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Abstract—We present INN, a new approach for predicting the 
hourly electricity load profile for the next day from a time series 
of previous electricity loads. It uses an iterative methodology to 
make the predictions for the 24-hour forecasting horizon. INN 
combines an efficient mutual information feature selection 
method with a neural network forecasting algorithm. We 
evaluate INN using two years of electricity load data for 
Australia, Portugal and Spain. The results show that it provides 
accurate predictions, outperforming three state-of-the-art 
approaches (weighted nearest neighbor, pattern sequence 
similarity and iterative linear regression), and a number of 
baselines. INN is also more accurate and efficient than a non-
iterative version of the approach. We also found that although 
the range of load values for the three countries is very different, 
the load curves show similar patterns, which resulted in more 
than 90% overlap in the selected lag variables. 

Keywords—electricity load prediction; iterative neural network; 
mutual information 

I. INTRODUCTION 
We consider the task of forecasting the hourly electricity 

load profile for the next day, from a time-series of previous 
electricity loads. A load profile shows the electricity load 
(demand) for a given region over a given time period, e.g. a 
day or month, at a given frequency, typically every hour. 
Specifically, our task can be stated as follows: given a time 
series of electricity loads measured every hour up to day d, 
predict the 24 hourly electricity loads for day d+1. This task is 
categorized as short-term load forecasting. 

Forecasting the hourly load profile is needed for the 
planning and operation of power systems. It is used for making 
decisions about the dynamic dispatching of generators, setting 
the minimum reserve to an optimum level and supporting the 
electricity market participants in their bidding and transactions. 
The accuracy of the forecasts is very important as over-
prediction will cause starting too many generators and wasting 
electricity, while under-prediction may cause disruptions in 
electricity supply or buying electricity at a high price. 

Predicting the hourly load profile with high accuracy is a 
difficult task. The electricity load time series is complex and 
non-linear, with superimposed daily, weekly and annual cycles 
and random components. The random components are due to 
fluctuations in the electricity usage of individual users, large 

industrial units with irregular hours of operation, special events 
and holidays and sudden weather changes. 

Various approaches for short-term load forecasting have 
been proposed. They fall into two groups: statistical 
approaches, e.g. Autoregressive Integrated Moving Average 
(ARIMA), exponential smoothing and Linear Regression (LR), 
and computational intelligence approaches, e.g. Neural 
Networks (NNs). NNs have received a lot of attention recently 
due to their ability to learn the time series from examples and 
to capture the non-linear relationship between the predictor 
variables and the target variable. Most of the proposed 
computational intelligence approaches focus on one step ahead 
forecasting, i.e. at time t the task is to predict the load for time 
t+1. The goal of this paper is to investigate the effectiveness of 
an iterative NN-based approach for multiple steps ahead 
forecasting. Our contribution can be summarized as follows: 

1) We propose a new approach for forecasting the hourly 
electricity load profile, called Iterative Neural Network (INN). 
It combines an efficient implementation of a non-linear feature 
selector, Mutual Information (MI), with a NN. The predictions 
are made iteratively, i.e. the prediction for time t+1 is used to 
make a prediction for time t+2 and so on for all points from the 
forecasting horizon. 

2) We conduct a large-scale evaluation using real electricity 
data for two years, for three different countries: Australia, 
Portugal and Spain. We first compare the three time series in 
terms of range of values, cycles and selected features. We then 
evaluate the predictive accuracy of INN and compare it with 
three state-of-the-art load forecasting approaches, WNN [1], 
PSF [2] and iterative LR, and also with three baselines.  

3) We compare the iterative NN approach with a non-
iterative NN approach. The non-iterative approach uses a 
separate NN for each hour in the forecasting horizon, while 
INN uses only one NN. We found that there is no gain in 
accuracy by using a non-iterative approach. 

The rest of the paper is structured as follows. Section II 
reviews the related work. Section III describes the data and 
data characteristics. Section IV presents the problem statement 
and Section V describes the proposed INN approach. Section 
VI outlines the experimental setup and Section VII presents 
and discusses the results. Section VIII summarizes the main 
conclusions. 
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II. RELATED WORK 
Short-term load forecasting has been an active area of 

research. There are two main groups of approaches: statistical 
and computational intelligence. Prominent examples of the first 
group are exponential smoothing, ARIMA and LR, and notable 
examples of the second group are NNs and support vector 
regression. 

