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Abstract— An efficient and accurate method for landslide dis-
placement prediction is very important to reduce the casualties
and property losses caused by this type of natural hazard. In
recent years, many kinds of artificial neural networks (ANNs)
have been widely applied to landslide displacement prediction.
But we can’t know which type of ANN is the best until we
have calculated the prediction error. An improper choice of
ANN may result in bad prediction results. In this paper, we
use a neural networks combination prediction method based
on the discounted MSFE (mean squared forecast error) to
reduce the risk of selecting the types of ANNs. Four popular
ANNs, radial basis function neural network (RBFNN), support
vector regression (SVR), least squares support vector machine
(LSSVM) and extreme learning machine (ELM), are selected
as candidate neural networks. The performance of our model
is verified through two case studies in Baishuihe landslide
and Bazimen landslide. Experimental results reveal that the
combining neural networks can improve the generalization
abilities of ANNs.

I. INTRODUCTION

In the Three Gorges Reservoir of China, frequent land-
slides often result in significant damage to people and prop-
erty. The possible time when landslides are likely to occur
should be identified in advance and thus people can decrease
landslide damage through proper preparation. Landslide is
a complex nonlinear dynamical system with uncertainty, a
sufficiently precise mechanism model can hardly be obtained.
In recent years, ANNs have been widely applied to landslide
displacement prediction, as ANNs have ability to learn non-
linear functions from the data [2] [4] [7] [11] [12] [13].
With the fast development of ANNs, there are kinds of
candidate ANNs for us to choose. Different ANNs may
suit for different data. For a specific case, especially for
landslide displacement prediction, we don’t know which
ANN is the best until we have calculated the prediction error.
An improper choice of ANN may result in bad prediction
results. In this case, neural network combination prediction
may be a useful way to reduce the risk of choosing one single
ANN. Combining ANNs may help to integrate the knowledge
acquired by each component ANN and thus improve model
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accuracy [1] [8] [16]. In this paper, four popular ANNs,
RBFNN [3], SVR [6], LSSVM [14] and ELM [9] [10], are
selected as candidate ANN forecasters.

A two step procedure is proposed to build the landslide
displacement prediction model. In the first step, each al-
ternative ANN is supplied by an independent professional
forecaster. In the second step, the discounted MSFE is used
to combine the ANNs in the first step. Two typical landslides
in Three Gorges Reservoir, Baishuihe landslide and Bazimen
landslide, are presented to illustrate the capability of our
method.

II. INDIVIDUAL FORECASTS

A. NAR Structure

Considering a time series of landslide displacement
{𝑦𝑡}𝑁𝑡=1, a nonlinear autoregressive (NAR) model can be
expressed as follows:

𝑦𝑡 = 𝑓(𝑦𝑡−1, . . . , 𝑦𝑡−ℓ) (1)

where the function 𝑓 is estimated using ANN, ℓ is the time
lag. In this article, we use four popular ANNs, RBFNN, SVR,
LSSVM and ELM, as a tool for estimating 𝑓 in NAR model,
respectively.

B. Artificial Neural Network Model

1) RBF Network: The RBF neural network is a feedfor-
ward network, which is generally composed of three layers:
an input layer, a hidden layer and a linear output layer
[3] [17]. External data are presented to the RBF network
via the input layer. The hidden layer applies a nonlinear
transformation from the input space to the hidden space by
using non-linear RBF activation functions. The final outputs
of RBF network are produced though the output layer. The
output of RBF network can be mathematically modeled as:

𝑓(x) =

𝐿∑

𝑗=1

𝑤𝑗ℎ𝑗(x) (2)

where x is the input variable, 𝐿 is the number of neurons in
the hidden layer, 𝑤𝑗 is the output weights and {ℎ𝑗}𝐿𝑗=1 are
the RBF activation functions. In this paper, Gaussian function
is used as RBF activation function, which is defined as:

ℎ𝑗(x) = exp(−∥x− c𝑗∥/2𝜎2) (3)

where c𝑗 is the center, 𝜎 is the width, ∥ ⋅ ∥ is the Euclidean
norm.

