
Joint Multiple Dictionary Learning for Tensor Sparse
Coding

Yifan Fu, Junbin Gao
School of Computing and Mathematics

Charles Sturt University

Bathurst, NSW 2795, Australia

Email:{yfu, jbgao}@csu.edu.au

Yanfeng Sun
Beijing Municipal Key Lab of Multimedia

and Intelligent Software Technology

Beijing University of Technology

Beijing 100124, China

Email: yfsun@bjut.edu.cn

Xia Hong
School of Systems Engineering

University of Reading

Reading, RG6 6AY, UK

Email: x.hong@reading.ac.uk

Abstract—Traditional dictionary learning algorithms are used
for finding a sparse representation on high dimensional data by
transforming samples into a one-dimensional (1D) vector. This
1D model loses the inherent spatial structure property of data.
An alternative solution is to employ Tensor Decomposition for
dictionary learning on their original structural form —a tensor—
by learning multiple dictionaries along each mode and the
corresponding sparse representation in respect to the Kronecker
product of these dictionaries. To learn tensor dictionaries along
each mode, all the existing methods update each dictionary
iteratively in an alternating manner. Because atoms from each
mode dictionary jointly make contributions to the sparsity of
tensor, existing works ignore atoms correlations between different
mode dictionaries by treating each mode dictionary indepen-
dently. In this paper, we propose a joint multiple dictionary
learning method for tensor sparse coding, which explores atom
correlations for sparse representation and updates multiple atoms
from each mode dictionary simultaneously. In this algorithm, the
Frequent-Pattern Tree (FP-tree) mining algorithm is employed
to exploit frequent atom patterns in the sparse representation.
Inspired by the idea of K-SVD, we develop a new dictionary
update method that jointly updates elements in each pattern.
Experimental results demonstrate our method outperforms other
tensor based dictionary learning algorithms.

I. INTRODUCTION

Sparse Coding (SC) has been widely applied in numerous
signal processing tasks, such as imaging denoising [1], texture
synthesis [2] and image classification [3]. Sparse modeling
aims at learning a dictionary so that each sample can be
represented by a few atoms of the learned dictionary. Several
algorithms have been developed for this task, e.g. the K-
SVD [4] and the method of optimal directions (MOD) [5].
However, when dealing with multi-dimensional signals , all
the previous sparse models reshape each input signal into a
1D vector. This kind of reshaping breaks the local correlation
inherent inside the signal. Thus, it becomes highly desirable
to develop algorithms which are able to fully make use of the
local correlation inside high-dimensional data, such as tensor
data.

Tensor decomposition [6] (TD) has attracted attention
for processing multi-dimensional data. PARAFAC [6] and
TUCKER [6] decompositions are two classical algorithms.
PARAFAC decomposes a tensor as a sum of k rank-1 tensor
while TUCKER factorizes a tensor into a set of matrices
and one small core tensor. However, these methods do not

explicitly enforce sparsity constraint in the low dimensional
representation.

Recently, researchers resort to combining SC with TD by
introducing additional constraints to the models with the aim of
learning sparse representations of tensors. Both non-negativity
and sparsity have been used in two classical decompositions to
accomplish the goal. Both non-negative versions of PARAFAC
and TUCKER decompositions with multiplicative updates have
been proposed in [7], [8] and [9], [10]. In TUCKER model, the
sparsity over the core tensor is achieved by smoothing matrices
along each mode [10], l1 norm penalization [11] or a tensor
dictionary learning algorithm [12].

In the case of dictionary learning models, Caiafa and
Cichocki [13] open the discussion of sparse representation of
tensor data using Kronecker bases in which the size of the
core tensor is much higher than the input tensor. Two models
are proposed in [13]: (1) Kronecker- Orthogonal Matching
Pursuit (OMP) algorithm for multiway sparsity in which the
sparse non-zero coefficients could be distributed randomly
in the core tensor; (2) N-way Block OMP (N-BOMP) for
multiway block sparsity in which the non-zero entries of the
core tensor form blockwise structure. The similar ideas are
used in 2 dimensional dictionaries for image processing [14].
In [12], a tensor dictionary model based on sparse TUCKER
decomposition is proposed, in which sparse constraint over the
core tensor is achieved by N-OMP, and the n-mode dictionary
is learnt in an alternative minimization manner using gradient
descent.

However, all existing dictionary learning algorithms update
each mode dictionary by fixing all the other mode dictionaries
iteratively in an alternating manner. The main issue is that the
atoms from each mode dictionary jointly make contributions
to the presentation of tensors, while current dictionary learning
solutions ignore atoms correlations between different mode
dictionaries. To this end, we propose a joint multiple dictio-
nary learning method for tensor sparse coding (TSC-JMDL),
which explores atom correlations for sparse representation and
updates multiple atoms from each mode dictionary simultane-
ously. Our main contributions are as follows:

• Unlike pervious tensor dictionary learning algorithms
update all the non-zero atom entries for each mode,
our model employs FP-tree to find the frequent atom
patterns formed by a sequence of non-zero atom

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2957

entries in the sparse core tensor, and updates only
frequent patterns by a tensor extended version of K-
SVD algorithm.

