
 
 

 

  

Abstract: Brain computer interface (BCI) is about the 
communication channel between the brain of a human 
subject and a computerized device. Electroencephalography 
(EEG) signals are the primary choice as the sources of 
interpreting the intention of the human subject. EEG signals 
have a long history of being used in human health for the 
purposes of studying brain activities and medical diagnosis. 
EEG signals are very weak and are subject to the 
contamination from many artifact signals. For the 
applications in human health, true EEG signals, without the 
contamination, is highly desirable. However, for the purposes 
of BCI, where stable patterns from the source signals are 
critical, the origins of the signals are of less concern. In this 
paper, we propose a BCI, which is simple to implement and 
easy to use, by taking the advantage of EEG artifacts, 
generated by a number of purposely designed voluntary 
facial muscle movements. 

I. INTRODUCTION 
uman electroencephalography (EEG) signals were 
discovered in early 1900. Gradually, they found their 

applications in medical diagnosis and human brain activity 
studies. The former focuses on abnormal EEG patterns, or 
the lack of certain patterns, in diagnosing, for example, 
epilepsy, dementia, and mental disorder etc. The later 
studies brain activities: EEG signals with focal cerebral 
disturbance, EEG patterns associated with certain mental 
or physical activities (evoked potentials or EPs), health 
monitoring, e.g., the depth of sleep and the level of 
alertness etc., and so on. In this paper, we call these 
applications medical applications. 
 

Brain computer interface (BCI) was first experimented 
by Vidal [1, 2] in 1970s. Last decade witnessed a fast 
growing interest in BCI research. In [3], Wolpaw et al 
stated that BCI is about “sending messages and commands 
to the external world” from human brains. The primary 
purpose of BCI was envisaged as a means for people with 
disabilities to communicate with computerized systems, 
and possibly through a computer to other human beings. 
BCI can also be used by these without disabilities as an 
extra means to interact with computer systems.  

 
EEG signals are the primary choice for BCI as the 
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carrier of human intention. In an EEG based BCI system, 
an EEG headset with electrodes collects EEG signals from 
the scalp of a human subject. After being processed, the 
EEG signals are converted into a sequence of control 
commands for the intended object, being it a cursor on a 
computer screen, a robot, a wheelchair, or an artificial 
limb. We call this type of applications BCI applications. 

 
EEG signals are very weak and subject to the 

contamination of many artifact signals, which are the 
“signals that are non-cerebral in origin” [4, Chapter 6]. 
Chief of them are from electrooculography (EOG), 
electrocardiography (ECG), electromyography (EMG), 
and the environments. Recorded EEG signals are always 
the mixture of the true EEG signals and the artifact signals 
of the time. There are solutions to separate the true EEG 
signals from the artifact interfaces; however, in general, 
the operation is very difficult, and sometimes impossible. 

 
The 2 different types of applications of EEG, medical 

and BCI, have different requirements, and therefore 
different demands, from the signals. The primary focus of 
the former is the activities and the functions of a brain, 
which is where the true EEG signals originated. For these 
applications, the artifact signals, which are from other 
origins, distort the true EEG signals. They make the 
measurements of the true EEG signals less accurate, and 
thus whatever conclusion drawn less genuine. Therefore, 
artifacts are undesirable, and they should be removed, as 
much as possible. However, for BCI applications, from the 
signal processing point of view, the primary focus is 
actually neither the origins nor the purity of signals, but 
the accurate, stable, and repeatable patterns of the signals. 
Therefore, EEG artifact signals may not be as undesirable. 
To the contrary, if indeed EEG artifact signals have the 
characteristics of being accurate, stable, and repeatable, 
they may very well contribute positively to BCI. 
Interesting enough, in their extensive survey paper on the 
removal of artifacts from EEG signals, Fatourechi et al 
reported that “Most BCI papers do not report whether or 
not they have considered the presence of EMG and EOG 
artifacts in the brain signals” [5]. The fact is also 
positively confirmed by the authors of this paper when 
conducting their own literature survey in the field. It 
seems that the role of EEG artifacts in BCI is not yet fully 
understood. 

 
On the other hand, from the point of view of human 

computer interaction (HCI) [6], any system for a human 
being to use should be easy to use and natural to operate, 
with respect to human nature and limits. Humans have 
very short attention span, yet the focuses of attention shift 
all the time [7]. A good HCI system must try to adapt the 
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intrinsic cognitive load, to reduce extraneous cognitive 
load, and to foster germane cognitive load of human users 
[8]. An extraneous cognitive load is caused by requiring 
the users to perform unnatural or irrelative activities. In 
[9], Turk proposed the same ideas through perceptual user 
interface, which promises “natural, intuitive, adaptive, 
and unobtrusive” HCI. Lenman et al [10] also suggested 
“natural and intuitive” HCI. In short, BCI has to follow 
the same standards. 
 