Given a set of training data with 𝑁 number of samples
(x𝑖, t𝑖), 𝑖 = 1, . . . , 𝑁 , a RBF network consisting of 𝑚 RBFs
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with centers {c𝑗}𝑚𝑗=1 and widths {𝜎𝑗}𝑚𝑗=1. Take one output
node as an example, the goal of RBF network is to minimize
the sum of squared errors:

𝐸 =

𝑁∑

𝑖=1

(𝑓(x𝑖)− 𝑡𝑖)
2 (4)

This leads to a set of 𝑁 linear equations in 𝐿 unknown
weights, and the output weights w can be obtained using
least squares method:

w = (HTH)−1HTT (5)

where T = [𝑡1 𝑡2 . . . 𝑡𝑁 ]
T, H is the hidden layer output

matrix, its elements are 𝐻𝑖𝑗 = ℎ𝑗(x𝑖).
2) SVR: In the past two decades, Support Vector Machine

(SVM) has been widely used in classification applications
[5]. A modified version of SVM, called SVR, is developed
for regression applications [6]. SVR is capable of solving
non-linear time-series problems. Given a set of training data
with 𝑁 number of samples (x𝑖, t𝑖), 𝑖 = 1, . . . , 𝑁 . The
regression function can be expressed as:

𝑓(x) = w ⋅ 𝜙(x) + 𝑏 (6)

where 𝜙 : x𝑖 → 𝜙(x𝑖) is the nonlinear mapping, 𝑏 is the
bias. The regression parameters w and 𝑏 are estimated by
minimizing the sum of the norm of the weights, ∥w∥2, and
the empirical risk. In this paper, Vapnik’s 𝜖-insensitive loss
function is used, which is defined as:

𝐿𝜖(𝑓(x𝑖), 𝑡𝑖) =

{
0, if ∣𝑡𝑖 − 𝑓(x𝑖)∣ ≤ 𝜖
∣𝑡𝑖 − 𝑓(x𝑖)∣ − 𝜖, otherwise

(7)

Then, the nonlinear regression problem can be expressed as
the following optimization problem.

Minimize :
1

2
∥w∥2 + 𝐶

𝑁∑

𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 )

Subject to : 𝑓(x𝑖)− 𝑡𝑖 ≤ 𝜖+ 𝜉𝑖

𝑡𝑖 − 𝑓(x𝑖) ≤ 𝜖+ 𝜉∗𝑖
𝜉𝑖, 𝜉

∗
𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁 (8)

where 𝜉𝑖, 𝜉
∗
𝑖 are slack variables, 𝐶 is a user-specified param-

eter that determines the degree of penalized loss. Based on
the Karush-Kuhn-Tucker(KKT) theorem, this optimization
problem can be transformed to the dual problem. The final
solution is given by:

𝑓(x) =

𝑁𝑠∑

𝑠=1

(𝑎∗𝑖 − 𝑎𝑖)𝐾(x𝑠,x) + 𝑏, 0 ≤ 𝑎∗𝑖 , 𝑎𝑖 ≤ 𝐶 (9)

where 𝑎∗𝑖 , 𝑎𝑖 are the Lagrange multiplier, 𝑁𝑠 is the number of
support vectors x𝑠’s, 𝐾(x𝑠,x) is the kernel function, which
needs to satisfy Mercer’s condition. In particular, Gaussian
kernel function is selected as the kernel function:

𝐾(x𝑠,x) = exp(−∥x− x𝑠∥2/𝛾) (10)

where 𝛾 is a user-specified kernel parameter.

3) LSSVM: LSSVM is a modification of the standard
SVM, which has been proven to have excellent generalization
performance and low computational cost [14]. A given train-
ing data set (x𝑖, t𝑖), 𝑖 = 1, . . . , 𝑁 is assumed, the regression
function can also be expressed as Eq.(6). In LSSVM, the
regression problem is formulated as:

Minimize :
1

2
w ⋅w +

1

2
𝐶

𝑁∑

𝑖=1

𝑒2𝑖

Subject to : 𝑡𝑖 = w ⋅ 𝜙(x𝑖) + 𝑏+ 𝑒𝑖,

𝑖 = 1, . . . , 𝑁 (11)

where 𝑒𝑖 is the error between the actual output and the
predictive output of the 𝑖th sample, 𝐶 is the regularization
parameter that balances model complexity and approximation
accuracy. The optimization problem can be transformed to
the dual problem based on KKT theorem. The final LS-SVM
model is given by:

𝑓(x) =

𝑁∑

𝑖=1

𝑎𝑖𝐾(x𝑖,x) + 𝑏 (12)

where 𝑎𝑖, 𝑖 = 1, . . . , 𝑁 are the Lagrange multipliers,
𝐾(x𝑖,x) is the kernel function, which is selected as Gaussian
kernel function in Eq.(10).

