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Abstract—The Fourier spectra of one-dimensional cel-
lular automata give a quantitative and qualitative char-
acterisation of the average final configurations obtained
out of their rules, as they are applied to sets of random
initial configurations. The elementary cellular automata
rule space presents spectra that bring to mind those
of digital filters, and the same happens to some of the
cellular automata rules obtained through composition of
particular elementary cellular automata. As such, one
might be willing to discover other filter type rules that
might exist in larger spaces. In order to explore the
possibility of detecting these cellular automata in a larger
space, two methods are applied: a Multilayer Perceptron
and the k-Nearest Neighbours classification algorithm.
Both algorithms presented considerably high accuracies,
with the Multilayer Perceptron showing an overall lower
false negative rate, thus indicating that the methods may
be generalised to other rule spaces and to the detection of
other features, providing an automatic method to detect
features in cellular automata spectra.

I. INTRODUCTION

Cellular automata (CAs) are fully discrete dynam-
ical systems, in space, time and state variables, based
upon a homogeneous, parallel and locally-defined op-
eration. Some well-known simple CAs, such as the
elementary cellular automaton (ECA) rule 110 and
John Conway’s Game of Life, present computational
universality, thus showing that, despite their simplicity,
they are capable of giving rise to complex behaviour.
From another viewpoint, CAs can also be used as
models to simulate real systems and complex phenom-
ena ([1]), including social systems, disease propagation
([2]), fluid dynamics ([3]) and many others.

From the conjecture that rules with universal com-
putability present 1/f noise in their spectra, [4] applied
genetic algorithms to search for rules with such a spec-
tral behaviour, concluding that the fittest rules found
by the algorithm display propagating structures in their
time evolution, which is a feature of computationally
universal rules.

Not only computational universality can be studied
from the viewpoint of the spectral analysis of CAs;
for instance, [5] correlates the spatial patterns and
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attractors found in the time evolution of CA rules with
their power spectra, that is, the Fourier spectra squared
coordinate-wise. Also, [6] applied spectral analysis to
evaluate a particular rule in a CA-based computational
task (the parity problem) for configurations of a given
length.

The spectrum of a CA rule gives statistical infor-
mation on its dynamical behaviour ([7]). One of the
problems proposed in [7] is to investigate the properties
of the limit sets of CA rules. A limit set (or a ω-limit
set) of a cellular automaton is the set of configurations
which are not excluded during the time evolution of
the rule. At a finite time span, the set of configurations
that a CA rule can generate can always be described by
a regular language, and that is the case for the limit set
of some particular rules [8], as other rules may have
limit sets that can only be described by context-free,
context-sensitive or recursively enumerable languages.
It has been shown that it is undecidable whether two
CAs display the same limit set, or whether a limit set
can be described by a regular language ([9]), the latter
only being decidable for particular cases, as happens
in [10], where ECA rule 22 is shown to have a limit
set that cannot be described by a regular language.

The analysis of CAs from the viewpoint of their
spectral signature provides statistical information on
their limit behaviour ([7]). The Fourier spectra de-
scribed in this paper give an average representation of
the distinct patterns that can be found in configurations
obtained from the iteration of a CA rule, over a set of
initial configurations, after a transient time. Such rep-
resentations are given in terms of a frequency domain
([11]).

Since even simple CAs have been used to filtering
tasks in image processing ([12], [13], [14]), it is natural
to ask whether rules applied as filters present filter-like
spectra or, conversely, whether rules that present filter-
like spectra could be, somehow, used as filters. Here we
focus on the use of two techniques applied to the detec-
tion of filter-like cellular automata spectra, namely the
MultiLayer Perceptron (MLP) neural network and the
k Nearest Neighbours (kNN) classification algorithm.

The number of rules, and thus the number of rule
spectra, increases exponentially with the size of the
neighbourhood and the number of states of the CA,
which renders manual classification unfeasible for large
spaces. Here we present two methods for obtaining
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automatic classification of the spectra using a relatively
small amount of rules of a given rule space.

The Multilayer Perceptron (MLP) provides a frame-
work to address non-linearly separable problems, as
well as a standard method for classification and pattern
recognition used broadly for those tasks. Also, the
MLP has the ability to generalise, what is particularly
important for the issue of obtaining classifications in
terms of spectral features for larger spaces.

