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Abstract— Evolutionary systems such as Learning Classifier
Systems (LCS) are able to learn reliably in irregular domains,
while Artificial Neural Networks (ANNs) are very successful on
problems with an appropriate gradient. This study introduces a
novel method for discovering coarse structure, using a technique
related to LCS, in combination with gradient descent. The
structure used is a deep feature network, with a number of
properties of a higher level of abstraction than existing ANNs,
for example the network is constructed based on co-occurrence
relationships, and maintained as a dynamic population of
features. The feature creation technique can be considered
a coarse or rapid initialization technique, that constructs a
network before subsequent fine-tuning using gradient descent.
The process is comparable with, but distinct from, layer-
wise pretraining methods that construct and initialize a deep
network prior to fine-tuning. The approach we introduce is
a general learning technique, with assumptions of the dimen-
sionality of input, and the described method uses convolved
features. Results of classification of MNIST images show an
average error rate of 0.79% without pre-processing or pre-
training, comparable to the benchmark result provided by
Restricted Boltzmann Machines of 0.95%, and 0.79% using
dropout, however based on a convolutional topology, and as
such our system is less general than RBM techniques, but more
general than existing convolutional systems because it does not
require the same domain assumptions and pre-defined topology.
Use of a randomly initialized network provides a much poorer
result (1.25%) indicating the coarse learning process plays a
significant role. Classification of NORB images is examined,
with results comparable to SVM approaches. Development of
higher level relationships between features using this approach
offers a distinct method of learning using a deep network
of features, that can be used in combination with existing
techniques.

I. INTRODUCTION

A number of paradigms have been proposed for extracting

higher order features from an observed environment and cap-

turing its underlying structure. These include Convolutional

Neural Networks (CNNs) [1], Deep Belief Networks [2] and

Learning Classifier Systems [3].

Artificial Neural Networks operate using gradient descent

of an objective function, allowing parameters of the system

to be gradually updated to improve accuracy as new instances

are observed [4]. Recent techniques such as pre-training [5]

give a variation to this approach, where learning is first con-

ducted using an alternative objective, to reconstruct observed

inputs, before training the network to capture classifications

using gradient descent methods. This approach is very accu-

rate and reliable on particular problem sets, however can have

difficulty in domains with an irregular objective function.

Learning Classifier Systems [3], and other forms of evo-

lutionary algorithms, operate using a population of features

that each capture aspects of the problem space, and explore

solutions using recombinations of existing features, and a

form of reinforcement learning to capture the relationship

between features and outcomes. These approaches can be

reliable for addressing irregular domains, however without

the precision seen in gradient descent methods. This study

introduces the use of gradient descent, with a feature network

that is constructed using population-based methods related

to Learning Classifier Systems. The use of a deep feature

network is introduced, in contrast to the redundant feature

representation commonly used by evolutionary approaches.

This allows the precision of gradient-based learning used in

ANNs to facilitate the learning provided by the LCS learner.

In addition this provides a coarse learning technique that

allows capturing structure in irregular domains, before the

use of gradient-descent to fine tune the solution.

The objective of a deep feature network is to capture

structure of the environment being observed. In evolutionary

systems, structure is captured in building-blocks [6], [7], that

are shared between classifiers in the population. Building-

blocks are copied between classifiers and stored redundantly,

rather than being maintained in a shared manner where

features are re-used by multiple classifiers. Relationships

between building-blocks and constituent components are not

preserved, and as such are best considered a shallow rather

than deep representation.

Deep feature networks have been captured in a number of

Artificial Neural Network designs. In approaches such as [8],

the first layer of the network captures basic properties such

as oriented edges, while features have been demonstrated in

subsequent layers that capture increasingly complex struc-

ture, such as features resembling eyes and mouths, while

views of faces can be identified in higher levels. Recog-

nizable larger structure is not commonly addressed, and

in [8] this structure is presented as a demonstration, while

classification results are based on the simpler first few layers

of the network.