4) ELM with kernel function: Recently, a novel learning
algorithm for single-hidden-layer feedforward neural net-
works (SLFNs) called ELM has been proposed [9] [18].
ELM not only learns much faster with higher generalization
performance than the traditional gradient-based learning al-
gorithms but also avoids many difficulties faced by gradient-
based learning methods such as stoping criteria, learning rate,
learning epochs and local minimum. The main characteristic
of ELM is that the input weights and biases can be randomly
chosen and need not be tuned.

For 𝑁 distinct samples (x𝑖, t𝑖), 𝑖 = 1, . . . , 𝑁 , where x𝑖 ∈
R𝑝, t𝑖 ∈ R𝑞 . Take one output node as an example, ELM
with 𝐿 hidden nodes can be mathematically modeled as:

𝑓𝐿(x) =

𝐿∑

𝑖=1

𝛽𝑖ℎ𝑖(x) = h(x)𝜷 (13)

where h(x) = [ℎ1(x), . . . , ℎ𝐿(x)] is the hidden layer output
vector with respect to the input x, 𝜷 = [𝛽1, . . . , 𝛽𝐿]

T is the
vector of the output weights. The goal of ELM is to minimize
the training error and the norm of the output weights:
Minimize: ∥H𝜷 −T∥2 and ∥𝜷∥
where T is the target vector and H is the hidden layer output
matrix:

H =

⎡

⎢
⎣

h(x1)
...

h(x𝑁 )

⎤

⎥
⎦ =

⎡

⎢
⎣

ℎ1(x1) ⋅ ⋅ ⋅ ℎ𝐿(x1)
...

...
...

ℎ1(x𝑁 ) ⋅ ⋅ ⋅ ℎ𝐿(x𝑁 )

⎤

⎥
⎦ (14)

Based on the minimal norm least square method, the output
weights can be obtained by:

𝜷 = HT(HHT)−1T (15)
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According to the ridge regression theory, a positive value can
be added to the diagonal of HHT in order to have better
generalization performance:

𝜷 = HT(
I

𝐶
+HHT)−1T (16)

Then, the output function of ELM can be rewritten as:

f(x) = h(x)𝜷 = h(x)HT(
I

𝐶
+HHT)−1T (17)

Huang et al. [10] defined a kernel matrix for ELM based on
Mercer’s conditions as follows:

ΩELM = HHT : ΩELM = ℎ(x𝑖) ⋅ ℎ(x𝑗) = 𝐾(x𝑖,x𝑗) (18)

Finally, the output function of ELM with kernel function can
be written as:

f(x) =

⎡

⎢
⎣

𝐾(x,x1)
...

𝐾(x,x𝑁 )

⎤

⎥
⎦

T

(
I

𝐶
+ΩELM)

−1T (19)

Here, 𝐾(x,x𝑖) is select as Gaussian kernel function in (10).

III. COMBINATION METHOD

Ideally, ANN can approximate any continuous non-linear
function with arbitrary precision. However, practically, the
generalization ability of ANN is always unstable. ANN
with high fitting precision may also obtain a bad prediction
error. With the development of several decades, there are
kinds of candidate ANNs that we can choose. In a real
situation, we don’t know which ANN is the best until we
have observed the prediction errors. Different ANNs may
fit different data sets, even the same ANN with different
parameters may lead to very different prediction errors. In
general, the best available ANN predictor is always not
clear. Combining the multiple neural networks may help to
integrate the knowledge acquired by each individual ANN
and appears to be a very promising approach in improving
the generalization ability of ANN [1] [8] [16].