Signal detection and/or classification problems have
been addressed by means of MLP networks. In [15],
an MLP is applied to the detection and classification
of orthogonal signals in environments with and without
noise and compared against an optimal classifier, with
the MLP classifier converging to an optimal perfor-
mance for noise-free environments. MLPs also have
relevant applications in real-world problems, such as
classification of electroencephalograph (EEG) ([16],
[17]) and electrocardiogram (ECG) ([18]) signals.

Since MLPs are applied to both theoretical and
real-world signal classification problems, and since CA
spectra can be regarded as signals, the MLP structure
is suitable to the proposed problem of filter-like spectra
detection.

The k Nearest Neighbours (k-NN) algorithm ([19])
is a very straightforward nonparametric method for
classifying objects in a database. In order to classify
an (unclassified) object, one assigns to it the most
common class among its k classified neighbours. Also,
it has been largely used for many different classifica-
tion and pattern recognition tasks. However, the main
purpose of choosing k-NN here is to see how MLP’s
performance compares to the performance of a rela-
tively simple and reliable algorithm, in the sense that
it was expected to have acceptable performance results
without feature extraction of the spectral vectors.

Other algorithms could be taken instead, such as
Naı̈ve-Bayes, Particle Swarm Classifier (PSC) or the
k-Means clustering algorithm (with the classification
induced by the clustering).

Naı̈ve-Bayes and PSC are amenable to solving
filter-like spectra detection and other spectral classifica-
tion problems, such as the presence/absence of energy
peaks; however, given the dimension of the search
space, instead of dealing with the raw data they would
demand a proper choice of features to get extracted
from the spectral vectors in order to lead to a good
performance. As for the k-Means algorithm, it could
be computed without the need to consider a set of
parameters in order to reduce the dimensionality of
the space, but its sensibility to initialisation would have
to be addressed, which – generally speaking – would
strongly depend upon which spectral feature there is to
be detected/classified.

Also, classifications obtained by PSC or the k-
Means algorithm would apply only to the search space
considered and could hardly be generalised to higher-
dimensional CA rule spaces.

This paper is organised as follows: Section II
provides the basic required definitions of cellular au-
tomata, as well as the definition of rule composition,
the computation of the spectrum, and the spectral fea-
ture to be detected. Then, in Section III the methodol-
ogy used to select the parameters is discussed, together
with the training and implementation of the MLP and
the k-NN. The analysis of the results obtained is made
in Section IV and the concluding remarks are made in
Section V

II. CELLULAR AUTOMATA

A. Basic definitions

A cellular automaton (CA) is a quadruple A =
(S,N, f, d), where S ⊂ Z is its state set, N ⊂ Zd is
its neighbourhood vector, f : S|N | −→ S is its local
transition rule and d ∈ Z+ is its dimension.

Put in an intuitive way, a CA acts locally upon
a d-dimensional discrete lattice of cells, that take on
values over the state set. This local update of each cell
is given in terms of the neighbourhood vector and the
local transition function.

The neighbourhood vector defines which cells di-
rectly affect the behaviour of each other. For instance,
in a one-dimensional lattice, the neighbourhood vector
-1,0,+1 represents that the behaviour of a cell will be
affected by the states of its left (-1) and right (+1)
neighbours, and by its own state (0).

In the particular case where d = 1, the CA is said
to be one-dimensional. A radius-r cellular automaton
(r ∈ N) has the neighbourhood vector system given by
N = Nr = {i ∈ Z : |i| ≤ r}.

A binary cellular automaton has state set S =
{0, 1}. A one-dimensional, radius-1, binary cellular
automaton is called an elementary cellular automa-
ton (ECA). From now on we only consider one-
dimensional, binary, cellular automata.

Formally, an ECA is a quadruple A =
(0, 1,−1, 0, 1, f, 1), with f : S|N | −→ S. Intuitively,
an ECA is a local binary (S={0,1}) function that acts
on a one-dimensional (d = 1) array of cells, with
each individual cell being updated based upon its left
neighbour’s state, its own state and its right neighbour’s
state (N={-1,0,1}).