• Existing tensor dictionary learning models update each
mode dictionary independently, without considering
atom correlations for sparse representation. In con-
trast, our model jointly updates all the elements in
a frequent atom pattern simultaneously.

The remainder of the paper is organized as follows. Section
II introduces the notations and the problem formulation. The
algorithm details are introduced in Section III, followed by
experimental results in Section IV. We conclude the paper in
Section V.

II. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

A tensor is a multidimensional array. The order of a tensor
is the number of dimensions, also known as ways or modes.
For example, Y ∈ R

I1×I2···×IN is an N -way tensor, where
In(1 ≤ n ≤ N) are the dimensions of each mode. The element
indexed by (i1, i2, . . . , iN) in an N -way tensor is denoted by
yi1,i2,...,iN . In particular, a vector (1-way tensor) is denoted by
a boldface lower-case letter, i.e. y ∈ R

I and a matrix (2-way
tensor) is denoted by a bold uppercase letter, i.e. Y ∈ R

I×M .
The i-th entry of a vector y is denoted as yi, and the element
at (i, j) of a matrix Y is denoted as yij . Thereafter, we will
introduce some tensor fundamentals and definitions.

Definition 1 (Tensor Matricization): Matricizaion is the
operation of rearranging the entries of a tensor so that it can
be represented as a matrix. Let X ∈ R

I1×...×IN be a tensor of
order-N , the mode-n matricization of X reorders the mode-
n vectors to be columns of the resulting matrix, denoted by
X(n) ∈ R

In×(In+1In+2...INI1I2...In−1).

Definition 2 (Rank-One Tensor): An N -way tensor X ∈
R
I1×...×IN is rank one if it can be equal to the outer product

of N vectors:

X = a(1) ◦ a(2) ◦ . . . ◦ a(N). (1)

Elementwise, we have

xi1i2...iN = a
(1)
i1

a
(2)
i2

. . . a
(N)
iN

for all 1 ≤ in ≤ In. (2)

Definition 3 (Kronecker Product): The Kronecker product
of matrices A ∈ R

I×J and B ∈ R
P×L, denoted by A⊗ B, is

a matrix of size (IP)× (JL) defined by

A⊗ B =

⎡

⎢

⎢

⎣

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎤

⎥

⎥

⎦

(3)

Definition 4 (The n-mode Product): The n-mode product
of a tensor X ∈ R

I1×...×IN by a matrix U ∈ R
J×In , denoted

as X ×n U, is a tensor with entries:

(X ×n U)i1,...,in−1,j,in+1,...,iN =

In
∑

in=1

xi1i2...iNujin (4)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in terms
of tensor matricization as well:

Y = X ×n U ⇔ Y(n) = UX(n) (5)

Definition 5 (Tucker Decomposition): Given an order-N
tensor Y , its Tucker decomposition is an approximated tensor
defined by,

Ŷ ≡ �X ;U1, ...,UN � = X ×1 U1 ×2 . . .×N UN

=

M1
∑

i1=1

M2
∑

i2=1

. . .

MN
∑

iN=1

xi1i2...iNui1 ◦ ui2 . . . ◦ uiN (6)

where X ∈ R
M1×M2×... MN is called a core tensor, Ui ∈

R
Ii×Mi(1 ≤ i ≤ N) are the factor matrices and the symbol ◦

represents the vector outer product.

Definition 6 (CP Decomposition): Given an N -way tensor
X ∈ R

I1×I2...×IN , the CP tensor decomposition factorizes a
tensor into a sum of component rank-one tensors, which is
defined as

X̂ ≡
M
∑

i=1

u(1)
i ◦ u(2)

i · · · ◦ u(N)
i (7)

where M is a positive integer and u(j)
i ∈ R

Ij for i = 1, . . . ,M.

Definition 7 (Multiway block-sparsity): A tensor Y ∈
R
I1×...×IN is (S1, S2, . . . , SN)-block sparse with respect to the

factors Un ∈ R
In×Mn(n = 1, 2, . . . , N) if it admits a TUCK-

ER representation based only on few Sn selected columns of
each factor (Sn ≤Mn), i.e. if in = [i1n, i

2
n, . . . , i

Sn
n] denotes a

substet of indices for mode n(n = 1, 2, . . . , N), then

Y = X ×1 U1 ×2 . . .×N UN (8)

with xi1i2···iN = 0 ∀(i1i2 · · · iN) 	∈ i1 × i2 × · · · × iN

B. Problem Formulation

Given a set of M N -order tensors, denoted by Y =
{Y1,Y2, . . . ,YM}, we aim to find sparse representation for
each N -order tensor Ym(1 ≤ m ≤ M) with regards to the
Kronecker product of multiple dictionaries Un for 1 ≤ n ≤ N .
Each Un is a dictionary along a particular direction of struc-
ture. To learn multiple dictionaries, we consider TUCKER
decomposition on Ym. Thus the problem of multiple dictionary
learning is formulated as

min
Xmsparse,Un

M
∑

m=1

‖Ym −Xm ×1 U1 ×2 U2 · · · ×N UN‖ (9)

where Xm is the sparse representation tensor for Ym, and the
factor matrix Un is the dictionary at mode-n. In this paper,
we suppose Xm is multiple block sparse as described in [13].

