
 
 

Abstract— Due to advances of the "omics" technologies, rich 
sources of clinical, biomedical, contextual, and environmental 
data about each patient have been available in medical and 
health sciences. However, an enormous amount of electronic 
health records is actually generated as textual data, such as 
descriptive terms/concepts. No doubt, efficiently harnessing 
these valuable textual data would allow doctors and nurses to 
identify the most appropriate treatments and the predicted 
outcomes for a given patient in real time. We used textual data 
to identify patient phenotypes from UK primary care records 
that were managed by Read codes (a clinical classification 
system). The fine granularity level of Read codes leads to a 
huge number of clinical terms to be handled. Unfortunately, 
traditional medical statistics methods have struggled to process 
this sort of data effectively. In this paper, we described how the 
problem of patient phenotype identification can be transformed 
into document classification task, a text mining scheme is 
addressed to integrate feature ranking methods and genetic 
algorithm to identify the most parsimonious subset of features 
that still holds the capacity of characterizing the distinction of 
patient phenotypes. The experimental results have 
demonstrated that compact feature sets with 2 or 3 important 
terms describing clinical events were effectively identified from 
16852 Read codes while their classification accuracy remained 
high level of agreements with specialists from secondary care in 
classifying testing samples. 

I. INTRODUCTION 
OUTINELY collected primary care data provides an 
enormous opportunity for clinical and translational 

research, such as clinical trial recruitment, outcome 
prediction, survival analysis, and other kinds of retrospective 
studies [1-3]. The patient records held by the general 
practices in primary care offer patients a picture of 
morbidity from cradle to grave. During routine clinic visits, 
if a primary care physician has suspicion of a disease, such 
as ankylosing spondylitis, in a patient, the patient will be 
referred to a specialist, such as a rheumatologist, who will 
order further diagnostic tests in secondary care until a 
diagnosis result is reached. Often this is a very time 
consuming and expensive process [4, 5]. So any approaches 
and techniques which can speed up the identification and 
validation of disease diagnosis are of particular interest for 

improving the efficiency of healthcare. 
Specific validation studies have suggested high validity of 

diagnoses recorded in the primary care data [6-9]. However, 
generally speaking, primary care data has been underused 
for discovery research due to the difficulty of extracting 
highly accurate clinical data and lack of appropriate medical 
statistical methods for analyzing complex types of data[10, 
11]. This paper addresses a novel way of utilizing primary 
care records to automatically identify early predictors of 
disease progression about ankylosing spondilitis (AS) illness 
phenotypes via integration of machine learning, statistical 
feature selection and genetic algorithm[12].  

The AS is one of the most common forms of 
inflammatory arthritis. As a type of progressive (long-term) 
inflammatory disease, AS mainly affects the spine and the 
sacroiliac joints (in the pelvis), including bones, muscles and 
ligaments. It often causes quality of life impairment and 
functional limitations [13, 14], similar to or worse than 
cancer, congestive heart failure, diabetes or depression [15], 
with around one in 10 AS patients at risk of long-term 
disability[16]. The AS patients are usually diagnosed many 
years after onset of symptoms, and there is no cure for AS. 
So long-term outcome in AS patients is highly dependent 
upon an early recognition, aggressive control and therapy of 
inflammation. When properly treated, AS patients could lead 
fairly normal lives. 

However, within the current fragmented health care 
system, it is extremely time-consuming to identify and 
recruit AS patients for large cohort study in genetic 
validation studies and clinical trials of new therapies. 
Fortunately, patient records collected routinely from primary 
care can provide a rich source of data which offers a way of 
tackling this issue. But extracting meaningful pieces of 
information from primary care database for identification of 
patients who satisfy predefined criteria remains a 
challenging task, because an enormous amount of primary 
care records is actually generated as textual data, such as 
descriptive terms/concepts, whilst these criteria are buried 
within the textual data across multiple data points in the 
electronic healthcare record of a patient, moreover clinical 
text is the most difficult data type to analyse 
computationally[17]. Primary care informatics is emerging 
as a discipline of academic scientific study about how to 
harness these data [18, 19].   