Any binary, one-dimensional radius-r CA A =
({0, 1}, Nr, f, r) can be identified by its Wolfram num-
ber ([1]), WA, given by
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WA =
∑

(a1,··· ,am)∈2m
f(a1, · · · , am)2

∑m
i=1 ai2

m−i

(1)

where m = 2r + 1.

In the remainder of this paper, a CA A will be
identified by A = (S,Nr, fW (S,r,f), 1) or, when it is
clear from the context, simply by its Wolfram number.
Hence, for instance, the ECA with Wolfram number
110 will be referred to as ({0, 1}, N1, f110, 1) or as
rule 110.

A configuration c is a function c : Z −→ S, that
associate to every integer an element of the state set.
The set of all configurations over the state set S will
be denoted as X(S).

A configuration is said to be under periodic boun-
dary condition (PBC) if there is p ∈ N+ such that
c(i + p) = c(i),∀i ∈ Z. One can read this as
if the cells were distributed over a one-dimensional
torus. Configurations under PBC are also referred to
as spatially periodic configurations.

Given a radius-r CA with local transition rule f ,
a global transition function F : X(S) −→ X(S) is
induced by f , given by:

[F (c)](i) = f(c(i− r), · · · , c(i+ r)), i ∈ Z (2)

The iteration of F t times (t ≥ 0) over a configura-
tion c is denoted by F t(c). For the sake of simplicity,
we will define F 0(c) = c. The time evolution of a CA
A = (S,N, f, 1) from a configuration c0 is the set

Ec0f = {F t(c0) : t ∈ Z, t ≥ 0} (3)

It is worth noticing that the image of a PBC config-
uration by a global rule F is also a PBC configuration.
Hence, the set Ec0f contains only PBC configurations,
given that c0 is under PBC.

The PBC configurations are used to an effective
simulation of a CA rule in a computer [20]. For this
reason, the Fourier spectrum of a CA described in Sec-
tion II-C are computed over sets of PBC configurations
obtained from a finite time evolution, with the time
taken sufficiently large in order to avoid any transient
behaviour.

B. Rule composition

As described in [21] and [22], given two one-
dimensional CAs A = (S,NrA , fA, 1) e B =

(S,NrB , fB , 1), it is possible to compute the compo-
sition of A and B, A ◦B = (S,NrA+rB , fA ◦ fB , 1),
where

[(fA ◦ fB)(c)](i) = fA(fB(i− rA − rB , · · · , i− rA + rB),

· · · , fB(i+ rA − rB , · · · , i+ rA + rB)),

i ∈ Z, c ∈ X(S)

Hence, taking local rules f=̇f54 and g=̇f110 (both
featuring a complex dynamical behaviour), it is possi-
ble to compute a radius-2 rule h=̇(f ◦g). For instance,
h(0, 1, 1, 0, 1) is given by

h(0, 1, 1, 0, 1) =
= f(g(0, 1, 1), g(1, 1, 0), g(1, 0, 1)) = f(1, 1, 1) = 0

The composition of CAs is defined as described
above in a way such that the time evolution of the
composition is the same time evolution obtained by
applying fB and fA alternately to the configurations,
that is, Ec0(fA◦fB) = {ci : i ∈ N}, where ci =

FA(FB(ci−1)), i ∈ N, i ≥ 1. Notice that the composi-
tion operation is not commutative. Hence, in general,
A ◦B 6= B ◦A.

The diversity of dynamical behaviours found in
CA rule spaces increases with the value of the radius.
Therefore, since the composition of two rules yields
a rule with larger radius, consequently, the set of
rules obtained by composition present more diverse
dynamical behaviours.

C. Fourier Spectra

Given a n-dimensional complex vector w ∈ Cn, the
discrete Fourier transform of w, F (w), is given by

[F (w)](k) =
1

n

n∑
j=1

uje
2πi(j−1)(k−1)/n (4)

Given a radius-r CA A = (S,Nr, f, 1), its spec-
trum, SA, is given by:

SA =
1

N

∑
c∈C
|F ((f∞)t(c))| (5)

