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Abstract— This paper presents a model predictive control
(MPC) method based on a recurrent neural network for control
of autonomous underwater vehicles (AUVs) in a vertical plane.
Both kinematic and dynamic models are considered in the
set-point control of the AUV. A one-layer recurrent neural
network called the general projection neural network is applied
for real-time optimization to compute optimal control vaiables.
Simulation results are discussed to demonstrate the effectiveness
and characteristics of the proposed model predictive control
method.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) have at-
tracted much attention in recent years. There has been

a considerable interest over the last few years for marine
vehicle motion control; e.g., point stabilization (also known
as set-point control), trajectory tracking, and path-following
control. The point stabilization refers to the problem of
steering a vehicle to a final target position with a desired
orientation. The set-point control of underwater vehicles is
one of the most important parts in AUV control [1].

In several studies, the AUV’s behaviors are often modeled
by multivariable linear systems [2]–[6]. In the diving control
problems, two main assumptions are made on the AUV’s
dynamics. One assumption is that the pitch angle of the
vehicle is small in diving behaviors, and the other one is
that the pitch motion dynamics could be modeled by a linear
equation. The problem of controlling an AUV in the dive
plane is addressed in [7]. AUVs control issues in output
feedback form are discussed in [8]–[12]. In [13], an effective
depth control is proposed in the presence of the parameter
uncertainties and control fin deflection constraints. In [14], a
Lyapunov tracking control law using backstepping approach
is proposed. In [15] and [16], nonlinear neural network
adaptive controllers are used for diving control of AUVs.
A set-point controller for AUV is proposed by Herman in
[1]. A simplified model is proposed for pitch dynamics that
takes into account the buoyancy of the AUV in [17]. Model
predictive control of an unmanned submarine is developed
with movement only in the X-Z plane [18]. In [19], a method
using model predictive control of the yaw angle of an AUV
is proposed, but dealing with SISO system only. In [20] and
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[21], results on model predictive control of AUVs is also
presented for with disturbances and constraints.

Model predictive control (MPC) is an optimization-based
advanced control method and entails extensive online com-
putation of real-time solutions to formulated optimization
problems [22]. For large-scale and realtime optimization
problems, recurrent neural networks emerged as promising
computational models for real-time optimization problems.
For example, in [23], a one layer general projection neu-
ral network is presented for solving convex optimization
problems. In [24], another one-layer neural network was
presented for pseudoconvex optimization problems. These
recurrent neural network models are shown to perform well
in terms of convergence property and model complexity.
Some studies on MPC based on recurrent neural networks
were carried out. In [25]–[30], the simplified dual network
is applied for solving real-time quadratic optimizations in
various MPC approaches. In [31] and [32], a two-layer
recurrent neural network is applied for solving reformulated
minimax optimization problems of robust MPC approaches.
These neurodynamics-based MPC approaches are developed
to improve the computational efficiency and control perfor-
mance substantially.

The rest of the paper is organized as follows. Section
II formulates the set-point control problem for an AUV
in the vertical plane. In Section III, the MPC method for
AUV control is formulated as a time-varying quadratic
programming problem and a recurrent neural network is
applied for solving the quadratic programming problem. The
performance of the control system proposed is demonstrated
using simulation results in Section IV. Finally, Section V
contains the conclusions and describes some problems that
warrant further research.

II. PROBLEM FORMULATION

In this section, the kinematic and vertical dynamic models
of the Taipan-2 AUV are presented, and the formulation of
driving the vehicle in the vertical plane to a set-point is stated.
The mathematical model of an AUV in six DOF can be
described as follows [33]:

η̇ = J (η) ν
Mv̇ + C (v) v +D (v) v + g (η) + τd = τ
y = η

(1)

where η = [x y z φ θ ϕ]T denotes the vehicle location and
orientation in the earth-fixed frame, ν = [u v w p q r]T is
the vehicle’s velocity and angular rate vector expressed in
the body-fixed frame, y is the output of the system, J (η) is
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the kinematic transformation matrix expressing the transfor-
mation from the body-fixed frame to earth-fixed frame and

J (η) =

[
J1 (η) 0

0 J2 (η)

]

J1 (η) =

 cϕcθ cϕsθsφ− sϕcφ sϕsφ+ cϕsθcφ
sϕcθ cϕcφ+ sφsθsϕ −cϕsφ+ sθsϕcφ
−sθ cθsφ cθcφ


J2 (η) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2)

where s = sin (·), c = cos (·) and t = tan (·). In (1) and
(2), a complete kinematic model of the AUV is given. and
in this paper, we consider the AUV kinematic model in the
vertical plane only which can be expressed as follows:

ẋ = u cos θ + w sin θ

ż = −u sin θ + w cos θ

θ̇ = q (3)

The Taipan-2 vehicle dynamic model has been theoretically
estimated using classic methods in [33] and [34]. In this
research, for the control design purpose, and as done in
[35], we simplify the full model by neglecting the stable roll
motion. Then the simplified vertical plane dynamic model
can be written as:

u̇ =
Fu − du
mu

ẇ =
Fw −muquq − dw

mw

q̇ =
Γq −mprpr − dq

mq
(4)

where Fu and Fw are the force along the x and z axis, Γq

is the torque acting on the pitch angle θ;
mu = m−Xu̇,mw = m− Zẇ,mq = Iyy −Mq̇,
muq = −m,mpr = −Izz,
du = −Xuuu |u|+m(qw − vr + zg(pr)),
dw = −Zwww |w| − Zuwuw −mzg(p2 + q2),
dq = −Mqqq |q| −Muquq −Muwuw +
(zgmg − zbbg) sin θ +mzg (wq − vr) ;
X , Z, and M represent the dynamic derivative coefficients
of the vertical plane dynamics of Taipan-2; the terms m, b
and I are the mass, buoyancy, and moments of inertia of the
vehicle, respectively; zg and zb are the location of the center
of gravity and the center of buoyancy along the zB axis with
respect to the axis of propulsion. All the coefficients involved
here are listed in Table I [36].

For the Taipan-2 AUV, considering both its kinematics and
dynamics in the vertical plane, we define the state vector
x = [x z θ u w q]

T and the input vector u = [Fu Fw Γq]
T .

By using Euler discretization, the AUV model can be
transformed into a discrete-time model in the following form:

x (k + 1) = f (x (k)) + g (x (k))u (k)

y (k) = Cx (k) (5)

TABLE I
HYDRODYNAMIC DIMENSIONAL COEFFICIENTS OF THE TAIPAN AUV

Xuu = −4.00kg m−1 Xu̇ = −5.070kg
Zuq = −37.327kg rad−1 Zww = −350.00kg m−1

Zuuδs = −4.4913kg m−1 rad−1 Zuw = −40.750kg m−1

Zuuδb = 4.4913kg m−1 rad−1 Zẇ = −50.700kg
Muw = 10.280kg Muq = −34.192kgmrad−1

Mqq = −200.00kg m2 rad−2 Mq̇ = −18.020kg m2 rad−1

Muuδs = −16.874kg rad−1 Muuδb = −8.4729kg rad−1

zg = 0.01757m Iyy = 10.900kg m2

zb = 0.00316m m = 50.7kg
g = 9.81m s−1 b = 50.9kg

where x (k) ∈ <n is the state vector; u (k) ∈ <m is the input
vector; y (k) ∈ <p is the output vector; f (·) and g (·) are
nonlinear functions, and C ∈ <p×n. The system is subject
to the constraints:

umin ≤ u (k) ≤ umax,

∆umin ≤ ∆u (k) ≤ ∆umax,

xmin ≤ x (k) ≤ xmax,

ymin ≤ y (k) ≤ ymax, (6)

MPC is an iterative optimization technique: at each sam-
pling time k, measure or estimate the current state, then
obtain the optimal input vector by solving a real-time opti-
mization problem. For model (5), the following cost function
is commonly used in MPC for calculation:

J (k) =
N∑
j=1

‖r (k + j|k)− y (k + j|k)‖2Q

+

Nu−1∑
j=0

‖∆u (k + j|k)‖2R (7)

where r (k + j|k) denotes the reference vector for out-
put, y (k + j|k) denotes the predicted output vector,
and ∆u (k + j|k) denotes the input increment vector,
∆u (k + j|k) = u (k + j|k) − u (k − 1 + j|k), N and Nu

are prediction horizon and control horizon (N > Nu > 0),
respectively. Q and R are appropriate weighting matrices, ‖·‖
denotes the Euclidean norm of the corresponding vector. The
first term in (7) represents the error between the predicted
output and the reference output while the second term
considers the control energy. Hence with appropriate N , Nu,
Q and R, the cost function (7) can also guarantee closed-loop
stability. According to model (5), future state x (k + j|k),
j = 1, 2, ..., N at sampling instant k can be predicted by
using the optimal input obtained at previous time instant,
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i.e., u (k + j|k − 1) , j = 1, 2, ..., Nu:

x (k + 1|k) = f (x (k|k − 1)) + g (x (k|k − 1))