In this paper, we propose a BCI system, which is simple 
to implement, easy to use, yet is ubiquitous and can be 
used at any time and in anywhere. The system can be used 
by people with disabilities to issue simple commands to 
devices, such as wheelchairs and electronic appliances, 
and exchange simple messages with other human beings 
via a computerized device. It can also be used by these 
without disabilities as an extra communication means, for 
example, when the 2 hands of a person are fully engaged, 
and other communication means, e.g., voice or foot 
operation, are not feasible.  

 
The system is based on voluntary facial muscle 

movements. A set of easy-performing facial muscle 
movement actions is purposely designed to carry the 
human intention. For example, blinking left eyes means 
turning left, and blinking right eyes means turning right. 
To refine further, when blinking, by keeping the eye 
closed for a longer time, it can be interpreted as the degree 
of turning left or right, just like the operation of the 
steering wheel of a car. EEG signals of these actions, with 
the presence of strong artifact signals, are recorded, 
processed, and then recognized by machine learning 
algorithms. The patterns of the EEG signals corresponding 
to the facial muscle movement actions, being taken as 
states, can be regarded as the alphabets to code the 
messages through the channel between the human subject 
and a computer. Furthermore, so long we have more than 
2 stable patterns, i.e., states, we can code any text, in 
binary form, Morse code, or any other specially designed 
coding system. 

 
Preliminary experiments have been conducted. The 

outcomes are encouraging, yet also expose more questions 
to be further studied. The EEG signals were collected from 
3 male subjects, performing a number of common 
voluntary facial muscle movements in a few different 
occasions. No training or practicing was administered 
before the data collection, and some data collection 
sessions were interrupted by unexpected events. The 
interruption was not planned, but just wasn’t purposely 
prevented. In the experiments, no special consideration 
was given to the fact that the true EEG signals are heavily 
influenced by the artifact signals. We treat them as the 
normally collected EEG signals. We use autoregressive 
model and power spectra density for feature extraction and 
Support Vector Machines and AdaBoost for classification. 
The results confirm that voluntary facial muscle 
movements based BCI is indeed feasible. However, we are 
at the very early stage of implementing the system. Our 

preliminary results are more of concept proof. 
Nevertheless, the experiments conducted offered the 
opportunity for us to learn some lessons and also lead to a 
number of open questions. 

 
There are also a few approaches which do take EEG 

artifacts into consideration, but they are different from 
ours. In [11], Chin et al studied the patterns of recorded 
EEG signals under the influence of voluntary facial 
emotion expressions. They recorded EEG signals with the 
subjects purposely making smile, wince, and frown etc. 
emotion expressions. The best recognition rates of these 
facial emotion expressions range from 66.71% to 97.42%. 
Heger et al conducted similar experiments on recognizing 
facial actions through recorded EEG signals [12]. The 
facial actions are: neutral, smile, sad, surprise, angry, 
speak, and blink. They reported an average recognition 
rate of 81.1%. The lowest recognition rate is for “sad”, 
which we consider not actually a pure facial action. 
Barreto et al [13] proposed a HCI by utilizing the EMG 
from cranial muscle movements and EEG for "two-
dimensional (2-D) cursor movement, the left-click (Enter) 
command, and an ON/OFF switch for the cursor-control 
functions". The involved facial muscle movements are: 
eyebrows up, left jaw movement, right jaw movement, and 
full jaw clench. In our proposal, the focus is to study the 
patterns of all possible facial muscle movements and find 
out these which produce the most stable signal patterns.  

 
The rest of the paper is organized as follows. In Section 

II, we briefly discuss EEG signals, artifacts, and their 
applications, with the reflection on the roles played by true 
EEG signals and artifacts. In Section III, we examine EEG 
based BCI on the basic principles developed from the 
discipline of human computer interaction (HCI). Section 
IV provides the details of the voluntary facial muscle 
movements based BCI, including the list of facial muscle 
movements, and Section V reports our experiment results 
with a discussion. We conclude the paper with a summary, 
a few open questions, and our near future tasks in Section 
VI. 

II. EEG SIGNALS, ARTIFACTS, AND APPLICATION 
EEG signals are the electric current measured on the 

scalp of a human subject. The electric current is originated 
from the ion movements inside the brain cells, caused by 
the activities and functions performed by the brain. 
However, the movement of the ions, which generates the 
electric current of the very EEG signals, is not the only 
sources of the electricity. Many others, inside and on the 
human body and of the surrounding environment, also 
generate electricity. The signals from these origins are 
called artifacts, which are not a part of the true EEG 
signals. The artifacts are also captured by the EEG device, 
when recording. Therefore, the recorded EEG signals have 
2 parts: originated from the brain and artifacts: 

 ܵோ ൌ ்ܵ  ܵி  
 
where ܵோ represents the recorded signals, ்ܵ represents the 
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true EEG signals, and ܵி  represents the artifacts.  
 