In the above equation C is a set of random initial
configurations, N = #C, t ∈ N is the number of
time steps taken sufficiently large in order to avoid
transient behaviour, as discussed in Section II, and
|F (·)| is the absolute value of the Fourier transform
taken coordinate-wise.
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The Fourier transform transposes a sequence to its
frequency domain. Therefore, the Fourier spectrum of
a CA described above contains information, in the fre-
quency domain, concerning the average configuration
obtained in the end of the time evolution. In the case
of the binary CAs addressed here, the frequency at
issue corresponds to bit changes in a binary sequence.
For instance, while the sequence · · · 101010 · · · has
maximal frequency, the sequences · · · 000000 · · · and
· · · 111111 · · · have minimal frequencies. All the other
possible sequences present intermediate frequencies,
depending on the frequency of bit changes. Hence, we
can refer to an energy level of each frequency that
indicates, in average, the extent in which the blocks of
a frequency are present relatively to the others [11].

The ECA rule 184 (known as the “traffic rule”)
provides a very illustrative example. The configurations
obtained after a sufficiently large number of time steps
can be described in terms of the relative frequency
of 1s in the initial configuration, as follows: if there
is the same number of 0s and 1s, two consecutive
cells present distinct states (that is, the final config-
uration is · · · 101010 · · · ), which is a sequence with
maximal frequency; if there are more 0s than 1s, the
final configuration displays alternating 0s and 1s, the
exceeding 0s giving rise to clusters of 0s; and if there
are more 1s than 0s, the final configuration obtained is
analogous to the previous case. Therefore, starting with
configurations with more 0s than 1s, for instance, and
going to configurations with the same number of 0s and
1s, a decrease of the energy in the lower frequencies is
observed, with a corresponding increase on the energy
levels of the higher frequencies, up to the point when
only the maximal frequency is represented, as shown
in Figure 1.

Fig. 1. Spectra of the ECA rule 184 for sets of initial configurations
with distinct relative frequencies of 0s and 1s. The percentage below
each graph indicates the relative frequency of 1s in each initial
configuration of the set used to compute the spectrum in each case.

Fig. 2. Spectrum of radius-2 rule 1,057,034,225 as a high-pass
filter.

D. Filter-like spectra

Cellular automata and system based on them have
been used in many tasks of image processing. In [12]
a two-dimensional CA was applied to noise-filtering
in images with different levels of noise and one of
the models entailed better performance than traditional
filters, such as the median filter. Also, methods to
obtain CAs able to perform image processing tasks,
such as noise-filtering, border and connected compo-
nent detection, are described in [13].

A particular family of CAs, the Multiple Attractors
Cellular Automata (MACA), is used in [14] to build an
evolutionary based classification system. The resulting
CA is then used to perform image compression, among
other applications.

The possibility of using CAs to filter, for instance,
brings to mind a particular type of spectrum that some
CAs display: the filter-like spectra. An example is the
spectrum of radius-2 rule 1,057,034,225 (Figure 2),
that resembles a high-pass filter spectrum, with low
energy in the lower frequencies, a transition band of
frequencies and a plateau of high energy levels in the
higher frequencies. Other rules have a spectrum that
resembles a low-pass filter (high energy levels in low
frequencies and low energy levels in high frequencies)
and, of course, there are rules with spectra that do not
resemble a filter spectrum in any way.

In this paper, the space of one-dimensional radius-2
binary CAs obtained by composing two ECAs is ex-
plored using MLP and the k-NN algorithm, in order to
search for three kinds os spectra, classified accordingly
to their similarity to filters: non-filter spectra (NF),
low-pass spectra (LP) and high-pass spectra (HP)

III. METHODOLOGY

A. The spectral database

The number of binary, one-dimensional, radius-r
CAs increases exponentially in respect to r. For r =
1, r = 2 and r = 3 there are, respectively, 28, 232 and
2128 distinct CA rules. Therefore, in order to classify
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each rule according to its spectrum, it is necessary
to apply a reliable automatic procedure. Here, the
automatic classification of a subset of the radius-2 rules
is obtained, by using a manually classified random
sample of the spectra. The idea is both to give an
efficient method of filter-like spectra detection for more
general rule spaces, and to investigate what kind of
spectral features can arise from CA rule composition.

In order to compute the spectra, each rule was
applied to a set of 1,000 periodic configurations of
1,024 bits for 200 time steps, giving rise to a 512-
dimensional real vector, namely, the rule spectrum. The
set of parameters above is the same one used in [11]
to partition the ECA rule space into spectral classes.