(u (k − 1) + ∆u (k|k))

x (k + 2|k) = f (x (k + 1|k − 1))+g (x (k + 1|k − 1))

(u (k − 1) + ∆u (k|k) + ∆u (k + 1|k))

...
x (k +N |k) = f (x (k+N−1|k−1))+g (x (k+N−1|k−1))

(u (k − 1) + . . .+ ∆u (k +Nu − 1|k))

Define the following vectors:

x̄ (k) =
[
x (k + 1|k) . . . x (k +N |k)

]T ∈ <Nn

ū (k) =
[
u (k|k) . . . u (k +Nu − 1|k)

]T ∈ <Num

ȳ (k) =
[
y [k + 1|k] . . . y (k +N |k)

]T ∈ <Np

r̄ (k) =
[
r (k + 1|k) . . . r (k +N |k)

]T ∈ <Nn

∆ū (k)=
[

∆u (k|k) . . . ∆u (k +Nu − 1|k)
]T ∈ <Num

(8)
Then the predicted output ȳ (k) can be expressed in the
following form:

ȳ (k) = C̃
(
G∆ū (k) + f̃ + g̃

)
(9)

where

C̃ =

 C . . . 0
...

. . .
...

0 . . . C

 ∈ <Np×Nn

G =


g (x (k|k − 1)) . . . 0

g (x (k + 1|k − 1)) . . . 0
...

. . .
...

g (x (k+N−1|k−1)) . . . g (x (k+N−1|k−1))


∈ <Nn×Num

f̃ =


f (x (k|k − 1))

f (x (k + 1|k − 1))
...

f (x (k +N − 1|k − 1))

 ∈ <Nn

g̃ =


g (x (k|k − 1))u (k − 1)

g (x (k + 1|k − 1))u (k − 1)
...

g (x (k +N − 1|k − 1))u (k − 1)

 ∈ <Nn

hence, the original optimization problem (7) becomes:

min
∥∥∥r̄ (k)− C̃

(
G∆ū (k) + f̃ + g̃

)∥∥∥2
Q

+ ‖∆ū (k)‖2R
s.t. ∆ūmin ≤ ∆ū (k) ≤∆ūmax,

ūmin ≤ ū (k − 1) + Ĩ∆ū (k) ≤ūmax,

x̄min ≤ f̃ + g̃ +G∆ū (k) ≤x̄max,

ȳmin ≤ C̃
(
f̃ + g̃ +G∆ū (k)

)
≤ ȳmax,

(10)

where

Ĩ =


I 0 . . . 0
I I . . . 0
...

...
. . .

...
I I . . . I

 ∈ <Num×Num.

Problem (7) can be rewritten as a time-varying quadratic
programming (QP) problem:

min 1
2∆ūTW∆ū+ cT ∆ū,

s.t. l ≤ E∆ū ≤ h. (11)

where the coefficients are:

W = 2
(
GT C̃TQC̃G+R

)
∈ <Num×Num

c = −2GT C̃TQ
(
r̄ (k)− C̃g̃ − C̃f̃

)
∈ <Num

E =
[
−Ĩ Ĩ −G G− C̃G C̃G I

]T
∈ <(3Num+2Np)×Num

b =



−ūmin + ū (k − 1)
ūmax − ū (k − 1)

−x̄min + f̃ + g̃

x̄max − f̃ − g̃
−ȳmin + C̃f̃ + C̃g̃

ȳmax − C̃f̃ − C̃g̃

 ∈ <
2Num+2Np

l =

[
−∞

∆ūmin

]
∈ <3Num+2Np

h =

[
b

∆ūmax

]
∈ <3Num+2Np.

The solution to the QP problem (11) gives optimal control
increment vector ∆ū (k) whose first element ∆u (k) can be
used to calculate the optimal control input.