According to Fisch, there are 2 types of artifacts: 

physiological and non-physiological [4, Chapter 6]. The 
former is from the human body: body movements, 
bioelectrical potentials, and skin resistance change etc. 
Chief of them are from electrooculography (EOG), 
electrocardiography (ECG), and electromyography 
(EMG). The latter is from the external environment and 
the EEG recording device itself.  

 
For the purpose of medical applications, ܵி  should be 

removed or minimized so that as much as possible of ்ܵ is 
presented. Therefore, accurate measurements can be 
maintained, and consequently truthful conclusion can be 
drawn. There is a variety of approaches to remove the 
artifacts or reject the signals all together, but no solution is 
perfect. There is no guarantee neither that the true EEG 
signals and the artifact signals of recorded signals can be 
accurately separated. We refer the readers to a 
comprehensive survey on EMG and EOG artifacts in EEG 
signals by Fatourechi et al [5],. In [4, Chapter 6], Fisch 
also discussed the recognition of the patterns caused by 
artifacts and their removals, in the domain of medical 
applications. 

 
However, on the other hand, in BCI applications,  ܵி  is 

not always removed [5], yet good results have been 
reported. This is due to the nature of the application, 
where the primary requirement is the accurate, stable, and 
repeatable patterns for a machine learning algorithm. In 
general, a machine learning process involves 2 steps: 
training and testing. In the training step, a set of sample 
data are used to train a machine learning engine 
(algorithm). Afterwards, in the testing step, another set of 
sample data is used to test the performance of the trained 
engine. The performance of the engine is estimated by the 
outcomes of this testing step.  

 
There are a few possible roles which ்ܵ and ܵி  can 

play in a machine learning process. 
 
• If the intention is carried by ்ܵ only: ܵி  may or 

may not have any impact on the outcomes. If ܵி  is 
consistent with a predictable distribution, say, 
Gaussian, ܵி  cancels each other when calculating 
the differences, i.e., the distances, among different 
classes. Otherwise, ܵி  becomes random 
interference. Depending on the severity, the 
outcomes will be degradated accordingly. 

• If the intention is carried by ܵி  only: hopefully, ܵி  follows the same and consistent patterns, the 
outcomes will then be accurately decided by ܵி  
alone.  Because the signal strength of ܵி  is far 
stronger than ்ܵ, accurate results can be easily 
obtained, as the recorded EEG signals are 
predominated by ܵி . 

• If the intention is carried by both ்ܵ and ܵி: 
accurate outcomes will be difficult to obtain and 
explain, as we only know that the signal strength of 

ܵி  is far stronger than ்ܵ, but not know their roles 
in carrying the intention. Ideally, ்ܵ and ܵி  can be 
separated and then re-weighted before being further 
processed for the machine learning process. 

 
Regardless the possibilities, without fully understanding 
the roles of ்ܵ and ܵி , we cannot confidently explain 
how the outcomes are achieved. Currently, the results 
reported by BCI research communities very often 
emphasize on the aspects of feature extraction, the choices 
of machine learning algorithms, and the classification 
rates. Although there are some studies on the roles of ்ܵ 
and ܵி, e.g., the EOG artifacts and EEG studied by 
Bobrov [14], we believe that more research work is still 
needed. 

III. HCI AND BCI 
With the development of computers and computerized 

systems, a new discipline, called human computer 
interaction (HCI), has emerged [6, 15, 16]. The discipline 
is a melting pot of computer science, applied physiology, 
behavioral sciences, and design etc. Its goal is to improve 
human-computer interaction by designing user-friendly 
human-computer interface.  At the very beginning, human-
computer interaction is through simple keyboards and 
computer screens. Gradually, the interaction moves 
towards to graphic user interfaces (GUI), so called WIMP 
(windows, icons, menus, pointer) [17]. Although WIMP 
still dominates, new natural user interface (NUI) [18] is 
strongly emerging.  NUI promises more natural and 
intuitive user interfaces. From keyboards with line 
commands to NUI, it indeed is a process of pursuing more 
and more natural and intuitive user interfaces.  

 
After all, the interaction between a person and a 

computer system is through the interface, or more 
abstractly, the communication channel, between them. 
Regardless what actions the person is taking to instruct the 
computer, essentially, the actions, pressing the keys on a 
keyboard, moving a mouse, touching certain locations on a 
screen, and making body gestures etc.,  are coded into the 
commands or command sequences the computer 
understands. The format of the commands concerns no 
human users. From a user’s point of view, the actions 
should be easy, natural, and intuitive to perform. For 
example, the actions of pointing-left to move the cursor to 
the left and pointing-right to move the cursor to the right 
are easy, natural, and intuitive. However, pointing-up to 
move the cursor to the left is neither natural nor intuitive. 
This arrangement of course can be achieved by training, 
but it increases the cognitive load of the users. Thus, the 
system is neither easy nor pleasant to use, yet the users 
tend to forget the training received on how to use the 
system. 