Two CA rules are said to be dependent if they have
the same dynamical behaviour, up to permuting the
states and/or mirroring the configurations; otherwise,
the rules are said to be independent. Hence, in order
to study a rule space, it suffices to study the set of its
independent rules.

By taking the 88 dinamically independent ECA
rules ([1]) and composing them, a set of 5,766 radius-
2 rules are obtained. Hence, the database consists of
5,766 real vectors with 512 coordinates. Each coordi-
nate is normalised by the maximum energy level of the
spectrum, as in [11].

In order to classify the spectra, a training set of
500 (approximately 8.7% of the spectra database) was
randomly chosen from the database of 5,766 ECA-
derived rules, in a way that tried to preserve in it the
same proportion of the three classes, as they appear in
the entire database.

B. The Multilayer Perceptron implementation

A Multilayer Perceptron (MLP) was trained with
the spectra in the training set in order to classify
the remaining spectra. At first, the logistic sigmoid
was used as the activation function of each neuron,
but that condition was later relaxed, by means of
variations of that classical approach, in order to obtain
a smaller Mean Square Error (MSE) for the training.
The weights were updated using backpropagation and
the network had one hidden layer.

The MLP was trained for different values of the
number of neurons in the hidden layer (Nh) and for
the learning rate (α).

In order to observe the influence of Nh in the
learning process, the value α = 0.1 was fixed and
Nh was taken in the set {4, 8, 16, 32}, and the MSE
variation along the first 100 epochs was analysed. The
results of this test are shown in Figure 3. Powers of
two were chosen for the values of Nh since the number

Fig. 3. MSE variation along the first 100 epochs for distinct values
of Nh.

of inputs is also a power of two (each spectrum is a
512-dimensional vector).

The fast decrease of the MSE and its subsequent
stabilisation in the first epochs for Nh = 4 and Nh = 8
shows that the net inputs of the hidden layer neurons
fall out of the more dynamically active portion of
the activation function domain (logistic sigmoid). A
change in the activation function was later used in order
to tackle this issue, as described later on. Nevertheless,
for Nh = 8, around the 70th epoch, MSE diminishes
again, indicating that the system was able to keep
learning despite the stabilisation of MSE in the first
few epochs.

For Nh = 16 and Nh = 32, the MSEs obtained by
the end of the 100th epoch are statistically equivalent,
with the MSE decay for Nh occurring in a step like
fashion; for Nh = 32 the decay is smooth at first,
becoming more accentuated around the 20th epoch. It
is worth noticing that the minimal MSE for Nh = 32
was obtained before the 100th epoch, around the 60th
and 65th epoch.

Then, taking Nh = 32, the learning rate α was
taken in [0.1, 1.0] with step-size 0.1. The result is
shown in Figure 4. While for α ∈ [0.2, 0.5] the
MSEs decrease sharply in the first epochs, displaying
a noisy variation at the final epochs, for α = 0.1
the decay is smoother and more stable, and does not
lend itself to noisy variation in the final epochs. With
α ∈ [0.6, 1.0] the MSE variation in a few epochs
become progressively larger with the increase of α.

Since for α = 0.1 the MSE presents a more stable
and smoother behaviour along the epochs, this value
was taken, along with Nh = 32, towards the last step
in setting the parameters for training the network: the
use of different activation functions. A family {fλ} of
variants of the logistic sigmoid was taken, with

fλ(x) =
1

1 + e−λx
, x ∈ R (6)

Notice that f1 is the logistic sigmoid itself. The
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Fig. 4. MSE variation along 100 epochs for α ∈ [0.1, 1.0]. For
α between 0.2 and 0.5, the MSEs decay rapidly and then begin to
present small noisy variations. With α = 0.1 a smoother behaviour
is observed. For α ≥ 0.6, the MSEs display greater variations,
increasing with α

λ parameter was taken between 1.0 e 2.0, with step
size 0.25 and, as done for the other parameters, the
MSE variation was analysed along 100 epochs. Figure
5 depicts the results.

Fig. 5. MSE variation for 100 epochs for distinct values of λ.