Naturally, we can regard Y an (N + 1)-order tensor
by stacking all the given tensors along the (N + 1)-mode.
Similarly X denotes the (N + 1)-order tensor consisting of
{X1,X2, . . . ,XM}. Then model (9) can be equivalently written
as

min
Xmsparse,Un

‖Y −X ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖ (10)

where I is the identity matrix of order M .

2958

III. JOINT MULTIPLE DICTIONARY LEARNING MODEL

FOR TENSOR SPARSE CODING

Similar to standard dictionary learning algorithms, the
proposed tensor dictionary learning algorithm is a two-stage
iterative process: sparse coding and dictionary update. In this
paper, we employ an iterative algorithm called the Block
Coordinate Descent (BCD) [15] to solve the optimization
problem (10) by fixing all the other model variables to solve
one variable at a time alternatively. Firstly, the dictionaries
Un are fixed , the sparse coefficients Xm can be obtained
by solving M independent sparse representation subproblems.
That is, for each m = 1, . . . ,M , Xm is obtained by minimizing

min
Xmsparse

‖Ym −Xm ×1 U1 ×2 U2 · · · ×N UN‖ (11)

with the N-BOMP algorithm.

Then in the second stage, given the sparse representations
Xm, the dictionaries (factors) corresponding to each mode are
updated jointly using an atom pattern based dictionary update
strategy, by solving the following problem

min
Un

‖Y − X ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖ (12)

where 1 ≤ n ≤ N .

A. N-BOMP Algorithm

OMP iteratively refines a sparse representation by suc-
cessively identifying one component at a time that yields
the greatest improvement in quality until a desired sparsity
level is reached or the approximation error is below a pre-
defined threshold. A tensor extended version of OMP for
multiway block-sparsity is motivated by the fact that, in the
real world, the non-zero coefficients are likely to be grouped in
blocks rather than evenly distributed. Accordingly, N-BOMP
is proposed to find a (S1, S2, . . . , SN)-block sparse represen-
tation of an N -mode tensor with respect to the factors Un ∈
R
In×Mn(n = 1, 2, . . . , N). If we denote by Bn ∈ R

In×Sn
the submatrices formed by the columns indicated by indices
in of the mode-n dictionary, i.e. Bn = Un(:, in), then the
approximation of the tensor can be written in the equivalent
vector version of Eq. (8) in terms of Kronecker products of
dictionaries, that is

ŷ = (BN ⊗BN−1 ⊗ · · · ⊗B1)x (13)

where ŷ ∈ R
I1I2...IN is the vectorized version of original

tensor X by stacking all the columns of mode-1 tensor Y(1) in

a single vector, and x ∈ R
S1S2...SN is the vectorized version

of the N -mode tensor consisting only of non-zero entries.
Here we assume that the size of the core tensor X is not less
than the size of Y (Mn ≥ In), because sparse coding model
is formulated with overcomplete dictionaries. The N-BOMP
algorithm is given in Algorithm 1.

Remark 1: N-BOMP not only optimizes the memory usage
but also requires much less iterations (Kmax against S =
S1S2 · · ·SN in the classical OMP/Kronecker-OMP algorithm),
where S is the number of non-zero entries within the core
tensor X . Besides, the N-BOMP algrithm complexity in terms
of the number of entries I1I2 · · · IN , is sublinear compared to
a linear dependence of the standard OMP and the Kronecker-
OMP algorithms.

Algorithm 1 Solving Problem (11) by N-BOMP

Require: data tensor Ym ∈ R
I1×I2×···×IN , mode-n

dictionaries{Ui}(1 ≤ i ≤ N) with Ui ∈ R
Ii×Mi ,

the maximum number of non-zero entries Kmax, error
threshold ε

Ensure: Sparse representation Ym = Xm×1U1×2 . . .×NUN

with xi1i2···iN = 0 ∀(i1, i2, . . . , iN) 	∈ i1 × i2 × · · · × iN
(with non-zero entries given by Xm(i1, i2, . . . , iN) = A)

1: in = [∅](n = 1, 2, . . . , N), R = Ym, Xm = 0, k = 1;
2: while |i1||i2| · · · |iN | ≤ Kmax and ‖R‖F > ε do
3: [ik1i

k
2 · · · ikN] = argmax[i1i2···iN] |R ×1 UT

1 (:, i1) ×2

· · · ×N UT
N (:, iN)|;

4: in = in ∪ [ikn] (n = 1, 2, . . . , N), Bn = Un(:, in);
5: a = argminw‖(BN ⊗BN−1 ⊗ · · · ⊗B1)w − y‖22;
6: R = Ym −A×1 B1 ×2 B2 · · · ×N BN ;
7: k = k + 1;
8: end while
9: return {i1, i2, . . . , iN},A;

B. Joint multiple dictionary update algorithm

Once the sparse core tensors Xm (1 ≤ m ≤ M) are
obtained, the tensor dictionaries are computed by solving
the problem (12). Because non-zero atoms entries from each
mode dictionary jointly make contributions to the presentation
of tensors, we propose a joint multiple dictionary update
algorithm based on the frequent atom patterns for sparse tensor
representation.