 
In general, BCI relies on 2 aspects of EEG signals 

generated by a human brain: event-related or evoke 
potential [19] and motor imaginary [20-22]. The former 
relies on visual and audio etc. stimuli. When such a 
stimulus, such as a picture on a computer screen or a 

3630



 
 

 

sound played by a speaker, is sensed and then processed 
by the brain, the reaction among a large number of the 
participating neurons generates certain EEG patterns. A 
large positive surge, which can be observed at about 300 
ms after the stimulus, is then codenamed as P300. Nijboer 
et al [23] studied the efficacy of a P300 based BCI in the 
real world (a home environment), with real patients, rather 
than in a laboratory environment, and concluded that: 
“individuals severely disabled by ALS can use a P300-
based BCI for writing text and that performance was 
stable for many months in terms of the ERP response, and 
in terms of classification accuracy”. The motor imagery 
approach does not require external stimuli. It relies only 
on the imagination of the movements of body parts, say, 
fingers, arms, legs, and toes etc., without real movements.  
 

BCI was initially conceived for people with disabilities 
to control prosthetic arms and legs, communicate (such as, 
spelling and operating computers), and operate 
wheelchairs etc. It can now also be used for people 
without disabilities as an extra means of interaction with 
computers and computerized devices, for examples, games 
and wearable computers [24, 25]. The focuses of these 
different applications are very different; so are their 
operating environments. There is no one-size-fits-all 
solution. However, if we restrict the applications to issuing 
simple control and communication commands in real life 
environments, for example, in a noisy open area with the 
presence of a large crowd, from the HCI point of view, 
where easy to use and natural to operate are paramount, 
there are some specific challenges facing the 2 common 
BCI approaches. 

 
Although it has been proven by laboratory experiments 

that P300 requires little or even none training, the system 
is complicated to set up. Two common types of the stimuli 
are video and audio. Video stimuli require a display unit, 
which may not display properly in broad sunlight. Audio 
stimuli require loud speakers or earphones. Either video or 
audio stimuli have to be delivered to the right place and at 
the right time, which is itself a great challenge for a real 
life application. In addition, both types of stimuli are 
subject to environment interferences, as light and sound 
are everywhere in a real life environment. In [19], 
Fazel-Rezai also listed the prerequisite of external stimuli 
for an individual to generate the associated EEG signals as 
one of the challenges for this approach. Furthermore, a 
great level of concentration from the human subjects is 
required to perform the tasks. On the other hand, the motor 
imagery approach has another set of challenges. The chief 
one is that it is very difficult to train a subject to perform 
the imagination tasks. The effectiveness of the 
performance is almost impossible to verify, yet the success 
of the system depends on good quality performance. 
Besides, the imagined motor movements may not always 
be natural, for example, imagining moving an arm up to 
mean turning an object left. Finally, the imagination of 
moving the same body part may be performed differently 
at different time, due to the impact of the environment, the 
body condition, and the levels of training and practice.  

IV. A VOLUNTARY FACIAL MUSCLE MOVEMENTS BASED 
BCI 

While, in general, random artifacts are undesirable in 
BCI, as the random artifact signals skew or mask the 
underlying patterns of EEG signals. Due to the 
uncontrolled and random nature of the artifact signals, the 
patterns of interest are added with a great degree of 
variances. The artifact signals may even completely mask 
the patterns. However, on the other hand, the recorded 
EEG signals with the artifacts signals generated from 
purposely well designed facial muscle movements may 
demonstrate stable and repeated patterns. For the purpose 
of BCI, it doesn’t really matter where the origins of the 
signals are, true EEG signals or artifacts, but the following 
requirements are critical: 

 
• The actions to be performed by human users for 

the purpose of giving instructions are intuitive and 
natural. 

• The patterns associated with the actions, from the 
machine learning point of view, have to be very 
stable and also repeatable. 

• The patterns might be population-wise or 
individualized. Either way, the enrollment phase 
must be simple or none; while the verification 
phase has to be of a high accuracy. 

• There is no requirement for any extra means of 
assistance, say, pictures for the human users to 
stare at.  

• There is no need for a quiet room or any sort of 
well controlled laboratory-like environments, 
where the human users have to be confined. 

• There is no need to record the time of the 
beginning and the ending of the actions performed. 

 
The following facial muscle movements are proposed at 

this stage. It is envisaged that these muscle movements 
and the brain activities to instruct these activities generate 
stable and repeatable EEG signal patterns, with perhaps 
significant portion of artifact signals.   