A. Statistical Approaches 
The statistical approaches are the traditional approaches for 

short-term load forecasting. Taylor et al. [3] considered the 
task of predicting the hourly electricity load for Rio de Janeiro, 
for lead time from 1 to 24 hours. They compared four methods: 
ARIMA, double seasonal Holt-Winters exponential smoothing, 
backpropagation NN and a PCA-based LR. The most accurate 
method was exponential smoothing which was also the 
simplest and fastest. To validate these results, in [4] Taylor and 
McSharry compared the two best methods from their previous 
work (exponential smoothing and PCA-based LR) with two 
new methods: an alternative formulation of exponential 
smoothing and a periodic autoregression, using hourly data for 
Italy, Norway and Sweden. The results showed that the double 
seasonal Holt-Winters exponential smoothing was again the 
best performing method.  

Recently, Taylor [5] proposed five novel formulations of 
exponential smoothing and evaluated them using British and 
French half-hourly data. The results showed that the best 
approach was intraday exponential smoothing. Soares and 
Medeiros [6] proposed a forecasting model consisting of two 
components: deterministic that describes trends, seasonality 
and special days, and stochastic that uses linear autocorrelation. 
A different model was built for each hour of the day. An 
evaluation using hourly data for Rio de Janeiro showed that the 
proposed approach obtained good results and outperformed 
seasonal ARIMA and other benchmark methods.  

Fan and Hyndman [7] proposed a semi-parametric additive 
regression methodology that was used to forecast the half-
hourly electricity loads one day ahead for the states of Victoria 
and South Australia in Australia. A separate model is built for 
each half hour. It uses previous lagged electricity loads, 
calendar and temperature variables. The forecasting model 
showed excellent performance on both historical data and 
when applied in real time on site. 

B. Computational Intelligence Approaches 
NN-based approaches have received considerable attention 

in load forecasting. NNs are attractive as they can learn the 
time series from examples and can also model non-linear 
relationships between the predictor variables and the target 
variable.  

In [8] NNs were used to predict the hourly demands 1-24 
hours ahead for North America. A multilevel wavelet 
transform was used to decompose load into several wavelet 
components that were then predicted using backpropagation 
NNs. Chen et al. [9] also considered predicting the demand 1-
day ahead from previous hourly data using wavelet and 
backpropagation NN. They selected a day that is similar to the 
day to be forecasted in terms of weekly index and weather, 

decomposed the demand for it into two wavelet components 
and then trained a separate backpropagation NN for each 
component. An evaluation using 4 years data for the region of 
New England showed the effectiveness of their approach. A 
similar-day approach is also used in [10]. A weighted 
Euclidean distance is used to select similar days based on 
previous load and temperature data. A NN is then trained to 
predict the correction between the similar day and the day for 
which the forecast is made. The prediction model was used to 
forecast Japanese load 1 hour ahead. 

There are two prominent approaches that have considered 
the task of predicting the 24 hourly values for the next day 
simultaneously: Weighted Nearest Neighbor (WNN) [1, 11] 
and Pattern Sequence-Based Forecasting (PSF) [2].  

Let Xi  be a 24-dimensional vector consisting of the hourly 
demands for a day i. To predict the load for a new day Xd+1, 
WNN first finds the k nearest neighbors of Xd. The prediction 
for the new day is the weighted linear combination of the load 
for the days following the nearest neighbors, where the weights 
are determined by the distance of the neighbors to Xd. WNN 
was applied for predicting both electricity loads and electricity 
prices and was shown to outperform a number of approaches 
including NNs and GARCH autoregressive models. 

PSF is a generalization of WNN. It combines clustering 
with sequence matching. It first groups all vectors Xi from the 
training data into k clusters and labels them with the cluster 
number. It then extracts a sequence of consecutive days, from 
day d backwards, and matches the cluster labels of this 
sequence against the training data to find a set of sequences 
that are the same, ESd. It then follows a nearest neighbor 
approach similar to WNN - finds the following day for each 
element of ESd and averages the 24 hourly loads of these 
following days, to produce the final 24 hourly predictions for 
day d+1. The results showed that PSF is a very competitive 
approach outperforming ARIMA, support vector regression 
and NNs. 

III. DATA AND DATA CHARACTERISTICS 
We use electricity load data for three different countries: 

Australia, Portugal and Spain, for two years: 2010 and 2011 
(from 1 January 2010 to 31 December 2011). The data is 
sampled every hour, and the total number of samples in each 
dataset is 365*24*2=17,520.  

All data is publicly available. The Australian data is for the 
state of NSW; it is provided by the Australian Energy Market 
Operator (AEMO) and available at [12]. The Portuguese and 
Spanish data are provided by the Spanish Electricity Price 
Market Operator (OMEL) and are available at [13]. 