Capturing hierarchical structure has been done very effec-

tively using generative methods on a small number of layers,

and with limited input dimensions, however further increases

in depth and complexity of representation have not been

explored, and do not appear to provide immediate practical

advantages. Current approaches using fully-connected layers

such as Restricted Boltzmann Machine [2] and Autoencoder

networks [5], do not appear to be able to scale to capture

larger and more abstract representations. The development

of deep structure is a key aspect of deep network design,
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although limited examination of learning based on more

flexible part based representations and image grammars has

been shown. A second objective of this study is to introduce

a representation that captures a deep network of features at

a higher level of abstraction than used in existing neural

networks, as a step towards the development of a feature

network capturing deeper and more varied part-based rela-

tionships. This objective is connected to the introduction of

a coarse learning process to construct the feature network, as

the representations used by Learning Classifier Systems are

based on a more abstract representation than connectionist

systems.

A. Deep feature networks

Artificial Neural Networks (ANNs) are based on local

processing and connectivity, reflecting to some degree rela-

tionships between neurons in the brain. Cognitive properties

identified at the neural level have provided practical benefits

for artificial systems, such as the model of structures of

the visual cortex used in Convolutional Neural Networks

(CNNs) [1]. This is based on a model of simple and complex

cells such as that in [9], and reflects aspects of visual

processing that act in a bottom-up manner.

In addition to properties of interactions between individual

neurons, recognizable processes have been found that act on a

broader scale, as captured in cognitive models such as ACT-R

[10]. These models describe systematic relationships between

identifiable structures, although the described structure is

abstract and identified from behavioural observations, and

there is often limited understanding of the manner in which

they relate to processes at the neural level. Models of visual

cognition also describe more complex interactions than the

bottom-up effects captured in CNNs. These include effects

that occur at specific timescales, such as early interpretation

of context, and means of providing top-down facilitation

to influence interpretations [11]. Each of these processes

are characterized by independent learning objectives, and

processes that act on a broader scale than the interaction

between neurons at a local level.

Aside from the use of back-propagation, further indepen-

dent processes have been addressed in deep learning systems,

such as the use of pre-training to identify features based

on unsupervized learning, and top-down effects in Deep

Belief Networks [2], that capture influences on lower level

activations as a result of activation properties of higher level

features.

The top-down connections in Deep Belief Networks ad-

dress a form of top-down effect, based on direct relationships

between elements in neighbouring layers. More detailed

models describe the role of context in the interpretation

of details [11], where contextual interactions are largely

governed by associative interactions [12], and act using

recognizable local rules. Such processes play a significant

role in allowing the rapid identification of relevant objects

from a vast collection of knowledge. Capturing such effects

in artificial systems requires the ability to introduce processes

that act on different scales, and according to independent

learning rules, governed by recognizable local properties. In

some cases this implies specialization of design, to capture

effects specific to a domain such as vision specific properties

used by CNNs, however there are many common traits in

higher level processes, suggesting they reflect more general

principles of learning [13].

In this study an independent learning process is used, to al-

low the development of features, according to locally defined

processes that act on a coarse scale. This provides a means

of constructing feature relationships based on observations,

using co-occurrence relationships, and the maintainance of

a population of features according to reinforcement with

use1. Learning at a coarse scale allows the development

of more abstract properties, such as grammar-based and

logical relationships of higher level features. This provides

an important step towards the broader goal of capturing

modularity in artificial learning.

II. SELF-ORGANISING SYSTEMS AT HIGHER LEVELS OF

ABSTRACTION

Learning Classifier Systems [3] are self-organising sys-

tems, that act on properties at a higher level of abstraction

than ANNs. They are considered ‘evolutionary’ systems

and are typically based on Genetic Algorithms, however

they were originally conceived as abstractions of cognitive

processes [14]. Learning Classifier Systems use a form of

reinforcement-based learning, both in terms of Q-learning

style Reinforcement Learning to update predictions on multi-

step problems, and Psychology related reinforcement to

influence maintenance of the population2, and as such it is

possible to view these algorithms in the context of cogni-

tive processes. Connections between Reinforcement Learning

methods and cognitive processes are well established [15],

and there are further similarities between the population

reinforcement methods used and models of abstract cognitive

processes, such as reinforcement of memory traces [16],

[10]. The term ‘Evolutionary Computing’ is commonly used

to describe this family of techniques, and the terminology

will be maintained to refer to LCS and related systems,

however the evolutionary paradigm is not significant for this

study. ‘Evolutionary’ systems can be effective and reliable

for optimization on irregular learning tasks, providing an

effective form of coarse learning, however without the same

capabilities of fine-tuning available to gradient-descent based

methods.