1) Mining Frequent Atom Patterns in Sparse Representa-
tion: Each non-zero entry of the sparse tensor Xm(1 ≤ m ≤
M) is mapped into an integer using a function φ, which is
formulated as

φ(i1i2 . . . iN) = (i1 − 1)I2I3 . . . IN
+ (i2 − 1)I3I4 . . . IN
+ · · ·+ iN

(14)

Then the sparse representation of the N -mode tensor Xm(1 ≤
m ≤M) is denoted by an integer set ti consisting of indices
of the non-zero entries of Xm.

In order to uncover the atom correlations for sparse repre-
sentation with a low time cost, we adopt FP-tree [16] to find
the frequent patterns from M integer sets. The time efficiency
of FP-Tree is achieved with three techniques: (1) FP-Tree
avoids costly repeated data base scans by compressing a large
database into a condensed smaller data structure; (2) a pattern-
fragment growth method is employed to avoid the costly
generation of a large number of candidate sets; and (3) it dra-
matically reduces the search space by decomposing the mining
task into a set of smaller tasks for mining confined patterns in
conditional database. Given a database T = {t1, t2, . . . , tM}
and a minimum support threshold ξ, FP-Tree mines frequent
patterns (i.e. the support of patterns is not less than ξ) by
creating conditional (sub)pattern-bases (i.e., the subpattern-
base under the condition of a frequent item’s existence). Taking
Figure 1 as an example, let the sparse representation database
T be the first two columns of Fig. 1(a), and the minimum
support threshold be 3 (i.e., ξ = 3). Firstly, a scan of T
derives a list of frequent items in Fig. 1(b), (the number after

2959

“:” indicates the support), in which items are in frequency-
descending order. Since each path of a tree will follow this
order, the frequent atoms in each sparse representation are
listed in the ordering in the rightmost column of Fig. 1(a).
Secondly, the FP-Tree is constructed by scanning the database
T again, together with the associated node-links pointing to
the nodes with the same atom in the tree, as shown in Fig. 1(b).
Finally, the frequent patterns related to each frequent atom are
mined by traversing the FP-Tree once following corresponding
node-links. The conditional pattern-base and conditional FP-
Trees are generated during this process, as shown in Fig. 1(c).
Hence, the frequent patterns related to a specific frequent atom
are summarized in the second column of Fig. 1(c).

(a) An Atom database
SID Atom Set (Ordered) frequent Atoms
100 {6,1,3,4,7,9,13,16} {6,3,1,13,16}
101 {1,2,3,6,12,13,15} {6,3,1,,13}
102 {2,6,8,10,15} {6,2}
103 {2,3,11,19,16} {3,2,16}
104 {1,6,3,5,12,16,13,14} {6,3,1,13,16}

(b) The FP-Tree

 (c) Mining frequent patterns by creating conditional (sub)pattern-bases

Atom Conditional pattern-base Conditional FP-Tree
16 {(6,3,1,13:2),(3,2:1)} {(3:3)}|16
13 {(6,3,1:2), (6,3,1,2:1)} {(6:3,3:3, 1:3)}|13
2 {(6,3,1:1),(6:1),(3:1)} {}
1 {(6,3:3)} {(6:3, 3:3)}|1
3 {(6:3)} {(6:3)}|3
6 {} {}

Header Table
Atom frequency head

6 4
3 4
1 3
2 3

13 3
16 3 16:2

16:1

2:1 2:1

6:4

1:3

{}

3:1

3:3

13:2 2:1

13:1

Fig. 1: A toy database illustrates the FP-Tree frequent pattern
mining process

2) Frequent Pattern based Dictionary Update: After find-
ing frequent patterns related to each frequent atom, i.e., the
conditional FP-Tree regarding a specific atom, we successively
update all frequent patterns by jointly updating all the elements
in each frequent pattern at a time. First of all, a map function
ϕ is used to convert an integer into an N -dimensional vector,
which is denoted by

ϕ(b) = i1i2 . . . iN (15)

where

m1 =
b

I2I3 . . . IN
i1 = m1 + 1

(16)

in+1 =
mod(mn)

In+2 . . . IN
+ 1(1 ≤ n ≤ N − 2) (17)

iN = mod(
mod(mN−1)

IN
) (18)

Using Eq. (16)-(18), each element in the frequent pattern is
converted into a position (i1, i2, . . . , iN) of a sparse tensor
Xm(1 ≤ m ≤M). Then we define ωk as the group of indices

of sparse tensors Xm that use all the elements in the frequent
pattern pk. Thus

ωk = {m|1 ≤ m ≤M,Xmpk 	= 0} (19)

where pk = {uk11 uk12 · · ·uk1N , . . . , ukn1 ukn2 · · ·uknN }, and

u
kj
1 u

kj
2 · · ·ukjN (1 ≤ j ≤ n) is the mapped position of sparse

tensor in the frequent pattern pk.