Given a set of 𝐾 individual predictors, the prediction value
of predictor 𝑘 for the landslide displacement in time 𝑡 + 1
is labeled as 𝑦𝑘,𝑡+1. In this paper, some most popular ANNs
are selected as individual predictors. The linear combination
procedure can be described as follows:

𝑦𝑐,𝑡+1 =
𝐾∑

𝑘=1

𝑤𝑘,𝑡𝑦𝑘,𝑡+1 (20)

where 𝑐 refers to the method of selecting the weights. The
goal is to find the optimal weights 𝑤𝑘,𝑡 such that 𝑦𝑐,𝑡+1 is
a good estimator for the true value 𝑦𝑡+1. The total data set
is divided into three parts: the training set, the validation
set and the prediction set. The training set is used to train
ANNs, the validation set is used to determine the parameters
of ANNs, and also used to calculate the combination weights,
the prediction set is used to evaluate the performance of
the prediction model. The discounted MSFE is used as the
combination method, where the weights depend inversely on

the historical performance of each individual ANN [15]. The
combining weights formed at time 𝑡 are calculated as follows:

𝑤𝑘,𝑡 =
(𝜓𝑘,𝑡)

−1
∑𝐾
𝑗=1(𝜓𝑗,𝑡)

−1 (21)

𝜓𝑘,𝑡 =

𝑚+𝑞0∑

𝑚

𝜃𝑡−1−𝑚(𝑦𝑚+1 − 𝑦𝑘,𝑚+1)
2 (22)

where 𝜃 is the discount factor which is less than or equal to
1. 𝜃 less than 1 means that more recent observations have
more influence in calculating the weights. In this paper, 𝜃 is
selected as 0.95. 𝑞0 is the length of holdout out-of-sample
data. Particularly, if we want to predict the first data in the
prediction set, 𝑞0 equals the length of the validation set, the
starting value for 𝑚 is selected as the first time step in the
validation set. Note that, the weights are constantly updated
when new data are continuously added.

IV. EXPERIMENTS

A. Case study 1: Baishuihe landslide

1) Date Collection: Three Gorges reservoir region where
has been badly affected by landslides in recent years, is
selected as suitable for this study. Baishuihe landslide is
located on the south bank of Yantze River and its 56km
away from the Three Gorges Dam of China. There are
11 GPS monitoring points on the landslide surface. The
monitoring data at ZG118 point is selected to establish
the prediction model. Fig. 1 shows the monitoring data of
landslide accumulative displacement at ZG118 monitoring
point which is monitored from August 2003 to December
2011.
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Fig. 1. Monitoring curves of landslide accumulative displacement at ZG118
point

2) Selection of Parameters: There are a total of 101
observations. The 59 observations of data between August
2003 and June 2008 are selected as training set, 21 observa-
tions of data from July 2008 to March 2010 are selected as
validation set, and the rest of 21 observations of data are the
prediction set. Firstly, regressors should to be selected, i.e.,
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TABLE I

PARAMETERS USED IN RBFNN, SVR, LSSVM AND ELM.

RBFNN SVR LSSVM ELM

C / 219 213 211

𝛾 / 2−13 212 29

𝜎 / / / /
𝑙𝑎𝑔 4 2 9 9

which lags of inputs are going to be included in (1). This
selection is done by the training and validation set methods.
The optimal number of time lag ℓ is selected as the one
which results in the lowest validation error. Secondly, the
parameters for ANNs need to be selected. For ANNs, the
parameters are also determined by the training and validation
set methods. For RBFNN, the Gaussian function is used as
RBF activation function, K-means clustering algorithm is
used to obtain representative centers for RBFs. The Gaussian
kernel function is used in SVR, LSSVM and ELM. The
regularization parameter 𝐶 and kernel parameter 𝛾 need to
be selected. We test 50 different values of 𝐶 and 50 different
values of 𝛾, resulting in a total of 2500 pairs of (𝐶, 𝛾). The
different values of 𝐶 and 𝛾 are {2−24, 2−23, . . . , 224, 225}.
The user-specified parameters finally chosen are given in
Table 1. Note that, the number of hidden nodes in RBFNN
is 6.