Around the 30th epoch, the MSE for λ = 1.25
is minimal. Between the 50th and 70th epochs, the
MSEs for λ = 1.25 and λ = −1.5 become equivalent;
however, in the last few training epochs, the MSE for
λ = −1.5 oscilates and grows, which does not occur
for λ = −1.25.

Hence, an MLP with two layers, 32 neurons in
the hidden layer, learning rate α = 0.1 and activation
function fλ(x) = 1

1+e−1.25x was trained for 500 epochs
in order to classify the aforementioned 5,766 spectra
(both the training set and the unclassified spectra set)
in three classes: non-filter (NF), low-pass filter (LP)
and high-pass filter (HP).

The results obtained are discussed in Section IV.

C. The k Nearest Neighbours algorithm

For k ∈ {1, 3, 5, 7, 9}, the k-NN algorithm was
applied to determine whether a spectrum was a non-
filter, a low-pass filter or a high-pass filter, as follows:

• While there is an unclassified spectrum, do:
◦ Randomly choose an unclassified spec-

trum Sf ;
◦ Consider the classes {C1, · · · , Ck} of

the k nearest (in terms of euclidean
distance) classified spectra to Sf ;

◦ Assign the mode of {C1, · · · , Ck} as
the class of Sf . If {C1, · · · , Ck} is a
multimodal set, randomly assign one of
the modes;

• Return the classified spectra.

It should be noticed that k-NN was applied in
a semi-supervised fashion: at each iteration, the set
of already classified spectra is increased by one and
this newly classified spectra is also used in the next
iterations to classify the remaining spectra.

For k ∈ {1, 3, 5, 7, 9}, the k-NN algorithm was
subjected to a process of cross-validation in 10-folds
using the same 500 previously classified spectra used
for the MLP, where the spectra were distributed among
the folds in order to optimise the proportion of NF,
LP and HP spectra found in the random sample of
the database. Table I shows the performance of the
algorithm in terms of the mean accuracy and a mean
false negative rate (FNR), with the positive “class”
being the set obtained by joining LP and HP spectra.
More precisely,

FNR =
number of LP or HP spectra classified as NF

total amount of LP and HP spectra
(7)

Informally speaking, FNR measures measures how
often the algorithm “miss” a filter spectrum.

TABLE I. ACCURACY AND FALSE NEGATIVE RATE FOR
DISTINCT VALUES OF k IN THE 10-FOLDS CROSS-VALIDATION.

k Accuracy FNR
1 (93.20 ± 3.42)% (26.00 ± 1.41)%
3 (94.80 ± 3.01)% (22.00 ± 7.07)%
5 (93.40 ± 2.67)% (24.00 ± 2.83)%
7 (94.00 ± 2.67)% (22.00 ± 1.41)%
9 (93.40 ± 2.32)% (22.00 ± 1.41)%

The accuracy of the k-NN is statistically the same
for every value of k. As for FNR, the minimal mean
values were obtained for k ∈ {3, 7, 9} with the minimal
standard deviation being achieved for k ∈ {7, 9}.
Hence, k = 7 and k = 9 were chosen to apply the
algorithm to the whole database.
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IV. RESULTS

The MLP trained to perform detection and classi-
fication of filter-like CA spectra led to an accuracy of
92.30% over the database of 5,766 spectra. Table II
shows the confusion matrix, accuracy and FNR related
to the classification obtained by the MLP.

TABLE II. CONFUSION MATRIX OF THE CLASSIFICATION OF
THE 5,766 SPECTRA OBTAINED BY THE MLP.

Actual Class
Predicted Class

NF LP HP
NF 4,822 266 119
LP 11 216 0
HP 48 0 284

Accuracy: 92.30%; FNR: 10.55%

In terms of absolute values, of the 444 wrongly
classified spectra, 385 (86.7%) are due to non-filter
spectra being classified as low-pass or high-pass filter
spectra. Since the goal was to build an MLP capable of
detecting filters, this kind of classification error is not
as serious as it would be if the majority of classification
errors were due to filter-like spectra being classified as
non-filters, what would cause a larger number of filter-
spectra to be missed by the network.

Also, since LP and HP spectra are very distinct,
from the viewpoint of the energy level distribution
among the frequency bands, there was no wrong clas-
sification among these classes.