We now turn to the second stage of updating the dictionar-
ies together with the non-zero coefficients. Assume both X and
Ui(1 ≤ i ≤ N), and we put in question only the dictionary
atoms in each frequent pattern pk, and the coefficients in X
that corresponding to it. Let Xpk and Ypk be an (N +1)-order
tensor formed by stacking the subset ωk of N -mode tensors

Ym and Xm along the (N + 1) mode, respectively; ˜Xpk and
˜Ypk be the (N + 1)-order tensor formed by N -mode tensors
Ym and Xm not in the subset ωk . Then the penalty term of
the objective function (12) can be rewritten as

‖Y − X ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F
=‖Y − ˜Xpk ×1 U1 ×2 U2 · · · ×N UN ×N+1 I

−Xpk ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F
=‖Epk −Xpk ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F

(20)

where Epk stands for the error for all the |ωk| examples when
the dictionary atoms in the frequent pattern pk are removed.
We obtain ERpk by choosing only the (N + 1)-order indices in
ωk, as shown in Eq.(21).

ERpk = Y(:,:,...,:,ωpk)−X(i1,i2,··· ,iN ,ωpk)×1U1 · · ·×NUN×N+1I
(21)

where (i1, i2, · · · , iN) 	∈ pk. We conduct a rank
(|pk|, |pk|, . . . , |pk|) CP decomposition for ERpk , in which the
CP factors for mode 1, 2, . . . , N of the j-th rank one tensor are
regarded as the updated dictionary atoms of the j-th element in
the frequent pattern pk. The general process of joint multiple
dictionary update algorithm is illustrated in Algorithm 2.

C. The complete Algorithm

After iteratively solving subproblem (11) and (12) until the
maximum iterations are achieved or the iteration converges
to stop, we finally obtain multiple overcomplete dictionaries
along each mode of input tensors Ym(1 ≤ m ≤ M) and
corresponding sparse tensor representations Xm(1 ≤ m ≤M).
Algorithm 3 outlines the whole process of joint multiple
dictionary learning algorithm for tensor sparse coding.

IV. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results
on both synthetic and real data sets with multi dimensional
information. The intension of these experiments is to demon-
strate our new method TSC-JMDL’s superiority over the state-
of art dictionary learning methods in computation complexity,
memory usage, and image denoising.

A. Baseline Methods

As our proposed method is closely related to tensor dic-
tionary models based on sparse TUCKER decomposition, we
implement two multiple based dictionary learning algorithms

2960

Algorithm 2 Solving Problem (12) by Joint Multiple Dictio-
nary Update Algorithm

Require: data tensor Y ∈ R
I1×I2×···×IN×M , sparse repre-

sentation X ∈ R
M1×M2×···×MN×M for 1 ≤ i ≤ M , a

minimum support threshold ξ
Ensure: Dictionaries from each mode Y = X×1U1×2. . .×N

UN)
1: Initialize a non-zero entry database T = {}
2: for i = 1 to M do
3: An integer set for the i-th slice of X : nXm ←

non-zero entries in Xm;
4: ti ← {}
5: for j = 1 to |nXm | do
6: ti ← ti ∪ φ(nXm(j));
7: end for
8: T← T ∪ ti;
9: end for

10: a frequent pattern list P = {p1, p2, . . . , pu} ←
Apply the FP-Tree algorithm to T;

11: for k = 1 to u do
12: for j = 1 to |pk| do
13: u

kj
1 u

kj
2 · · ·ukjN ← ϕ(pk(j));

14: pk(j)← u
kj
1 u

kj
2 · · ·ukjN

15: end for
16: ωk ← {i|1 ≤ i ≤M,X ipk 	= 0};
17: Calculate the representation error tensor ERpk with Eq.(21);
18: Do CP decomposition to the error tensor by a rank

(|pk|, |pk|, . . . , |pk|) approximation:

ERpk ←
∑pk
i=1 a

i(1)
pk ◦ · · · ◦ ai(N)

pk

19: for j = 1 to |pk| do
20: Update the dictionary atoms in the j-th element in

pk: u
kj
i = a

j(i)
pk

21: end for
22: end for
23: return {U1,U2, . . . ,UN};

for tensor sparse representation as baseline methods. All use
the N-BOMP algorithm for sparse representation learning.
However, they make use of two different dictionary update
methods. These two baselines are listed as follows:

• Tensor MOD Approach (TMOD): the original MOD
algorithm is presented in [5] for dictionary learning
on signal vectors. We apply this algorithm to tensor
based multiple dictionary learning, which alternatively
updates Un by fixing U1, . . . ,Un−1, Un+1,. . . , UN

to minimizing (12)

• Tensor K-SVD Approach (TKSVD): Due to the
atoms from each mode dictionary jointly make contri-
butions to the tensor sparse representation, the K-SVD
algorithm is unable to directly applied to tensor based
dictionary learning by updating dictionary atom one
by one. Instead, we check the coefficients xmi1,i2,...,iN
at each position (i1, i2, . . . , iN) of all the sparse ten-
sors Xm(1 ≤ m ≤M). For those xmi1,i2,...,iN 	= 0, we
gather the corresponding data tensor Xm to generate
an (N + 1)-order tensor Xs, and conduct a rank-
(1, 1, . . . , 1) CP decomposition. The CP factors for
modes 1, 2, . . . , N are regarded as the updated dictio-

Algorithm 3 Joint multiple dictionary learning for tensor
sparse coding

Require: data tensors Ym ∈ R
I1×I2×···×IN (1 ≤ m ≤ M),

the maximum number of non-zero entries Kmax, error
threshold ε, a minimum support threshold ξ

Ensure: Sparse representation corresponding the learnt mul-
tiple dictionaries along each structure mode Ym = Xm×1

U1 ×2 . . .×N UN (1 ≤ m ≤M))
1: Initialize dictionaries along each mode Uj(1 ≤ j ≤ N);
2: while reach maximum iteration times or converge to stop

do
3: Get the sparse representation tensors Xm(1 ≤ m ≤M)

by using N-BOMP;
4: Update dictionaries Uj(1 ≤ j ≤ N) by using TSC-

JMDL;
5: end while
6: return Sparse representation Xm(1 ≤ m ≤ M) and

Dictionaries for each mode Uj(1 ≤ j ≤ N)

nary atoms.

