[4] Stanley, K.O., Miikkulainen, R., Evolving neural networks through 
augmenting topologies. Evolutionary Computation 10 (2),  (2002), pp. 
99–127. 

[5] Stanley, K.O., Miikkulainen, R., Efficient evolution of neural networks 
topologies. In: Proceedings of the 2002 Congress on Evolutionary 
Computation (CEC’02), (2002), pp. 569-577 

[6] Wang, G., Cheng, G., Carr, T.R., The application of improved 
NeuroEvolution of Augmenting Topologies neural network in 
Marcellus Shale lithofacies prediction, Computers and Geosciences, 
54, (2013), pp. 50-65. 

[7] Chen, L., Alahakoon, D., NeuroEvolution of augmenting topologies 
with learning for data classification, 2nd International Conference on 
Information and Automation, ICIA 2006, (2006), pp. 367-371 

[8] Krčah, P., Towards efficient evolution of morphology and control, 
GECCO'08: Proceedings of the 10th Annual Conference on Genetic 
and Evolutionary Computation 2008, (2008), pp. 287-288. 

[9] Stanley, K.O., Bryant, B.D., Miikkulainen, R., Real-time 
neuroevolution in the NERO video game, IEEE Transactions on 
Evolutionary Computation, 9 (6), (2005), pp. 653-668 

[10] Raffe, W.L., Zambetta, F., Li, X., Neuroevolution of content layout in 
the PCG: Angry bots video game, 2013 IEEE Congress on 
Evolutionary Computation, CEC 2013, (2013), pp. 673-680. 

[11] Cardamone, L., Loiacono, D., Lanzi, P.L., Evolving competitive car 
controllers for racing games with neuroevolution, Proceedings of the 
11th Annual Genetic and Evolutionary Computation Conference, 
GECCO-2009, (2009), pp. 1179-1186 

[12] Kohl, N., Stanley, K., Miikkulainen, R., Samples, M., Sherony, R., 
Evolving a real-world vehicle warning system, GECCO 2006 - Genetic 
and Evolutionary Computation Conference, 2, (2006), pp. 1681-1688. 

[13] Stanley, K.O., Miikkulainen, R., Competitive coevolution through 
evolutionary complexification, Journal of Artificial Intelligence 
Research, 21, (2004), pp. 63-100. 

[14] Gers, F.A., Schraudolph, N., Schmidhuber, J., Learning precise timing 
with lstm recurrent networks. Journal of Machine Learning Research 
vol 3 (2003), pp. 115-143 

[15] Renart, A., Recurrent networks learn to tell time, Nature Neuroscience 
16, (2013), pp. 772–774 

[16] Marom E, Saad D, Cohen B., Efficient Training of Recurrent Neural 
Network with Time Delays, Neural Networks vol 10(1), (1997), pp. 
51-59. 

[17] Sung-Suk Kim, Time-delay recurrent neural network for temporal 
correlations and prediction, Neurocomputing Vol 20, Issues 1–3, 
(1998), pp. 253-263 

[18] Boné, R., Crucianu, M. de Beauville, J.P., Learning long-term 
 dependencies by the selective addition of time-delayed connections to 
recurrent neural network, Neurocomputing, vol. 48, no. 1-4,  (2002) pp. 
229–250 

[19] Mañé, R., On the dimension of the compact invariant sets of certain 
non-linear maps, Dynamical Systems and Turbulence, vol. 898, (1981) 
pp. 230-242. 

[20] Takens, F., On the numerical determination of the dimension of an 
attractor, Dynamical Systems and Bifurcations, vol. 1125 (1985), pp. 
99-106. 

[21] Duro, R. J., Reyes, J.S, Discrete-time backpropagation for training 
synaptic delay-based artificial neural networks, IEEE Transactions on 
Neural Networks, vol. 10, no. 4, (1999) pp. 779-789 

[22] Michalewicz, Zbigniew. Genetic algorithms+ data structures= 
evolution programs. Springer, (1996). 

[23] Bellas, F., Duro, R.J., Faina, A., Souto, D.: Multilevel Darwinist Brain 
(MDB): Artifcial Evolution in a Cognitive Architecture for Real 
Robots, IEEE Trans. On Autonomous Mental Development, vol. 2, no. 
4, 340-354, (2010). 

 
 

1473