III. NEURODYNAMIC OPTIMIZATION

In [23], a one-layer projection neural network is developed
for solving convex optimization problems. It has been shown
good performance and low computational complexity. Its
dynamic equation can be described as follows:

ε
du

dt
= Λ [PX (G (u)− F (u))−G (u)] (12)

where u ∈ <Nu×m is the input vector, F (u) and G (u) are
continuously differentiable vector-valued functions, PX is a
projection operator, ε is a positive constant and Λ is a scaling
matrix. According to the piecewise formulation in [14], we
define Φ = EW−1ET , q = −EW−1c, Ψ = W−1ET , a =
−W−1c. Furthermore, G (u) = ΦΨ+ (u− a) + q, F (u) =
Ψ+ (u− a) and Λ = Ψ+, where Ψ+ is the pseudo-inverse
of Ψ. Thus (12) can be expressed as:

ε
du

dt
=−Λ

[
ΦΨ+(u−a)−h

(
ΦΨ+ (u−a)−Ψ+(u−a)+q

)
+q
]

where

h (xi) =

 li, xi < li;
xi, li ≤ xi ≤ hi;
hi, xi > hi;

(13)
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According to the convergence analysis in [23], it is Lyapunov
stable and globally convergent to the optimal solution of any
strictly convex QP problem and compared with the simpli-
fied neural network, the number of neurons in the general
projection neural network is much smaller. So we employ
the general projection neural network here for solving (11)
repetitively. The MPC scheme of the AUV control based
on the general projection neural network is summarized as
follows:

1) Let k = 1, Set control time terminal T , prediction
horizon N , control horizon Nu, sample period T s,
weight matrices Q and R;

2) Calculate process model matrices G, f̃ , g̃, C̃ and neural
network matrices W , c, E, b, Φ, Ψ, q, a;

3) Solve the convex quadratic minimization problem (11)
by using neural network (12) to obtain the optimal
control action ∆ū (k);

4) Calculate the optimal input vector ū (k) and implement
the first element u (k|k);

5) If k < T , set k = k + 1, go to Step 2; otherwise the
iteration ends.

IV. SIMULATION RESULTS

In this section, simulation results are discussed to demon-
strate the effectiveness of the proposed MPC scheme for the
AUV control based on both its kinematics and dynamics.
The AUV is supposed to move in the vertical plane to
a set-point (x, z) = (6, 3) with the orientation θ=π/6, and
the other three state variables (u w q) become zero when
the vehicle arrives the desired point, thus the control in-
put (Fu Fw) returns to zero and Γq maintains a certain
value to keep the vehicle’s orientation. The initial inputs
are (Fu, Fw,Γq) = (50, 30,−2.6) and the initial position and
orientation are (x z θ u w q) = (1,1,π/12,1,1,1) , the output
matrix is C = I . Both prediction horizon N and the control
horizon Nu are 10, Q = 10I , R = 0.1I and the sample
time Ts = 0.1s. For the discrete-time model (5), we have
the following g (x) and f (x):

g (x) = T s


0

0.01793 0 0
0 0.0098 0
0 0 0.3458

 ∈ <6×3

f (x) =


x (k)
z (k)
θ (k)
u (k)
w (k)
q (k)



T

+ T s


u (k) cos θ (k) + w (k) sin θ (k)
-u (k) sin θ (k) + w (k) cos θ (k)

q (k)
u1u (k) |u (k)| − u2u (k)w (k)

w1u (k) q (k)+w2w (k) |w(k)|+w3u (k)w(k)+w4q(k)
2

q(k) (q1 |q (k)|+q2u(k)+q3w(k))+q4u (k)w(k)+q5sin θ (k)



T

the coefficients involved in f (x) are shown in Table II.
The control results are depicted in Figs. 1-3 and the control

TABLE II
THE COEFFICIENTS

ux wx qx
q1 = −6.9156

w1 = 0.5 q2 = −1.1823
w2 = −3.4518 q3 = −0.0308

u1 = −0.0717 w3 = −0.4019 q4 = 0.3554
u2 = 0.909 w4 = 0.0087 q5 = −0.2476

actions are plotted in Fig. 4. The results show that with
a proper input, the AUV can reach a set-point with a
satisfactory precision.

Fig. 1. Control force

V. CONCLUSIONS

This paper presents an MPC approach to steering a class
of autonomous underwater vehicles in the vertical plane to a
certain point. Based on an AUV model in the vertical plane,
the MPC problem is formulated as a time-varying quadratic
optimization problem which can be repeatedly solved by
using a single-layer globally convergent recurrent neural
network called the projection neural network. Simulation
results show that the proposed method is able to control
the AUV in the vertical plane with a good performance.
The three-dimensional control of AUVs deserves further
investigations.
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