3) Experimental Results: Note that only one-step-ahead
prediction is performed in the experiments. And one month
ahead prediction is enough to provide early warnings in the
landslide prediction. Four individual forecasters, RBFNN,
SVR, LSSVM and ELM are used to provide independent
forecasts. The discounted MSFE is used to do the ANNs
combination forecast. The comparison between monitoring
data and prediction results is shown in Fig. 2. The prediction
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Fig. 2. The comparison between monitoring data and prediction results

results obtained from RBFNN are much lower than the actual
values. The prediction results obtained from SVR, LSSVM
and ELM, are acceptable. The combination forecast method
is not the best one, but it performs similarly to the best
individual ANN predictor and can reduce the risk of selecting

TABLE II

COMPARE THE PERFORMANCE FOR THE ABOVE-MENTIONED FIVE

MODELS

RBFNN SVR LSSVM ELM Combination

RMSE 84.0152 59.3113 42.9812 46.3649 52.2111

the types of ANNs. The comparison between these methods
for the landslide displacement prediction via RMSE is shown
in Table 2. The results obtained from TABLE 2 indicate that
LSSVM is better than the other ANNs in case 1. But we can
find that LSSVM is not the best one in case 2, which will be
shown in the next subsection. It shows that different ANNs
may fit different data sets, there may not be a best one for
all cases.

B. Case study 2: Bazimen landslide

1) Date Collection: Bazimen landslide is situated on the
right bank of XiangXi river, and it is 38km away from
the Three Gorges Dam of China. The estimated volume of
Bazimen landslide is about 2 × 106𝑚3, with a maximum
longitudinal dimension of 380𝑚 and width of 100 to 350𝑚.
Three GPS monitoring points were located in the main
cross-section of the landslide. Z111 point is selected as a
case study. Fig. 3 shows the monitoring data of landslide
accumulative displacement at Z111 monitoring point.
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Fig. 3. Monitoring curves of landslide accumulative displacement at Z111
point

2) Selection of Parameters: The total number of mon-
itoring data is 67 from July 2003 to January 2009. The
whole data is divided into three data sets: the training set,
the validation set and the prediction set. The 37 observations
of data between July 2003 and July 2006 are selected as the
training set, 15 observations of data from August 2006 to
October 2007 are selected as the validation set, and the rest
of 15 observations of data are the prediction set. The user-
specified parameters used in ANNs are given in Table 3. The
way to choose these parameters is the same to the case 1.
Note that, the number of hidden nodes in RBFNN is 3.
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TABLE III

PARAMETERS USED IN RBFNN, SVR, LSSVM AND ELM.

RBFNN SVR LSSVM ELM

C / 210 225 225

𝛾 / 2−2 28 216

𝜎 / / / /
𝑙𝑎𝑔 1 2 5 2

TABLE IV

COMPARE THE PERFORMANCE FOR THE ABOVE-MENTIONED FIVE

MODELS

RBFNN SVR LSSVM ELM Combination

RMSE 45.7551 62.8610 69.0574 24.8314 24.5102

3) Experimental Results: Note that only one-step-ahead
prediction is performed in the experiments. Four individual
forecasters, RBFNN, SVR, LSSVM and ELM are used to
provide independent forecasts. The discounted MSFE is used
to do the ANNs combination forecast. The comparison be-
tween monitoring data and prediction results is shown in Fig.
4. The comparison between above methods for the landslide
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Fig. 4. The comparison between monitoring data and prediction results

displacement prediction via RMSE is shown in Table 4. As
is shown in Fig. 4, the prediction result obtained by the
combination forecast method is the best. The prediction result
obtained by ELM is better than other individual ANNs. But
ELM is not the best one in case 1. We can’t decide which
ANN to use until we have observed the prediction error.
That is to say we can’t know ELM is more suitable for
case 2 in a real situation. But the ANNs combination based
on the discounted MSFE can reduce the risk of choosing
ANN model. A individual ANN with high prediction error
may obtain a small weight in the combination model. From
case 1 and case 2, we can find that the combined model
is not always the best model, but it can perform better
than or similarly to the best individual ANN predictor. The
advantage of the proposed combination procedure is that you

can use alternative ANN methods without worrying much
about whether they are good at specific prediction work.

V. CONCLUSION

Nowadays, the study of landslide displacement prediction
is a very important problem. A large number of geological
models based on ANNs have been proposed for landslide
prediction. At the same time, we will face with a number
of ANN choices. In a real situation, we can’t know which
type of ANN is better until we have observed the prediction
errors. In this paper, a ANNs combination method based
on the discounted MSFE is proposed, which can reduce
the risk of selecting the type of ANNs. The experimental
results based on two case studies, Baishuihe landslide and
Bazimen landslide, show that ANNs combination method
can effectively improve the generalization ability of landslide
displacement prediction and help to make future planning of
the dangerous area.
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