The implementation provided in this study addresses the

use of reinforcement based methods to capture coarse learn-

ing in a self-organising deep network. This allows more

abstract properties of learning to be captured, based on local

learning rules acting on a different scale, alongside gradient

descent methods that allow fine-tuning.

1Note that the term ‘reinforcement’ used here is more closely related
to the use of the term in Psychology, such as relating to reinforcement
of memory traces, rather than the ‘reinforcement’ referred to in Computer
Science literature relating to Reinforcement Learning.

2however the term ‘fitness’ is commonly use in GA based systems
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The coarse learning process presented constructs a form of

grammar of features, creating new features based on relation-

ships between existing features, according to observed co-

occurrences resulting from observations. These relationships

are captured using weights and nodes of an Artificial Neural

Network. This allows learning to take place on two scales,

using reinforcement processes related to LCS to reinforce

and select features in a fixed size population, while weights

are adjusted through gradient descent.

A. Coarse learning design

Learning Classifier Systems (LCS) are typically based

on logical structures. Many use real-valued representations,

however classification rules are interpreted as matching the

observation in a discrete manner. The population of clas-

sifiers contains general and specific rules, where a given

observation may be matched by a number of classifiers

of various degrees of specialization. Common features are

captured in building blocks, and are preserved through cross-

over in the genetic algorithm. Classifiers can also be defined

using a hierarchical structure, employing a population of re-

used features, where features are recorded discretely instead

of redundantly, and recombined in various combinations to

produce classification rules [16]. The hierarchical approach

maintains features according to reinforcement, and creates

new features based on combinations of existing ones, without

the use of a genetic algorithm. Lowest level features, known

as ‘atomic features’, can be tested for activation directly

against the observed environment. Higher level features,

known as ‘composite features’, capture relationships between

lower features, which may be either atomic features or other

composites. Features can be produced with varying degrees

of specificity, and are connected to classification terms in

a manner similar to other LCS rules. This structure allows

the definition of classification rules with varying degrees

of specialization, where additional specialization can be

produced from a general feature by the addition of further

properties. A representation of a hierarchical feature network,

as used in this study, is shown in Figure 1.

1. 2. 3. 4. 5. 6.

Fig. 1. 1. a continuous valued input state, 2. a general classifier with
two binary values and six general ‘don’t care’ values, 3. a more specialized
classifier with only two generalized values, 4. re-used features that match
part of the state, 5. general classifiers each produced from a single re-used
feature, 6. a more specialized classifier constructed from the conjunction of
the two general features.

The population of features is dynamic, with a fixed max-

imum population size of atomic and composite features.

Atomic features are tested against various positions of the

input, allowing a feature to be identified in various locations,

and as such act in a convolutional manner, producing an

activation value for each position, captured in a match map.

Features are constructed as templates from observations,

producing a representation that responds to a region of a

given observation.

Composite features are defined using a set of lower

level features, which may be atomic or composite, and a

vector defining their relative positions. New composites are

constructed as a random set of the active features for a

given observation, based on the relative positions of activity

observed. This is captured as an ‘and’ relationship, generated

from an observed co-occurrence of features.

To identify the active features for a given observation,

each atomic feature is tested at each position of the input,

producing an activation map. The activation of composite

features is achieved by examining the activation values of

each child at its relative position, producing an activation

map for the composite.

atomic

features

composite features

classifications

observation

Fig. 2. Relationships between features in the constructed network.

In most LCS systems, reinforcement of classifiers is based

on expected reward, representing the probability that a given

classifier will accurately predict the outcome [17]. In the hier-

archical representation, features are re-used between various

classifications, and as such a measure of expected reward

is less meaningful. Reinforcement takes place following an

analogy with cognitive memory traces, that are reinforced

through use, as described in the ACT-R model [10].

The population of re-used features is maintained accord-

ing to a measure of accessibility. This is related to base-

level activation in ACT-R, determined as a quantity that is

increased with use, and decreases over time, captured as a

summation and exponential decay (Equation 1). To provide

more stable values this has been simplified as a running

average (Equation 2). A constant quantity of reinforcement rt
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is provided each time step, in the current implementation this

is provided to the feature with the highest predictive value

and its child elements. The predictive value is determined

using a ‘softmax’ calculation for each feature, to determine

the probability value of the feature predicting the correct

class. Distributed reinforcement approaches produce similar

behaviour, however the use of reinforcement of the highest

predictive feature has the advantage of producing a rec-

ognizable relationship between generalized and specialized

features. Specialized features, which have a higher predictive

quality, will be given preference for reinforcement, and the

limited size population will necessitate a balance between

general and specialized features.