The electricity load has three main cycles: daily, weekly 
and yearly. Fig. 1 shows the hourly load for the three countries 
for the same fortnightly period - from Monday 14 June to 
Sunday 27 June, 2010. The graphs are very similar and clearly 
show the daily and weekly cycles. The daily cycle is 24 hours 
and the weekly cycle is 7*24=168 hours.  

The daily pattern is evident from the similarity of the load 
profiles of the individual days, e.g. the profile of Monday is 
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similar to the profile of Tuesday. The load is lowest at around 
4:30am; it then increases and reaches its first peak at 9-9.30am, 
stays relatively stable till the end of the working day and then 
reaches its second peak at 6-7pm (showing more irregular ups 
and downs for the Portuguese and Spanish data), before 
gradually decreasing, which is consistent with the industrial, 
business and human daily routine. The weekly pattern is 
evident from the similarity of load profiles of the two weeks – 
we can see that the load during the weekdays (Monday to 
Friday) is higher than the load during the weekends (Saturday 
and Sunday), which is as expected. We detect and use the daily 
and weekly patterns to conduct feature selection. 

There is also a yearly pattern of the electricity load – e.g. 
the load for 2010 is very similar to the load for 2011. This 
motivates using the 2010 data to build prediction models and 
then using these models to predict the load for 2011. 

 

 
Fig. 1. Hourly electricity load for two consecutive weeks for Australia, 

Portugal and Spain 
 

Although the load curves for the three countries are similar 
due to the similar cyclic nature of the electricity load, it is 
important to note that the range of load values differs 
considerably. For the 2-week period shown on Fig.1, we can 
see that the range of load values for Australia is from 7,000 to 
12,000 MW, for Portugal – from 2,000 to 6,000 MW and for 
Spain – from 14,000 to 27,000 MW. Thus, the load for Spain is 
the highest, followed by Australia and Portugal. 

IV. PROBLEM STATEMENT 
Given a time series of hourly electricity loads up to day d, 

the goal is to forecast the 24 hourly loads for day d+1, or the 
hourly load profile for day d+1. More formally, given a time 
sequence of days X1, X2,…, Xd, where each element is a vector 
of hourly electricity loads, e.g. Xi = (Xi,1,..,Xi,24) is the hourly 
load profile for day i, the goal is to forecast Xd+1 = 
(Xd+1,1,..,Xd+1,24), the hourly load profile for day d+1. 

Therefore, the forecasting is based only on previous 
electricity loads and it ignores the weather conditions. This is 
consistent with previous studies - weather conditions such as 
temperature and humidity are rarely used for prediction 
horizons of one day ahead or less. The main reason for this is 
that the changes in the weather variables for such small 
horizons are already captured in the load series. However, 
recent studies using British electricity data [5, 14] found that 
although the previous load data was sufficient for making 
forecasts up to 5 hours ahead, the use of weather variables as 
additional features was beneficial for longer time horizons. It is 
also possible that the weather variables are more useful for 
some countries than others, e.g. for countries with more sudden 
weather changes. In future work we plan to add weather 
variables and investigate if they are useful for load prediction 
for Australia, Portugal and Spain. 

V. PROPOSED APPROACH – ITERATIVE NEURAL NETWORK 
The key idea of the proposed approach is to build an 

iterative prediction model. At time t it will make a prediction 
for time t+1; this prediction will be added to the training data, 
and used to make a prediction for time t+2 and so on for all 
points from the forecasting horizon. We chose to combine a 
nonlinear prediction model, NN, with a non-linear feature 
selector, MI. The proposed approach is called Iterative Neural 
Network (INN). Below we describe its main steps: feature 
selection and building of the prediction model.  

A. Feature Selection 
Appropriate feature selection is one of the crucial factors 

for successful modeling and forecasting of time series data. 
Most of the existing approaches for short-term load forecasting 
use correlation-based techniques and heuristics that only 
capture the linear relationship between the target variable and 
the predictor variables [3-5, 14-16]. In this paper we 
investigate the use of a feature selector that captures both linear 
and non-linear dependencies - MI.  

MI measures the interdependence between two random 
variables. If the two variables are independent, MI is zero; if 
they are dependent, MI has a positive value reflecting the 
strength of their dependency. We apply a novel and fast 
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method for computing MI, based on k-nearest neighbor 
distances [17]. It was shown to be efficient and more reliable 
than the traditional MI methods. 