We also consider some other sparse representation models
proposed in [17], [18] and [14] to evaluate the performance in
image denoising.

B. Synthetic Datasets

In this section, we evaluate TSC-JMDL against TMOD and
TKSVD on the synthetic datasets. An (N +1)-order tensor of
size I1 × I2 . . . × IN × 100(In = 10 for n = 1, 2, . . . , N is
generated from the mode dictionaries of size In × Mn and
the sparse core tensor of size M1 × M2 . . . × Mn × 100
whose elements are obtained from Gaussian distributions,
where Mn = 2In. The sparse core tensor has a fixed mode
sparsity of Sn = 5.

1) Time Cost with High Order Tensorial Data: To show
TSC-JMDL’s time advantage of handling high order tensorial
data over other baseline methods, we create 6 higher order
tensors Xj(2 ≤ j ≤ 7) using above tensor construction
method. Fig. 2 reports the results on TMOD, TKSVD and our
new method TSC-JMDL. As the order of tensor increases, the
time cost of TSC-JMDL and TMOD are significantly reduced
compared with TKSVD. This is mainly because TKSVD
jointly updates atoms, one for each mode at a time, the
total number of these joint atoms is 20j−1, which makes
the dictionary update procedure particularly tedious. While
TMOD simply updates each mode dictionary separately, the
computation complexity of which is linear to the order of
tensor. TSC-JMDL only jointly updates the frequent atom
patterns in the sparse representation, which speeds up the
dictionary update process. As TSC-JMDL needs extra time
to find these frequent patterns, the time cost of TSC-JMDL is
a little expensive than TMOD. To sum up, our method TSC-
JMDL has a comparable time cost in the higher mode of tensor.

2) Data Denoising with Different Noise Parameters: We
investigate the performance of TSC-JMDL for data denoising
by comparing with TMOD and TKSVD. The test data 3−order
tensor is generated using above the same tensor construction
method. The Gaussian noise is artificially added with zero

2961

0.2

2000.2

4000.2

6000.2

8000.2

10000.2

2 3 4 5 6 7

Ru
nn

in
g

tim
e(

m
in

)

Order of Tensor

MOD KSVD TSC-JMDL

Fig. 2: Time comparison w.r.t. different orders of a tensor.

mean. Fig. 3 presents the comparison of peak signal-to-noise
ratios (PSNR) of the denoising results with increasing the
noise parameter σ from 5 to 100. It can be found that joint
multiple dictionary update algorithms TKSVD and TSC-JMDL
outperform independent dictionary update algorithm TMOD,
which suggests that considering atoms correlations for sparse
representation can boost performance in denoising. Moreover,
the performance of TKSVD is marginally better than the pro-
posed method TSC-JMDL. This is mainly because TSC-JMDL
updates merely frequent atoms patterns rather than all the
non-zero coefficients in the sparse tensors. However, our new
method TSC-JMDL can achieve a comparable performance
with much lower time cost than TKSVD.

20

25

30

35

40

5 15 25 35 45 55 65 75 85 95

PS
N

R(
dB

)

Noise Parameter σ

TMOD TKSVD TSC-JMDL

Fig. 3: The PSNR of denoising results with the variation of σ.

3) Memory Usage with respect to Dictionaries: Exempli-
fied dictionaries used in a 3−order tensor (created using above
tensor generation method) is illustrated in Fig. 4. The left two
images presents the dictionaries U1 and U2 learnt by our
method TSC-JMDL, in which each column is the atom along
one direction of the data. The right image is the Kronecker
product U of above two dictionaries, which fully represents the
data spatial correlation. Note that the size of dictionaries are
quite different. The classical OMP requires a large dictionary
of size 100×400, whereas N-BOMP employed in our scheme
needs only two dictionaries of size 10×20. Though only 1/100
size of the Kronecker dictionary is used, our model can achieve
better performance than the classical OMP algorithm. This is
mainly because our model simultaneously selects factors along
each mode on the original structured data, while 1D sparse
model OMP chooses the factors on the reshaped 1D vector.

(a) Our Dictionaries (b) The Kronecker product

 Error= 1.1415e-012 Error=3.8181e-004

Fig. 4: Exemplified dictionaries in our 3-order tensor model.

C. Real Datasets

In this section, our proposed TSC-JMDL is used to solve
the image denoising problem. The test images include 5 widely
used images [18], commonly known as “Lena”, “Peppers”,
“House”, “Barbara”, and “Boats”, which are resized uniformly
into 512 × 512. The white Gaussian noises are added at
different standard deviations σ. In all the tests, image patch
is of size 8 × 8 pixels, and the two dictionaries U1 and U2

are of size 8 × 16. Then U is generated by using Kronecker
product is of size 64× 256.