The objectives of this paper are to develop a decision 
support model (“Virtual Rheumatologist”) that can 
automatically identify AS illness phenotype based on 
clinical events from primary care records; identify early risk 
factors, efficient measures for assessments, treatments and 
diagnosis of AS; and speed up the collection of AS patient 
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cohorts from the electronic health records fo
studies and clinical trials of new interve
these tasks, we proposed a framework of
care textual data for automatic extraction of
information to identify early predict
progression, in which the Naïve Bayes cl
used to classify the outcome of a patient 
non-AS (NAS) patient, whilst the featur
feature selection (FS) methods and genetic
were integrated to selects the most relevan
from primary care records. The motivatio
feature ranking based FS and GA was drive
a huge number of coded terms (acting 
involved in automatic identification 
phenotypes, but feature subsets selected b
ranking based FS methods or GA alo
parsimonious as we expected in this st
decision supports. 

The organisation of this paper is as fo
presents how the problem of dise
identification can be treated as a docume
task. Then the scheme of selecting the most
Read codes is addressed in Section 3. Secti
experimental results. And Section 5 conclud

II. TREATING DISEASE PHENOTYPE IDEN
DOCUMENT CLASSIFICATION T

At the first sight, identifying patie
document classification are different pr
section, we address how the two pr
innovatively linked together, so primary 
could emerge as a wide field to whi
techniques can be applied. 

A. Read Code Briefing  
The RCT system with 5-bytes provide

clinical descriptive terms in hierarc
comprising five levels of detail, whilst each
offers more detail to a concept. There ar
hierarchy which refer to Process of Medicin
number (0 to 9), Diagnoses starting with a
to Z), and Medication and Appliances start
case letter (a-y) respectively.  Table1 dep
artificial primary care records.  
 
TABLE I. EXAMPLES OF PRIMARY CARE RECORDS  

Encrypted 
Patient ID  

 
Date  

Event  
Value  

R
C

P1001  01/11/1988  0  N
P1001  03/11/1990  S
P1001  03/11/1990  20  1
P1001  …  
P1001  03/11/1990  0  S
P1001  03/03/2002  4
P1001  03/03/2002  0  N
P1001  03/03/2002  jA
P1002  13/11/1988  9
P1002  14/12/1988  20  1
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Read  
Code  
N32..     
S5...      
136..     

…  
S5...      
4266.  
N100.  
A52.  

912C.  
37P.     

P1002  …  
P1002  18/06/1990  14
P1002  10/06/1998  0
P1002  28/11/1998  0

 

Fig. 1. The procedure of AS
 
In the RCT based primary care 

may be a field like “Event Value” t
corresponding Read codes, such a
number of cigarettes, amount of a
demonstrated that this field has
inconsistent and missing informatio
on AS illness phenotype identificati
information for this study is the oc
indicating clinical events. For exam
had the profile described by the se
[“N32..”, “S5...” , “136..”, …, “S5
“jA52.” ].  One event may occu
different dates of clinic visits. It i
“N100.” in primary care records ind
general practice doctor had a suspic
Normally the patient with suspec
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rheumatologist, who will perform 
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document. 

B.  Naive Classifier 
In the document classificat

identification, given the patient co
group of Read codes (treated as a d
to be developed to assess whether th
or not. In this study, we used the N
[20] to perform this task (see Figure
 

 
Fig. 2. Naïve Bayesian classifier for classify
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clinic visits for different or same types o
The order of these events is assumed no
information for discriminating the AS and 
which is concerned with positional indepe
codes.  

The ሺݐ|ܿሻ can be interpreted as a meas
evidence the i-th Read code brings give
correct. Then for a given patient ݎ , the 
classifier is a probabilistic model to calcu
probability of the patient being in the class cሺܿ|ݎሻ ൌ ሻݎሺሻܿ|ݎሺሺܿሻ  

Because the denominator does not depen
values of r are given, so that the denomina
constant across the classes. Then given a
samples, to build a Naive Bayesian classifi
to estimate the prior p(c) and the likelihoo
training data. The evidence of a Read cod
the identity of a patient for a class woul
occurrence. More frequent terms (Read co
make stronger contribution to classifying 
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where Nc is the number of patients in the c
the conditional independence assumption, t
a patient r containing all of the Read codes gሺݎ|ܿሻ ൌ ෑ |ܿሻଵஸஸேݎሺ  

where ݎۃଵ, ,ଶݎ ڮ , are the tokens of Re ۄ ேݎ
document r and Nd is the number of the to
the ሺݎ|ܿሻ is estimated as the relative frequ
code ݎ in documents of the class c: ሺݎ|ܿሻ ൌ ܱ,∑ ܱ,ேೃୀଵ  

where ܱ, is the count of occurrences o
training documents from class c, and NR is 
distinctive Read codes available in the traini