 
1. Blink the left eye 
2. Blink the right eye 
3. Raise the eyebrows 
4. Move the mouth to left 
5. Move the mouth to right 
6. Move the tongue to left (inside of the mouth) 
7. Move the tongue to right (inside of the mouth) 
8. Roll the tongue up (inside of the mouth) 
9. No action 

 
In essence, BCI is about the channel for a human 

subject to communicate with a computerized device, 
through which further actions, such as controlling objects 
and relaying the message to other human beings, may 
follow. The essential part is the messages passed on the 
channel. At their origins, the messages may take any 
forms, but will be encoded into the format the 
computerized devices understand. For example, there are 
many ways of moving a cursor on the screen of a 
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computer to a location. The task can be performed by 
using the arrow keys on a keyboard, a joystick, a mouse 
(mechanic or optical), or a touch screen. The raw signals 
obtained from these different input devices are all very 
different, but after being processed, they are all converted 
to the message (i.e., instruction) the computer understands. 
Along the same line of reasoning, the abovementioned 
facial movements can be regarded as the raw signals of an 
input device. Upon being recognized, a coded message is 
sent to the computerized system for proper reaction.  

V. EXPERIMENT RESULTS AND DISCUSSION 
Emotiv Epoc headsets1 were used to collect the data. A 

headset has 14 channels and collects data at 128Hz 
sampling rate. The data were collected from 3 healthy 
male subjects. Neither training nor practice was conducted 
before the data collection. Each of subjects performed the 
actions listed in Section IV a number of times in different 
occasions. Subject 1 performed each of the actions 50 
times, and each of Subject 2 and 3 performed 28 times. 
Some of the actions were interrupted by unexpected 
events. For example, a visitor knocked at the door and 
came in, and the phone in the office rang. These 
unexpected events were not deliberately planned for the 
data collection, but just not purposely prevented. The data 
was collected by using open source software experiment-
wizard2 developed by J. Kools. Therefore, we can obtain 
the raw data of the signals. Fig. 1 is an EEG signal 
segments containing 2 artifacts and brain idle, a screen 
dump from Emotiv TestBench. The figure clearly 
demonstrates the dominance of the artifact signals at the 
time of the actions of the facial muscle movements being 
performed. 

 

 
Fig. 1: an EEG signal segment containing 2 artifacts and brain idle, the 2 

sets of big spikes suggesting the artifacts, while the flatter waves 
representing EEG signals without the artifacts 

 
We tried to keep our experiments as simple and as plain 

as possible so that we can study the baseline recognition 
rates of these heavily artifacts-influenced EEG signals. 
The collected EEG signals were cut into segments. Each 
segment contains an artifact. The data of all 14 channels 
were kept. Each channel of a segment is modelled by 
using the popular autoregressive (AR) model and Power 
Spectral Density.  
 

1 http://emotiv.com/epoc/ 
2 http://code.google.com/p/experiment-wizard/ 

 
In an AR model [26, pp 42-45], the signal sample value 

at time ݊ is the linear combination of ݇ previous sample 
values, ݒሺ݊ െ 1ሻ, ݒሺ݊ െ 2ሻ, …, and ݒሺ݊ െ ݇ሻ, with a 
random noise sample value ݏሺ݊ሻ. The number ݇ is the 
order of the model. ݒሺ݊ሻ ൌ  െ  ܽݒሺ݊ െ ݇ሻ  ሺ݊ሻݏ

ୀଵ  

 
The coefficients of the linear combination ܽଵ, ܽଶ, …, and ܽ are used as the features of this channel of this segment 
of the EEG signals. For our experiments, we chose 14 
order AR model.  

 
A random signal usually has finite average power and 

can be characterized by average power spectral density, 
which is simply called power spectral density (PSD) [27, 
pp 4-7]. Let ሼݒሺݐሻ; ݐ ൌ 0, േ1, േ2, … ሽ be a discrete time 
signal, with zero mean, i.e., 

ሻሽݐሺݒሼܧ  ൌ 0, for all t 
 
where ܧሼ·ሽ is the expectation operator. The autocovariance 
sequence (ACS) of ݒሺݐሻ is: 
ሺ݇ሻݎ  ൌ ݐሺכݒሻݐሺݒሼܧ െ ݇ሻሽ  
 
where ሺ·ሻכ is conjugate transpose of the vector. The PSD 
of the signal is defined as the discrete time Fourier 
transform (DTFT) of the covariance sequence: 
ሺ߱ሻ  ൌ  ሺ݇ሻ݁ିఠஶݎ

ୀିஶ  

 
In our experiments, Welch's method using periodogram 
was used for estimating the power of a signal at different 
frequencies. We used both Support Vector Machines 
(SVMs) [28] and AdaBoost methods [29] to identify the 
patterns in the EEG signals.  