The MI between two random continuous variables X and Y 
with dimensionality N is estimated as: 

( ) )())(())((11)(),(
1

Ninin
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N

i
yx ψψψψ ++−−= ∑

=
 

where )(xψ  is the digamma function, k is the number of 
nearest neighbors (we used k = 6); )(inx  is the number of 

points jx  with a distance to ix  satisfying 2/)(ixx xji ε≤−  
and )(iny  is the number of points jy  with a distance to iy  

satisfying 2/)(iyy yji ε≤− , where 2/)(ixε  is the distance 
between ix  and its k-th neighbor in the X subspace and 

2/)(iyε   is the distance between iy  and its k-th neighbor in the 
Y subspace. 

To conduct feature selection using MI, we first form a set 
of candidate features that includes all lag variables from a 1-
week sliding window. We found that 1 week is a sufficient 
length to capture the strong daily and weekly patterns in the 
load data. Since we are using hourly data, the candidate set 
consists of 7*24 = 168 features. We then compute the MI score 
between each of the 168 candidate features and the target 
variable, and rank the candidate features in decreasing order 
based on their MI score. Fig. 2 plots the normalized MI score 
for each feature in ranked order, for the three data sets. 

Fig. 2 shows that the three graphs are very similar. The MI 
curve shows a sharp drop at the beginning, followed by a more 
gradual decrease after rank 10 and no significant changes after 
rank 50. Based on these result, we select the 50 highly ranked 
features for each dataset. These features form the final feature 
sets for each country. They are denoted as FSAustralia, FSPortugal 
and FSSpain and are listed in Table I. 

 
Fig. 2. MI score and feature ranking 

 
Table I shows that there is a considerable overlap between 

the three feature sets – 90% between FSAustralia  and FSPortugal, 
94% between FSAustralia  and FSSpain and 94% between FSPortugal 
and FSSpain. The selected features also reflect the daily and 
weekly cycle of the electricity load – lag 24 and multiples of 

24 (daily), and also lag 168 (weekly). Hence, the feature 
selection confirms the similar cyclic nature of the three time 
series, despite the different ranges of their values. 

TABLE I. FEATURE SETS 

 Feature set Selected lag variables to predict the load at hour h, Xh 
FSAustalia Xh-1 to Xh-6; Xh-20 to Xh-28; Xh-45 to Xh-51; Xh-70 to Xh-75; 

Xh-94 to Xh-99; Xh-118 to Xh-122; Xh-141 to Xh-147; Xh-165 to 
Xh-168 

FSPortugal Xh-1 to Xh-9; Xh-20 to Xh-28; Xh-46 to Xh-50; Xh-70 to Xh-74; 
Xh-82; Xh-86; Xh-95 to Xh-98;  Xh-118 to Xh-122;  Xh-141 to 
Xh-147; Xh-165 to Xh-168 

FSSpain Xh-1 to Xh-9; Xh-20 to Xh-27; Xh-46 to Xh-51; Xh-70 to Xh-74; 
Xh-94 to Xh-98; Xh-118 to Xh-122; Xh-141 to Xh-147; Xh-164 to 
Xh-168 

B. Prediction Model 
As a prediction model we use a multi-layer perceptron NN, 

trained with the Levenberg-Marquardt algorithm. We build and 
train three NNs; one for each data set. Each NN has 50 input 
neurons corresponding to the features from Table I, one hidden 
layer (where the number of neurons is set using validation set 
as described below) and one output neuron. The output neuron 
corresponds to the load value one step ahead. 

1) Iterative Prediction 
The NN is trained to predict one step ahead - at hour h, it 

predicts the load for hour h+1. To predict the load for the 24 
hours in the forecasting window, it is used iteratively by 
considering the predicted load in the previous steps as actual 
load. That is, the predicted value for h+1 is considered as 
actual value, appended at the end of the available data and used 
to predict the value for h+2. This continues until the 
predictions for the desired forecasting horizon are made. More 
generally, to make a prediction for h+1 of day d+1, where 
h>1, we use the previously recorded actual data for all days till 
day d and the previously forecasted data for the hours from 1 
to h for day d+1.  

We note that the feature selection is conducted once only. 
This is because INN is trained for one step ahead prediction, 
although it is used iteratively for more than one step ahead 
prediction.  

2) Number of Hidden Neurons 
The number of neurons in the hidden layer is selected using 

a validation set. The given data is split into three non-
overlapping datasets: training, validation and testing, see 
section VI-A. We create P different NNs by varying the 
number of neurons in the hidden layer from 1 to P, train each 
NNs using the training set and evaluate its performance on the 
validation set. The best NN is then selected; it is the one that 
provides the most accurate predictions on the validation set. 
This best NN is then evaluated on the testing data. 