To make prediction for a given tes
maximum a posteriori principle is used to a
to a class as  ܿ ൌ arg max ሺܿሻ ෑ ଵஸஸேݎሺ

III. SELECTING THE MOST RELEVANT 

A huge number of Read code terms o
handled when identifying the AS illness 
the UK primary care records. This brings
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A. Feature Ranking via Frequency  
Frequency based index is the simplest an

approach to feature ranking. The frequency
to the number of documents in which the 
frequency based index aims to select the c
The rationale of selecting these terms lies 
well-estimated and most often availab
However, this sort of feature selecting 
unstated assumption that rare terms a
informative for classification, or not influ
prediction performance. The reality is that 
term can be relatively informative about pre
of the term contributing to the correc
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be significant. Actually in this study many
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AS patients from non-AS patients. 

B. Feature Ranking via Chi-squared Statisti
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patient. So it is crucial to select parsimonious subset of Read 
codes revealing hidden patterns in discriminating AS 
patients from non-AS patients. 

To fulfil this task, the data with 1666 patients is split into 
3 subsets: 200 patients were used as validation samples for 
evaluating performance of selected features, 200 patients as 
testing samples for evaluating generalisation performance of 
final feature subset, and the remaining patients as training 
samples for scoring features and training NB classifiers. The 
classification accuracy (ACC) and AUC were used as 
metrics to measure the classification performances under 
various conditions. Figure 4 depicts the frequencies of Read 
codes using training samples, while Figure 5 shows the 
information gains of Read codes and Figure 6 the Chi-
squared values of Read codes based on training samples. It 
can be seen that either information gains or Chi-squared 
values of Read codes demonstrate very different scoring 
patterns from frequency metric shown in Figure 4. Table 3 
summarises the feature selection results and corresponding 
performances by the integration scheme (see Figure 3) in 
comparison with single feature ranking methods.  

For clearness, Table 4 shows the top 20 Read codes 
ranked and selected according to their frequencies. It can be 
seen that frequency metric tends to give more weights to the 
Process of Medicine events whose Read codes start with 
numbers 0~9. This is because Process of Medicine events 
normally involved routine checks and tests, their Read codes 
naturally became frequent terms. But the problem is that 
frequency metric can select some frequent terms that may 
have no specific information for classification, for example, 
routine check events (“blood pressure reading”, …) which 
are frequent across classes. On the contrary, Diagnostic 
events (whose Read codes start with capital letters) and 
Medication events (whose Read codes start with lower case 
letters) tend to occur infrequently, this is because once the 
general practitioner entered a diagnostic or medication Read 
code, often he/she would not bother to enter the same code 
during multiple patient clinic visits. These diagnostic or 
medication events may make significant contribution to 
patient classification even they are rare terms. However, 
clearly frequency based method failed to select influential 
diagnostic and medication Read codes. 

 
Fig.4. The frequencies of individual Read codes 

 
In comparison, the IG based method and Chi-square based 

method selected much more compact and meaningful Read 
codes, which include events from all 3 categories - Process 
of Medicine, Diagnosis and Medication. Table 6 and Table 7 
show the contingency tables of subsets of Read codes 
selected by IG and Chi-square metrics respectively on 
testing samples. Then the integration scheme selected 

multiple combinations of Read codes with the most 
parsimonious subsets consisting of only 2 or 3 terms (see 
IS1~IS5 in Table 3, and Tables 8~ 11). Moreover these 
parsimonious subsets of Read codes achieved outstanding 
performance in agreements with rheumatologist on 
classifying the testing patients. 