 
A SVM is a powerful and popular 2-class classifier. It 

can be extended to a multiclass classifier by either one-
against-all or pairwise method. For a training set of ሺݔԦଵ, ,Ԧଶݔଵሻ, ሺݕ ,Ԧݔଶሻ, …, and ሺݕ  Ԧ is aݔ ሻ, whereݕ
l-dimension vector and ݔԦ א ݕ  the training samples and ࢄ א ሼ1, െ1ሽ the 2 labels of the two classes, the SVM is 
aiming at finding the hyperplane with the maximum 
margin in the kernel space (feature space in SVM term) to 
separate the samples of the 2 classes. The maximum 
margin is obtained by solving the optimization problem of: 

 min ൭12 ԡݓሬሬԦԡଶ  ܥ  ߦ
ୀଵ ൱ 

subject to 
ԦሻݔሬሬԦ்߶ሺݓሺݕ   ܾሻ  1 െ ,ߦ ݅ ൌ 1, … , ݉ 
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where ܥ is a constant, ߦԦ ൌ ሾߦሿୀଵ,…, is the vector of the 
slack variables, and ߶ሺ·ሻ is the kernel transformation from 
the input space to the feature space. The decision function ݂ሺݔԦሻ ൌ signሺݓሬሬԦ்߶ሺݔԦሻ  ܾሻ ൌ േ1 classifies an unknown 
data point ݔԦ into either of the 2 classes ሼെ1, 1ሽ. 

 
AdaBoost (adaptive boosting) [29] is a tactic of 

improving the classification performance of a weak 
classifier, which is just better than random guessing, by 
using multiple instances of the classifier with the training 
process focusing on misclassification. For a training set of ሺݔԦଵ, ,Ԧଶݔଵሻ, ሺݕ ,Ԧݔଶሻ, …, and ሺݕ Ԧݔ ሻ, whereݕ א  the ࢄ
training samples and  ݕ א ሼ1, െ1ሽ the 2 labels of the two 
classes, a weight vector ܦሬሬԦ௧ is associated with the training 
samples, where ݐ means the ݐ round of the training. 
Initially, the weight is the same for every sample, ܦଵሺ݅ሻ ൌଵ , ݅ ൌ 1, . . ݉. In each round, if the sample ݔԦ is 
misclassified, the weight ܦ௧ାଵሺ݅ሻ will be increased; 
otherwise, decreased. The performance of the classifier at 
the round ݐ is calculated by its error: 

 ߳௧ ൌ ܲሾ݄௧ሺݔԦሻ ് ሿݕ ൌ   ௧ሺ݅ሻ:ሺ௫Ԧሻஷ௬ܦ  

 
where ݄௧ሺݔԦሻ can be regarded as the decision function of 
this round. To calculate ܦሬሬԦ௧ାଵ, the weight vector of the next 
round, first calculate ߙ௧ ൌ ଵଶ ln ቀଵିఢఢ ቁ, and then 
௧ାଵሺ݅ሻܦ        ൌ ௧ሺ݅ሻܼ௧ܦ ൈ ൜݁ିఈ, if ݄௧ሺݔԦሻ ൌ Ԧሻݔ݁ఈ,   if ݄௧ሺݕ ് ݕ  ൌ ௧ሺ݅ሻ݁ିఈ௬ሺ௫Ԧሻܼ௧ܦ  

 
where ܼ௧ is a normalization factor so that ܦሬሬԦ௧ାଵ will be a 
distribution. The iteration of the training will stop when 
either the error ߳௧ becomes 0 or the number of rounds 
reaches the predefined limit ܶ. The final decision function 
is then: 
Ԧሻݔሺܪ  ൌ sign ቌ ௧݄௧்ߙ

௧ୀଵ ሺݔԦሻቍ ൌ േ1 

 
We randomly chose 70% of the feature vectors for 

training and 30% for testing purposes. We used LibSVM 
[30] wrapped in WEKA [31] for our SVM experiments, 
linear kernel was used. For AdaBoost, we used 
AdaBoostM1 method with J48 classifier, also in WEKA. 
Table 1 lists the classification results of SVMs, and Table 
2 lists the results of AdaBoost. 

 

 
 
The recognition rates for the actions and the subjects 

vary greatly. The results reflect the great degrees of 
freedom in performing some of the actions, due to no 
training or practicing beforehand. For example, the 
recognition rates of Action 6 (move the tongue to left), 
Action 7 (move the tongue to right), and Action 8 (roll the 
tongue up) differ a lot. These actions actually can be 
performed with a great degree of freedom, ranging from 
slightly moving the tongue to as much as possible. It 
seems that the ambiguity in the action description 
contributes to these low rates, because the physical actions 
may not be performed consistently. More accurate 
descriptions, such as, “move the tongue to left as much as 
possible”, will be adapted in the future data collection. 
Actions 1-3 have consistent good recognition rates, yet 
more accurate descriptions of the actions, for example, 
“blinking the left eye firmly” etc., can also further 
decrease the ambiguity of the physical actions, and 
therefore may increase the recognition rates. Actions 4 and 
5 are on the borderline and require further investigation, in 
addition to more accurate description of the actions. No 
action, labelled as Action 9, can always be accurately 
recognized. 

 
 
Finally, it is also possible that some of the actions do 

not have stable patterns, which makes them unsuitable for 
the BCI application.  