3) Training Algorithm and Stopping Criterion 
To train INN we use the Levenberg-Marquardt algorithm 

[18]. We chose it over the standard steepest gradient descent 
backpropagation algorithm due to its faster convergence. The 
Levenberg-Marquardt algorithm combines the steepest gradient 
descent and the Gauss-Newton algorithm, switching between 
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them based on the complexity of the error surface. It preserves 
the advantages of both algorithms: the fast convergence of the 
Gauss-Newton algorithm and the stability of the steepest 
gradient descent when used with a small learning rate. The 
maximum number of training epochs was set to 2000. The 
training stopped if there was no improvement in the error for 
20 consecutive epochs. We used tangent sigmoid transfer 
functions for the hidden neurons and a linear transfer function 
for the output neuron. 

VI. EXPERIMENTAL SETUP 

A. Data Sets 
The available data for each country is divided into three 

non-overlapped subsets - training set (Dtrain), validation set 
(Dvalid) and testing set (Dtest). Dtrain is used for feature selection 
and building of the prediction models and contains 70% of the 
data for 2010. Dvalid is used for selecting the best NN 
architecture and contains 30% of the data for 2010. Dtest  is 
used for evaluating the predictive accuracy of the models and 
contains the data for 2011. 

B. Measuring Predictive Accuracy 
To measure predictive accuracy, we use two standard 

performance measures: Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE), defined as: 

∑∑
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N
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where hiX , and hiX ,
ˆ are the actual and predicted loads for 

day i at hour h, respectively, N is the number of samples (days) 
in the test data and H is 24, the number of predicted loads, one 
for each hour.  

MAPE is an extension of MAE. It can be seen as a 
normalized version of MAE where the normalization is 
achieved by a simple division by Xi,h. It is more appropriate for 
comparison of time series with different ranges, as in our case. 

C. Forecasting Methods Used for Comparison 
In addition to measuring the predictive accuracy of our 

approach, it is also important to compare its performance with 
other forecasting methods. We use three state-of-the-art 
forecasting methods and also three baselines (naïve forecasting 
methods) for comparison. 

1) State-of-the-art Methods 
We use the following prominent methods for short-term 

load forecasting: PSF [2], WNN [1] and LR.  

PSF and WNN are two recently proposed methods, applied 
to the same task as ours. In contrast to our iterative approach, 
these methods predict the 24 values for the next day 
simultaneously. PSF uses similarity between sequences of 
cluster labels and WNN uses weighted nearest neighbors. Both 

approaches have been shown to be very successful, 
outperforming a number of statistical and NN methods, on the 
tasks of electricity load and electricity price prediction. 

We also compare our INN approach with a standard 
statistical method, LR, which we apply iteratively, in the same 
way as INN; we call this method Iterative LR (ILR). ILR uses 
a stepwise regression for feature selection. It starts with all 
features and at each step tests the removal of each feature using 
the M5 criterion. The feature that improves the model the least 
is deleted and the process continues until there is no further 
improvement. We chose this stepwise regression version as it 
was very successful in our previous study [16]. However, in 
[16] the task was different - one step ahead prediction of 5-
minute load data, and LR was applied in a standard, non-
iterative way, while here we use it iteratively. 

2) Baselines 
We implemented the following baselines:  

• Bpday: load from the previous day at the same time. The 
prediction for Xi,h is given by Xi-1,h. 

• Bpweek: load from the previous week at the same time. 
The prediction for Xi,h is given by Xi-7,h. 

• Bmean: mean load value in the training data for hour h. 
The prediction for Xi,h will be mean(Xj,h) over all days j 
in the training data. 

VII. RESULTS AND DISCUSSION 

A. Overall Performance 
Table II shows the accuracy results, MAE and MAPE, of 

the proposed INN approach on the three data sets for each hour 
of the forecasting horizon. 