1) Image Denoising with Different Noise Variances: We
study the performance of our TSC-JMDL in image denoising
with those of 1D sparse coding models proposed in [17] and
[18] and one 2D synthesis sparse model proposed in [14].
Table I shows the denoising results in terms of PSNR. We
observe that our method outperforms the 2D synthesis sparse
model [14] among all the data sets with different variations.
This fact demonstrates that considering atom correlations for
sparse representation can boost image denoising performance.
Note that the size of dictionaries are different in generating the
results. The methods in [17] and [18] require the dictionaries of
size 64×256, whereas our method only needs two dictionaries
of size 8 × 16, which is 1/64 size of the dictionary used in
the above two 1D sparse coding models. However, our model
TSC-JMDL can achieve the best performance among all the
four evaluated methods as denoted by the bolded numbers.

2) Performance with the Same Size of Dictionaries: We
further study the performance of our method with the same
size of dictionaries used in other baseline methods. Table II
shows the denoising results of [14] and [18] using different
sizes of dictionaries which are equal to the size used in our
method. The noise parameter σ = 5, and the noise image of
PSNR= 34.15dB. Clearly, the larger the size of dictionaries,
the higher PSNR results all the methods achieve. Besides, two
dictionary sparse models (TSC-JMDL and 2D synthesis sparse
model [14]) significantly outperforms the 1D sparse model
[18] when same size of dictionary is used. Another interesting
fact is that the denoising result of our proposed method TSC-
JMDL always performs better than the 2D synthesis sparse
model, which again demonstrates that taking atom correlations
into consideration can improve denoising results.

A visual comparison is given in Fig. 5. It presents the
denoising results of Lena, Peppers and House generated by
1D sparse model [18], 2D synthesis sparse model [14] and

2962

TABLE I: Summary of the denoising PSNR results in [dB]. In
each cell, the top row is the result of Portilla et al. [17], the
second row is the result of Elad et al. [18]. They all use the
dictionary of size 64× 256. The third row is the result of Qi
et al. [14], and the bottom row is the result of the proposed
method. They all use two dictionaries of size 8× 16.

σ \ PSNR 2 \ 42.11 5 \ 34.15 10 \ 28.13

Lena

42.23 38.49 35.61
43.58 38.6 35.47
43.58 38.55 35.37
47.01 42.12 39.96

Barbara
43.29 37.79 34.03
43.67 38.08 34.42
43.64 38.05 34.02
44.65 39.77 36.37

Peppers
43 37.31 33.77

43.33 37.78 34.28
43.37 37.93 34.26
46.57 41.98 37.02

House
44.07 38.65 35.35
44.47 39.37 35.98
44.38 39.14 35.59
48.98 45.31 41.07

Boats
42.09 36.97 33.58
43.14 38.08 33.64
43.11 37.16 33.56
43.42 38.01 34.39

TABLE II: Summary of the denoising PSNR results in [dB].
In each cell, the top row is the result of Elad et al. [18]. It uses
the dictionaries of size 64×4, 64×16 and 64×64 respectively.
The middle row is the result of Qi et al. [14], and the bottom
row is the result of the proposed method. They all use two
dictionaries of size 8× 16, 8× 64 and 8× 256 respectively.

image \DictSize(pixels) 256 1024 4096

Lena
30.09 35.81 38.20
38.55 44.86 47.12
42.12 47.25 49.94

Barbara
24.40 30.14 37.74
38.05 41.36 46.76
39.77 43.02 49.96

Peppers
25.73 32.23 37.29
37.93 42.28 45.16
41.98 45.98 48.79

House
29.35 36.15 39.34
39.14 44.68 46.59
45.31 47.99 49.27

Boats
27.08 33.04 37.14
37.16 41.78 48.09
38.01 43.03 49.78

our proposal model TSC-JMDL with the dictionary of the same
sizes 64 × 4 and 2 × 8 × 16 = 256, respectively. Obviously,
our method TSC-JMDL provides much clearer reconstructed
image than our two baseline methods.

Exemplified dictionaries of Lena used in our method is
illustrated in Fig. 6. The 2D dictionaries U1, U2 denote dif-
ferent dimensional features, and the Kronecker product U fully
represents the image spatial correlations along each direction.
Two dictionaries in our model are learnt by exploring the
structure information along each mode and their correlations
among all the possible modes, whereas the Kronecker product
U is generated depending on one direction information on
the reshaped image vector. Thus, our model always has better
image denosing results than 1D sparse model.

(a) Noisy Lena (b) 1D denoising result (c) 2D synthesis sparse model
(30.09dB) (38.55dB)

(d) our proposed method
(42.12dB)

(e) Noisy Peppers (f) 1D denoising result
(25.73dB)

(g) 2D synthesis sparse model
(37.93dB)

(h) our proposed method
(41.98dB)

(j) Noisy House (i) 1D denoising result
(29.35dB)

(j) 2D synthesis sparse model
(39.14dB)

(k) our proposed method
(45.31dB)

Fig. 5: The denoising results of Lena, Peppers and House by
1D sparse model [18], 2D synthesis sparse model [14] and
our proposal model TSC-JMDL using the dictionaries of size
64× 4 and 8× 16, respectively.