VI. SUMMARY AND FUTURE WORK 
In this paper, we propose to take the advantage of EEG 

artifacts, rather than try to remove them, for a BCI system, 
which is simple to implement and easy to use, yet being 
ubiquitous without restrictions on the surrounding 
environments. The preliminary experiments conducted are 
more on concept proof. Although the results are 
encouraging, there are still many questions yet to be 
answered. 

 
Facial muscles are very flexible. Many different types 

of movements, called actions, are possible. The common 
ones can be performed in a very similar manner by 
everybody without the need of special training. Among 
these actions, which ones can produce stable and 
repeatable patterns, from the point of view of EEG signal 

TABLE 2 
THE CLASSIFICATION RATES BY ADABOOST (%), COLUMN 1-9 

REPRESENTING THE 9 ACTIONS LISTED IN SECTION IV 
 1 2 3 4 5 6 7 8 9

S1 92.9 92.9 92.9 64.3 78.6 35.7 64.3 92.9 100
S2 85.7 85.7 57.1 28.6 71.4 71.4 42.9 28.6 100
S3 100 85.7 85.7 42.9 42.9 57.1 85.7 14.3 100

TABLE I 
THE CLASSIFICATION RATES BY SVMS (%), COLUMN 1-9 REPRESENTING 

THE 9 ACTIONS LISTED IN SECTION IV 
 1 2 3 4 5 6 7 8 9

S1 85.7 92.9 85.7 57.1 57.1 35.7 71.4 85.7 100
S2 85.7 85.7 42.9 57.1 42.9 42.9 28.6 42.9 100
S3 100 100 71.4 42.9 28.6 14.3 85.7 14.3 100
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processing and machine learning algorithms? For these 
actions which can be easily performed, yet produce stable 
and repeatable patterns, are the patterns only valid for each 
individual or the whole population? If the former, the 
system must be calibrated by a training phase before it can 
be used. 

 
As the EEG signals are heavily influenced by the 

artifacts, which are caused by the facial muscle 
movements, do we still need to collect the signals from the 
scalp of a subject? Can we find other alternative spots on 
the face, with only a few electrodes? Ideally, the locations 
are somewhere without hair. The electrodes can then be 
easily attached, and hopefully, only 2-3 electrodes are 
needed. The best possible locations are the contacting 
points of a spectacle frame. If possible, the electrodes can 
be built into the frame, and attaching electrodes becomes a 
very simple task, yet with a high level of operation 
accuracy. 

 
A user interface of any device should always be on 

stand-by mode, i.e., always being ready to accept user’s 
commands and interrupt the intension. Therefore, it is 
important to be able to monitor the signals in a real-time 
manner, and recognize the known patterns on the fly. 
From Fig. 1, it seems that it is not difficult to identifying 
the coming artefact signals, out of the others, in real-time. 
However, we haven’t tested it out yet. 

 
The representing features of the raw EEG singals and 

the machine learning algorithms used in our experiments 
so far are these of commonly used in processing EEG 
signals. Are they the best choices for the EEG signals with 
the strong presence of artifacts? More experiments on a 
much larger dataset are required. 

 
In the future, our top priority task is to collect more data 

from more individuals and in many different 
environments. After conducting more experiments on the 
data, we can then answer some of the aforementioned 
questions.  

 

ACKNOWLEDGMENT 
The authors sincerely thank Mr Tshering Wangchen and 

Mr Shuai Fu for conducting some experiments on the data 
collected in the first round. 

 
 

REFERENCES 
 
[1] J. J. Vidal, "Toward Direct Brain-Computer Communication," 

Annual Review of Biophysics and Bioengineering, vol. 2, pp. 
157-180, 1973. 

[2] J. J. Vidal, "Real-time detection of brain events in EEG," 
Proceedings of the IEEE, vol. 65, pp. 633-641, 1977. 

[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. 
Pfurtscheller, and T. M. Vaughan, "Brain–computer interfaces 
for communication and control," Clinical Neurophysiology, 
vol. 113, pp. 767 - 791, 2002. 

[4] B. Fisch, Fisch and Spehlmann's EEG Primer: Basic 
Principles of Digital and Analog EEG, 3rd ed.: Elsevier, 

1999. 
[5] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, 

"EMG and EOG artifacts in brain computer interface systems: 
A survey," Clinical neurophysiology, vol. 118, pp. 480-494, 
2007. 

[6] A. Dix, "Human–computer interaction: A stable discipline, a 
nascent science, and the growth of the long tail," Interacting 
with Computers, vol. 22, pp. 13-27, 2010. 

[7] T. N. Welsh, S. Chandrasekharan, M. Ray, Heather Neyedli, 
R. Chua, and D. J. Weeks, "Perceptual-motor interaction: 
some implications for HCI," in The Human-Computer 
Interaction Handbook: Fundamentals, Evolving Technologies, 
and Emerging Applications, 3rd ed, 2012. 