TABLE II. PREDICTIVE ACCURACY OF INN 

 
Hour 

Australian data Portuguese data Spanish data 
MAE MAPE MAE MAPE MAE MAPE 

1 51.12 0.65 163.47 4.66 717.26 3.59 
2 69.50 0.93 200.05 6.31 838.78 4.71 
3 74.10 1.06 230.10 7.76 904.57 5.51 
4 78.88 1.18 250.26 8.79 973.27 6.21 
5 99.49 1.49 261.80 9.37 1086.94 7.11 
6 155.60 2.19 264.70 9.63 1126.89 7.40 
7 237.28 3.01 267.85 9.89 1057.32 6.73 
8 286.25 3.32 295.11 10.48 1201.62 7.08 
9 290.51 3.15 330.21 11.03 1400.63 7.77 

10 298.78 3.14 441.05 12.77 1376.26 7.07 
11 318.89 3.33 503.64 13.37 1240.25 5.92 
12 360.18 3.77 501.71 12.59 1199.07 5.56 
13 405.25 4.26 522.88 12.56 1239.62 5.51 
14 449.27 4.74 523.14 12.83 1230.08 5.46 
15 479.30 5.10 541.03 13.59 1203.82 5.44 
16 495.98 5.25 576.37 14.48 1227.16 5.67 
17 506.70 5.30 584.04 14.96 1256.19 5.94 
18 487.62 5.02 582.84 15.35 1254.80 5.89 
19 443.01 4.53 558.04 14.70 1296.33 5.95 
20 424.34 4.40 535.68 13.54 1282.55 5.85 
21 401.44 4.30 525.29 12.91 1168.14 5.18 
22 358.95 4.01 527.30 12.96 1085.85 4.74 
23 297.48 3.45 526.81 13.03 981.09 4.35 
24 247.54 3.02 520.92 13.29 882.68 4.24 

Avg. 304.89 3.36 426.43 11.70 1134.63 5.79 
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Table III compares the INN results with the three state-of-
the-art approaches and the three baselines. Table IV shows the 
pair-wise comparison of all prediction methods and baselines 
for statistical significance of differences in accuracy using the 
Wilcoxon rank sum test.  

TABLE III. PREDICTIVE ACCURACY - COMPARISON WITH STATE-OF-THE-ART 
METHODS AND BASELINES 

Prediction 
method 

Australian data Portuguese data Spanish data 
MAE MAPE MAE MAPE MAE MAPE 

INN 304.89 3.36 426.43 11.70 1134.63 5.79 
WNN 307.46 3.40 538.87 14.95 1179.89 6.03 
PSF 352.03 3.96 589.77 16.18 1711.38 8.87 
ILR 332.71 3.69 427.00 11.78 1306.62 6.59 
Bpday 420.46 4.82 579.61 16.06 1888.02 9.47 
Bpweek 471.20 5.20 695.38 19.12 1460.07 7.45 
Bmean 719.44 8.08 653.55 18.11 2671.69 14.32 

 
The main results can be summarized as follows: 

• The proposed INN is the most accurate forecasting 
method for all datasets (Table III). It outperforms all 
state-of-the-art methods used for comparison on all 
datasets, and these differences are statistically 
significant in all but one case (Table IV), see below. 
The second best approach is WNN, followed by ILR 
and PSF.  

• INN also considerably outperformed all three baselines, 
on all datasets (Table III). Comparing the baselines, 
Bpday is the most accurate baseline overall, followed by 
Bpweek and Bmean. 

• All pair-wise differences in accuracy are statistically 
significant except the difference between INN and ILR 
on the Portuguese data (Table IV). The p-values are: 
p≤0.05 for 3 cases and p≤0.001 for all other cases. 

• There are differences between the predictive accuracies 
for the three countries (Table III). The Australian data is 
predicted most accurately, e.g. INN achieves 
MAPEAustralia=3.36%. To better understand what a 
MAPE with this magnitude means, Fig. 3 shows the 
actual and predicted load by INN for a typical fortnight 
period; we can see that the two load curves are 
considerably overlapping. On the other hand, the 
Portuguese and Spanish data are predicted with lower 
accuracy, e.g. INN achieves MAPEPortugal=11.70% and 
MAPESpain=5.79%.  

• The Australian data has the lowest MAE and MAPE 
(Table III). The Spanish data has the highest MAE 
(MAESpain=1134.63) but the Portuguese data has the 
highest MAPE (MAPEPortugal=11.70). This lack of 
correlation between the MAE and MAPE rankings for 
Spain and Portugal is interesting. It is due to the 
different magnitudes of the hourly electricity load - the 
mean value of the Spanish load is much higher (20810 
MW) compared to the mean value of the Portuguese 
load (1535 MW). Hence, the denominator of the MAPE 
equation is much higher for Spain than for Portugal, and 
as a result MAPESpain < MAPEPortugal although MAESpain 
> MAEPortugal. As mentioned before, MAPE provides a 

normalized error estimate and is more appropriate when 
comparing results for data with different ranges. Based 
on this, we can conclude that the accuracy for the 
Spanish data is higher than the accuracy for the 
Portuguese data. 