 
Fig.5. The information gains of individual Read codes 
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Fig. 6. The Chi-squared values of individual Read codes  

 

TABLE III. SUMMARY OF READ CODE SELECTION BY DIFFERENT 
APPROACHES WITH NB CLASSIFIER 

Method Number of  
Read Codes 

Test 
ACC 

Raw data 16852 0.902 
Frequency based method 1096 0.925 
IG based method 11 0.965 
Chi-square  based method 17 0.965 
Integration 
scheme (IS) 

IS1 2 0.985 
IS2 2 0.965 
IS3 3 0.995 
IS4 3 0.995 
IS5 3 0.99 

 
 

TABLE IV. THE TOP 20 READ CODES SELECTED BY FREQUENCY METRIC 

Read code  Read code description  
246.. O/E - blood pressure reading                        
22A.. O/E - weight                                                
22K.. Body Mass Index                                          
44J3. Serum creatinine                                           
44I4. Serum potassium                                          

44I5. Serum sodium                                               
44F.. Serum alkaline phosphatase                         
423.. Haemoglobin estimation                              
42P.. Platelet count                                              
42H.. Total white cell count                                   
42A.. Mean corpuscular volume (MCV)               
44M4. Serum albumin                                             
44M3. Serum total protein                                       
426.. Red blood cell (RBC) count                         
44E.. Serum bilirubin level                                    
42J.. Neutrophil count                                           
428.. Mean corpusc. haemoglobin(MCH)             
229.. O/E - height                                                
42M.. Lymphocyte count                                        
42N.. Monocyte count                                            

   
 

 

 

 

TABLE V. THE CONTINGENCY TABLE OF SUBSET OF READ CODES SELECTED 
BY FREQUENCY BASED METHOD 

 Rheumatologist 
AS nonAS 

Model AS 21 12 
nonAS 3 164 

TABLE VI. THE CONTINGENCY TABLE OF SUBSET OF READ CODES SELECTED 
BY IG BASED METHOD 

 Rheumatologist 
AS nonAS 

Model AS 22 5 
nonAS 2 171 

TABLE VII. THE CONTINGENCY TABLE OF SUBSET OF READ CODES 
SELECTED BY CHI-SQUARE BASED METHOD 

 Rheumatologist 
AS nonAS 

Model AS 23 6 
nonAS 1 170 

TABLE VIII. THE IS1 SUBSET OF READ CODES SELECTED BY THE 
INTEGRATION SCHEME (LEFT), AND ITS CONTINGENCY TABLE (RIGHT) 

Read 
code  

Read code 
description 

N100. 

Ankylosing 
spondylitis 
(suspected) 

44I9.  
Serum inorganic 
phosphate  

TABLE IX. THE IS2 SUBSET OF READ CODES SELECTED BY THE 
INTEGRATION SCHEME (LEFT), AND ITS CONTINGENCY TABLE (RIGHT) 

Read 
code  

Read code 
description 

 
N100. 

Ankylosing 
spondylitis 
(suspected) 

9N10. 

Seen in 
rheumatology 
clinic 

 

 Rheumatologist 
AS nonAS 

 Model   AS 21 0 
nonAS 3 176 
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TABLE X. THE IS3 SUBSET OF READ CODES SELECTED BY THE INTEGRATION 
SCHEME (LEFT), AND ITS CONTINGENCY TABLE (RIGHT) 

Read 
code  

Read code 
description  

N100.  

Ankylosing 
spondylitis 
(suspected) 

N102. 

Sacroiliitis, not 
elsewhere 
classified 

42L.. Basophil count 

TABLE X. THE IS4 SUBSET OF READ CODES SELECTED BY THE INTEGRATION 
SCHEME (LEFT), AND ITS CONTINGENCY TABLE (RIGHT) 

Read 
code  

Read code 
description  

N100.  

Ankylosing 
spondylitis 
(suspected) 

F4430 
Anterior 
uveitis 

42L.. Basophil count 
 

TABLE XI. THE IS5 SUBSET OF READ CODES SELECTED BY THE 
INTEGRATION SCHEME (LEFT), AND ITS CONTINGENCY TABLE (RIGHT) 

Read 
code  

Read code 
description  

N100.  

Ankylosing 
spondylitis 
(suspected) 

jA52. 
ETORICOXIB 
90mg tablets 

42L.. Basophil count 

 

V. CONCLUSIONS 
Primary care databases provide a unique source of 

information for research on disease epidemiology. In this 
paper, we have shown how the textual Read codes data can 
be used to develop a document-level classifier for 
identifying AS illness phenotypes from electronic healthcare 
records. This benefited from a text mining scheme addressed 
in this paper that integrates feature ranking methods and GA 
for the sake of selecting the most compact subset of features. 
We believe this study will help speed up the collection of 
AS patient cohorts from electronic healthcare records, and 
identify patients for genetic studies and clinical trials of new 
interventions that require large sample sizes with precise 
definitions of disease phenotypes and response to therapies. 
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