[8] H. Nina, H. Cristian, D. Michael, and S. Bernhard, 
"Integrating cognitive load theory and concepts of human–
computer interaction," Computers in Human Behavior, vol. 
26, pp. 1278 - 1288, 2010. 

[9] M. Turk and G. Robertson, "Perceptual user interfaces," 
Communications of the ACM, vol. 43, 2000. 

[10] S. Lenman, L. Bretzner, and B. Thuresson, "Using marking 
menus to develop command sets for computer vision based 
hand gesture interfaces," presented at the Proceedings of the 
second Nordic conference on Human-computer interaction, 
Aarhus, Denmark, 2002. 

[11] Z. Y. Chin, K. K. Ang, and C. Guan, "Multiclass voluntary 
facial expression classification based on filter bank common 
spatial pattern," in Engineering in Medicine and Biology 
Society, 2008. EMBS 2008. 30th Annual International 
Conference of the IEEE, 2008, pp. 1005-1008. 

[12] D. Heger, F. Putze, and T. Schultz, "Online recognition of 
facial actions for natural EEG-based BCI applications," in 
Affective Computing and Intelligent Interaction, ed: Springer, 
2011, pp. 436-446. 

[13] A. B. Barreto, S. D. Scargle, and M. Adjouadi, "A practical 
EMG-based human-computer interface for users with motor 
disabilities," Journal of Rehabilitation Research & 
Development, vol. 37, 2000. 

[14] P. Bobrov, A. Frolov, C. Cantor, I. Fedulova, M. Bakhnyan, 
and A. Zhavoronkov, "Brain-computer interface based on 
generation of visual images," PloS one, vol. 6, p. e20674, 
2011. 

[15] A. Dix, Human computer interaction: Pearson Education, 
2004. 

[16] A. Sears and J. A. Jacko, The human-computer interaction 
handbook: fundamentals, evolving technologies and emerging 
applications: CRC Press, 2007. 

[17] Wikipedia. (November). WIMP (computing). Available: 
http://en.wikipedia.org/wiki/WIMP_%28computing%29 

[18] Wikipedia. (November). Natural user interface. Available: 
http://en.wikipedia.org/wiki/Natural_user_interface 

[19] R. Fazel-Rezai, B. Z. Allison, C. Guger, E. W. Sellers, S. C. 
Kleih, and A. Kübler, "P300 brain computer interface: current 
challenges and emerging trends," Frontiers in 
Neuroengineering, vol. 5, 2012. 

[20] W. Tao, D. Jie, and H. Bin, "Classifying EEG-based motor 
imagery tasks by means of time–frequency synthesized spatial 
patterns," Clinical Neurophysiology, vol. 115, pp. 2744 - 
2753, 2004. 

[21] L. Qin, L. Ding, and B. He, "Motor imagery classification by 
means of source analysis for brain–computer interface 
applications," Journal of Neural Engineering, vol. 1, p. 135, 
2004. 

[22] A. J. Doud, J. P. Lucas, M. T. Pisansky, and B. He, 
"Continuous three-dimensional control of a virtual helicopter 
using a motor imagery based brain-computer interface," PloS 
one, vol. 6, p. e26322, 2011. 

[23] F. Nijboer, E. Sellers, J. Mellinger, M. Jordan, T. Matuz, A. 
Furdea, et al., "A P300-based brain–computer interface for 
people with amyotrophic lateral sclerosis," Clinical 
neurophysiology, vol. 119, pp. 1909-1916, 2008. 

[24] B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. 
Sannelli, S. Haufe, et al., "The Berlin brain–computer 
interface: non-medical uses of BCI technology," Frontiers in 
neuroscience, vol. 4, 2010. 

[25] A. Nijholt, D. P.-O. Bos, and B. Reuderink, "Turning 
shortcomings into challenges: Brain–computer interfaces for 
games," Entertainment Computing, vol. 1, pp. 85-94, 2009. 

[26] S. Sanei and J. A. Chambers, EEG signal processing: Wiley, 
2008. 

3634



 
 

 

[27] P. Stoica and R. L. Moses, Spectral analysis of signals: 
Pearson/Prentice Hall Upper Saddle River, NJ, 2005. 

[28] C. J. Burges, "A tutorial on support vector machines for 
pattern recognition," Data mining and knowledge discovery, 
vol. 2, pp. 121-167, 1998. 

[29] Y. Freund, R. Schapire, and N. Abe, "A short introduction to 
boosting," Journal-Japanese Society For Artificial 
Intelligence, vol. 14, p. 1612, 1999. 

[30] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support 
vector machines," ACM Transactions on Intelligent Systems 
and Technology (TIST), vol. 2, p. 27, 2011. 

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, 
and I. H. Witten, "The WEKA data mining software: an 
update," ACM SIGKDD Explorations Newsletter, vol. 11, pp. 
10-18, 2009. 

 
 

3635