TABLE IV. PAIR-WISE STATISTICAL SIGNIFICANCE COMPARISON FOR MAE 
AND MAPE (WILCOXON RANK SUM TEST);  ** - STAT. SIGN. AT P ≤ 0.001, 

* - STAT. SIGN. AT P ≤ 0.05, X - NO STAT. SIGN. DIFFERENCE 

AUSTRALIAN DATA 
 INN WNN PSF ILR Bpday Bpweek Bmean 

INN  ** ** ** ** ** ** 
WNN   ** ** ** ** ** 
PSF    ** ** ** ** 
ILR     ** ** ** 
Bpday      ** ** 
Bpweek       ** 
Bmean        
 

PORTUGUESE DATA 
 INN WNN PSF ILR Bpday Bpweek Bmean 

INN  ** ** x ** ** ** 
WNN   ** ** ** ** ** 
PSF    ** x ** ** 
ILR     ** ** ** 
Bpday      ** ** 
Bpweek       * 
Bmean        
 

SPANISH DATA 
 INN WNN PSF ILR Bpday Bpweek Bmean 

INN  * ** ** ** ** ** 
WNN   ** ** ** ** ** 
PSF    ** * ** ** 
ILR     ** ** ** 
Bpday      ** ** 
Bpweek       ** 
Bmean        
 

 

 

Fig. 3. Actual load and predicted load by INN for the Australian data for a 
fortnight period (Monday 4 April – Sunday 17 April 2011) 

B. Hourly Performance 
Table II also shows the predictive accuracy (MAE and 

MAPE) for each of the 24 hours in the forecasting horizon and 
Fig. 4 shows a graphical representation of the MAPE results.  
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Fig. 4. Hourly MAPE for INN 

 
We can see that the predictive error is different for the 

different hours of the day. For the Australian data, the error is 
low at the beginning of the day, it then gradually increases and 
reaches a peak at about 8.30am and then a second (highest) 
peak at about 5pm before gradually decreasing. The graph for 
the Portuguese data is similar but there are two peaks in 
predictive error – at 11am and 6pm, and then a decrease from 
9pm. For the Spanish data, the error is also low at the 
beginning of the day, it reaches a peak at about 9am, flattens 
till about 8pm and then decreases. Overall, the predictive error 
is higher during peak hours, when the electricity demand is 
higher and more irregular. It is lower when the demand is 
lower (during the night – from 10pm to 6am), which is 
consistent with the industrial activity and human routine. 

C. Iterative vs Non-Iterative approach 
To evaluate the effectiveness of the proposed iterative 

methodology, we compare the performance of the iterative NN 
approach with a non-iterative NN approach. The non-iterative 
approach is implemented as follows: 24 different NNs are 
created; each of them is trained to predict the load for one of 
the 24 hours in the forecasting horizon, i.e. the first NN 
predicts the load for h =1, the second NN for h = 2 and so on. 
For training and parameter tuning of the 24 NNs we used the 
same training algorithm, stopping condition and validation set 
procedure, as used in the iterative approach and described in 
Section V. 

Table V presents the predictive accuracy results of the non-
iterative NN approach. Fig. 5 shows a comparison of the 
iterative and non-iterative approaches in terms of the average 
MAPE. We can see that the iterative approach outperforms the 
non-iterative approach for all datasets. The average MAPEs 
are: 4.44% (non-iterative) and 3.36% (iterative) for the 
Australian data, 18.85% (non-iterative) and 11.70% (iterative) 
for the Portuguese data and 9.73% (non-iterative) and 5.79% 
(iterative) for the Spanish data. Thus, the improvement in 
MAPE of the iterative approach is 24.32%, 37.93% and 
40.49% for the three datasets, respectively. The improvement 
in MAE is 23.92% for the Australian data and 39.49% for the 
Portuguese and Spanish data. 

 

TABLE V. PREDICTIVE ACCURACY OF THE NON-ITERATIVE NN APPROACH 

 
Hour 

Australian data Portuguese data Spanish data 
MAE MAPE MAE MAPE MAE MAPE 

1 98.04 1.24 320.51 9.06 1510.28 7.62 
2 101.19 1.37 428.95 13.13 1666.09 9.81 
3 101.28 1.46 510.11 16.52 2113.02 13.65 
4 123.62 1.83 399.87 14.13 1791.10 11.86 
5 141.25 2.10 486.49 17.21 2062.46 14.21 
6 216.93 3.05 491.17 17.57 1844.05 12.69 
7 339.75 4.32 517.09 19.07 1954.15 12.74 
8 402.84 4.66 480.87 16.90 1822.33 10.44 
9 386.86 4.19 559.08 18.81 2063.04 11.19 