(a) Our Dictionaries (b) The Kronecker product

Fig. 6: Exemplified dictionaries of Lena in our model TSC-
JMDL. Left two images show U1, U2, in which each column
is the atom of one directional signal of the image patch. The
right image is the Kronecker dictionary U in which each
square is an atom of size 8× 8.

V. CONCLUSION

In this paper, we propose a novel multiple dictionary
learning algorithm for tensor sparse coding. While other ex-
isting tensor dictionary learning algorithms update each mode
dictionary by fixing all the other mode dictionaries iteratively
in an alternating manner, the proposed method fully makes
use of the atom correlations among all the spatial modes
inside a higher order tensorial data. Our model TSC-JMDL
employs the FP-tree mining algorithm to exploit frequent atom
patterns in the sparse representation, and then simultaneously
updates multiple atoms in the frequent pattern using our joint
dictionary update method. On the synthetic datasets, we show
that our model can achieve a comparable performance with a
lower computation gain and memory usage. Moreover, we also
demonstrate its effectiveness in data denoising with different
noise variances. On the real-world datasets, our method shows
promising results in image denoising. Our model outperforms

2963

both tensor dictionary learning methods and traditional 1D
models, with different noise parameters and similar memory
cost. The image reconstruction results clearly show the ability
of our algorithm for maintaining the discerning features while
retaining the image reconstruction.

ACKNOWLEDGMENT

This work is supported by the Australian Research Council
(ARC) through Discovery Project Grant DP130100364.

REFERENCES

[1] S. Li, “Non-negative sparse coding shrinkage for image denoising
using normal inverse gaussian density model,” Image Vision Comput.,
vol. 26, no. 8, pp. 1137–1147, Aug. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.imavis.2007.12.006

[2] G. Peyré, “Sparse Modeling of Textures,” Journal of Mathematical
Imaging and Vision, vol. 34, no. 1, pp. 17–31, May 2009. [Online].
Available: http://dx.doi.org/10.1007/s10851-008-0120-3

[3] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in in IEEE
Conference on Computer Vision and Pattern Recognition(CVPR), 2009.

[4] M. Aharon, M. Elad, and A. Brucktein, “K-SVD: An algorithm for
desdesign overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Processing, vol. 54, no. 2, pp. 4311–4322, 2006.

[5] K. Engan, S. Aase, and J. Husoy, “Method of optimal directions for
frame design,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), vol. 1, 1999, pp. 2443–2446.

[6] G. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51(3), pp. 455–500, 2009.

[7] T. Hazan, S. Polak, and A. Shashua, “Sparse image coding using a
3d non-negative tensor factorization,” in Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, vol. 1, 2005, pp. 50–57
Vol. 1.

[8] E. Benetos and C. Kotropoulos, “Non-negative tensor factorization
applied to music genre classification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 18, no. 8, pp. 1955–1967, 2010.

[9] Y. Kim, A. Cichocki, and S. Choi, “Nonnegative tucker decomposition
with alpha-divergence.” in ICASSP. IEEE, 2008, pp. 1829–1832.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icassp/icassp2008.
html#KimCC08

[10] Y. Kim and S. Choi, “Nonnegative tucker decomposition,” in Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,
2007, pp. 1–8.

[11] M. Mørup, L. Hansen, and S. M. Arnfred, “Algorithms for
sparse nonnegative tucker decompositions,” Neural Comput., vol. 20,
no. 8, pp. 2112–2131, Aug. 2008. [Online]. Available: http:
//dx.doi.org/10.1162/neco.2008.11-06-407

[12] S. Zubair and W. Wang, “Tensor dictionary learning with sparse
tucker decomposition,” in Digital Signal Processing (DSP), 2013 18th
International Conference on, 2013, pp. 1–6.

[13] C. F. Caiafa and A. Cichocki, “Computing sparse representations
of multidimensional signals using kronecker bases,” Neural Comput.,
vol. 25, no. 1, pp. 186–220, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1162/NECO a 00385

[14] N. Qi, Y. Shi, X. Sun, J. Wang, and B. Yin, “Two dimensional
synthesis sparse model,” in Multimedia and Expo (ICME), 2013 IEEE
International Conference on, 2013, pp. 1–6.

[15] M. Blondel, K. Seki, and K. Uehara, “Block coordinate descent
algorithms for large-scale sparse multiclass classification,” Machine
Learning, vol. 93, no. 1, pp. 31–52, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10994-013-5367-2

[16] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns with
candidate generation: A frequent-pattern tree approach,” Data Mining
and Knowledge Discovery, vol. 8, pp. 53–87, 2004.

[17] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image de-
noising using scale mixtures of gaussian in the wavelet domain,” Image
Processing, IEEE Transactions on, vol. 12, pp. 1338–1351, 2003.

[18] M. Elad, M.and AElad, “Image denoising via sparse and redundan-
t representation over learned dictionaries,” Image Processing, IEEE
Transactions on, vol. 15, pp. 3736–3745, 2006.

2964