As for k-NN, since it is a simple algorithm and de-
pends only upon k, it was possible to obtain complete
classifications of the database for distinct values of k.
Table III shows the confusion matrices, the accuracy
and the FNR of the algorithm for k ∈ {7, 9}.

TABLE III. CONFUSION MATRICES, ACCURACY AND FNR
FOR DISTINCT VALUES OF k.

k = 7 Predicted Class
Actual Class NF LP HP

NF 5065 76 66
LP 74 153 0
HP 64 0 268

Accuracy: 95.14%; FNR: 24.69%

k = 9 Predicted Class
Actual Class NF LP HP

NF 5056 77 74
LP 75 152 0
HP 66 0 266

Accuracy: 94.93%; FNR: 25.22%

The k-NN algorithm led to an accuracy around 95%
in both cases; however both FNRs are considerably
high, as if the algorithm had missed, in average, 1 for
each group of 4 filter-like (LP or HP) spectra. Table
IV summarises a comparison between MLP and the

two variations of k-NN in terms of accuracy, FNR and
percentages of misclassification per class (MPC).

TABLE IV. ACCURACY, FNR AND PERCENTAGES OF
MISSCLASSIFICATION PER CLASS FOR THE DIFFERENT

ALGORITHMS.

Algorithm Acc FNR
MPC

NF LP HP
MLP 92.30% 10.55% 7.40% 4.85% 14.46%
7-NN 95.14% 24.69% 2.73% 32.60% 19.28%
9-NN 94.93% 25.22% 2.90% 33.04% 19.88%

Figure 6 shows some examples of LP and HP
spectra found by both the MLP and the k-NN in the
database of spectra.

Fig. 6. Examples of low-pass (left) and high-pass (right) spectra
found both by the MLP and the k-NN in the database.

Both k-NN have shown slightly higger accuracy
than that of MLP; however, MLP has outperformed k-
NN in terms of FNR, having less than half the amount
of filters that have been missed by the k-NN. Also,
looking at the percentage of misclassifications per class
(MPCs), MLP has the lowest percentages for LP and
HP, worth noticing being that the MPC of the LP class
is roughly 8 times lower than these for the k-NNs. As
for the MPC of the NF class, the k-NNs outperformed
MLP with percentages about 2.5 times lower than that
of the MLP.

The data in Table IV shows that MLP had a better
performance in filter detection (particularly filters of
the LP class), and k-NN had a better performance
detecting non-filters, thus suggesting that an ensemble
using both methods may lead to even better results,
certainly a theme for further research.

V. CONCLUDING REMARKS

This paper presented the training and the appli-
cation of a Multilayer Perceptron and the k Nearest
Neighbours classification algorithm to the detection of
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filter-like cellular automata spectra. While both algo-
rithms had high accuracy values, the MLP has shown
better performance in terms of not mistaking filters (LP
and HP) for non-filters (NF), which is more relevant
to the detection of filters than doing the converse, that
is, not mistaking non-filters for filters.

As mentioned before, manual classification of the
spectra of large rule spaces is unfeasible, since the
number of spectra grows exponentially with the size
of the neighbourhood and the number of states, while
the procedures described here provides a way to auto-
matically classify spectra of larger spaces by using just
a relatively small number of rule spectra.

The intrinsic generalisation ability of the MLP
brings the possibility to use the model trained in a rule
space of an arbitrary dimension to search for filter-like
spectra in more general, larger CA rule spaces.

Filter-like spectra suggest that cellular automata
rules associated with them might be used as different
kinds of filters, depending upon the dynamical be-
haviour of each particular rule. However, it is necessary
to search for spectra with that feature in more general
rule spaces; and this must be done in an efficient,
accurate and automatic way, based upon a relatively
small sampling of the whole space. The application
of other models and methods to the problem tackled
herein is certainly appealing as a follow-up, such
as semi-supervised learning and ensemble methods.
Equally important would be the individual analysis of
rules applied to sets of initial configurations, so as
to evaluate the possibility of using them as effective
filters.

Further research topics include searching more gen-
eral rule spaces for rules that can, in a practical and
useful way, be applied as filters.

Conversely, it is also useful to find filter based CAs
by means of dynamical analysis and then compute their
spectra, which could validate the correlation between
filter-like spectra and filter-behaviour of CA rules.
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