10 405.37 4.31 642.37 18.28 1983.04 9.90 
11 403.91 4.31 669.59 17.27 1905.99 9.12 
12 535.12 5.72 729.84 17.66 1921.38 8.79 
13 586.83 6.33 776.72 18.40 2366.10 10.48 
14 570.48 6.17 906.53 20.99 1758.97 7.70 
15 540.06 5.69 843.91 20.48 1701.17 7.63 
16 689.53 7.39 834.84 19.93 1889.93 8.77 
17 697.52 7.33 1023.3 25.42 2032.80 9.34 
18 645.28 6.60 985.81 24.71 2172.73 9.96 
19 546.74 5.52 966.29 24.67 1712.89 7.87 
20 505.42 5.22 858.54 21.11 1934.79 8.87 
21 508.40 5.45 870.12 20.16 1895.54 8.66 
22 436.78 4.86 866.02 19.62 1846.03 8.06 
23 345.52 3.99 864.35 19.60 1521.09 6.84 
24 289.42 3.48 881.36 21.81 1532.49 7.42 

Avg. 400.76 4.44 704.74 18.85 1875.06 9.73 
 
A comparison of the hourly predictive accuracy of the 

iterative and non-iterative prediction approaches (see Table II 
and Table V) shows that the iterative approach is more 
accurate for all 24 hours of the foresting horizon, on all three 
datasets. The MAPE of INN for the 24 hours is in the range of 
0.65-5.30% for the Australian data, 4.66-15.35% for the 
Portuguese data and 3.59%-7.77% for the Spanish data, where 
these values for the non-iterative approach are: 1.24-7.39%, 
9.06-25.42% and 6.84-14.21%.  

Besides higher accuracy, another important advantage of 
the iterative approach is that it is simpler and faster to train. 
INN creates and trains only one NN, while the non-iterative 
approach uses 24 NNs. The training times were 80 seconds for 
the single NN of the iterative approach and 32 minutes for the 
24 NNs of the non-iterative approach.  

 
Fig. 5. Comparison of the iterative and non-iterative NN approaches - MAPE 

 
To sum up, our results show that the iterative approach, 

INN, outperforms the non-iterative version in terms of 
predictive accuracy. No gain in accuracy is obtained by using a 
separate prediction model for each of the hours in the 
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forecasting horizon. The iterative approach is also faster to 
train as it uses one NN, compared to 24 NNs for the non-
iterative approach. 

VIII. CONCLUSION 
We considered the task of predicting the hourly electricity 

load profile for the next day, from a time series of previous 
hourly electricity loads. We developed INN, an iterative 
approach that combines an efficient MI feature selection 
algorithm with a NN.  

We conducted an extensive performance evaluation using 
electricity data for two years from three different countries: 
Australia, Portugal and Spain. We found that although the 
range of load values for the three countries varied significantly, 
the load curves showed similar cycles. The MI feature 
selection algorithm was able to successfully extract features 
that capture the daily and weekly cycles of the electricity load 
and there was more than 90% overlap between the selected 
features for the three countries. 

We compared the performance of our approach with three 
state-of-the-art approaches, WNN, PSF and ILR, and three 
baselines. The results showed that INN was the most accurate 
approach overall. It outperformed all baselines, and achieved 
statistically significant improvement over all state-of-the-art 
methods, for all datasets, except ILR on the Portuguese data 
where the improvement was not statistically significant. INN 
achieved average MAPE of 3.36% for the Australian data, 
11.70% for the Portuguese data and 5.79% for the Spanish 
data. The predictive error was higher for the peak hours and 
lower for the night hours. 

We also conducted a comparison of the proposed iterative 
NN approach with a non-iterative NN approach, where a 
separate NN is used to predict the load for each hour of the 
forecasting horizon. The iterative approach was not only more 
computationally efficient (as it uses only one NN) but it also 
outperformed the non-iterative approach in terms of predictive 
accuracy – the improvement was from 24.32% to 40.49% in 
MAPE.  

Therefore, we conclude that the proposed INN approach is 
a viable option for forecasting the hourly electricity load 
profile – it provides high accuracy and has low computational 
requirements. The WNN and ILR approaches also showed 
good results, and WNN has an advantage as it predicts the 24 
values for the next day simultaneously. 

In future work we plan to investigate the effectiveness of 
INN for forecasting of other energy time series, e.g. solar and 
wind power and electricity prices. We will also study the 
performance of INN for forecasting horizons longer than 24 
hours.  
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