Bi = log

n
∑

j

t−d
j (1)

∆ft = α(rt − ft−1) (2)

B. Gradient descent model

Our implementation captures the construction of a gradient

descent network based on the feature grammar constructed

using the above method of creation and reinforcement, and

is referred to as an Abstract Deep Network. Each feature

is represented as a unit of the network, and as such the

topology of the network is altered as new elements are

produced. The topology is altered as new atomic features

or composites capturing connections between existing units

are produced, and as features are removed. This approach

is distinct from the method used by NEAT systems [18].

NEAT is an evolutionary approach for construction of a

neural network topology using Genetic Algorithms, where

each member in the population is a complete network, and

refinement takes place by selection over multiple independent

networks. In contrast, our method is based on a population of

features, where each is independently selected for usefulness

according to local rules, based on the accuracy and frequency

of use of the feature. The structure of the network is shown

in Figure 3.

1. 2.

3. 4. 5. 6.

Fig. 3. Structure of the feature network, including convolutional maps. 1.
observed input, 2. atomic features, 3. activation map, 4. composite features,
which are constructed from a number of child atomic or composite features,
5. composite activation map, 6. softmax output, connected to all composite
features.

Weights of new atomic features are created according to

an observed region, and are chosen such that the response

of the feature to the observation matches a constant value

k, by initialising weights according to observed values, and

normalising such that the sum of squares is k. Feature acti-

vation values are continuous, and in order to capture features

being active or inactive, as used by LCS systems, a threshold

value is employed, however in practice this is simply used

to limit the features considered in the construction of new

features.

For composite features, the logical relationship between

elements described in the LCS feature network is approxi-

mated by the weights of the network elements, capturing a

soft ‘and’ relationship. When a new composite is created,

each weight is set to the current activation value of the child

feature, and the weights normalized such that the square sum

is a constant k. By initialising the bias value to −(k − ǫ),
the composite is initialized to be active approximately when

the conjunction of the child elements are active.

The relationships between features and classifications are

captured in fully-connected links between each composite

and a ‘softmax’ classification layer. This produces a topology

that is not strictly layered, and is necessary due to the self-

organising topology of composite features.

As each feature produces an activation value for each

position, the mapping between the composite feature layer

and the classification layer is based on a single activation

value for each feature, using the maximum value. To perform

backpropagation, adjustment of child elements is performed

based on the activation value for the position of the highest

value in the top-level feature, and the activation value for the

relative position of each child feature. Further details of the

backpropagation method are described in [19].

C. Specialization and generalization

This implementation captures ‘and’ relationships, produc-

ing a hierarchy of features of increasing specialization. There

may be advantages in using an ‘and-or’ structure, as it

allows a greater variety of representation including invariance

between higher level structures, however an ‘and’-based

network is used to limit complexity. ‘And-or’ properties are

seen in cognitive structures, such as in the ventral stream of

the visual cortex, and a simplified representation is captured

in models of simple and complex cells, such as Convolutional

Neural Networks, based on a pre-defined topology.

The development of ‘and-or’ networks to capture gram-

matical representations of images based on parts has been

studied in [20], addressing the development of higher level

structures than those typically captured in artificial neural

networks. This is based on an analytical approach, using

retrospective analysis of the network as a whole to develop

the feature network. The method described in this paper

addresses a similar objective, the ability to capture higher

level structural relationships, however this is done using self-

organising principles based on local rules.

Candidate ‘and’ relationships can be identified from ob-

served co-occurrences of features. Meaningful ‘or’ relation-

ships are more difficult to identify through local operations,
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as individual instances are not indicative of significant dis-

junctions, and it is likely that retrospective analysis of some

kind is necessary to identify meaningful ‘or’ relationships. As

such a population based on ‘and’ relationships, representing

increasing specialization of features, is addressed in this

study.

A balance of generalized and specialized features is pro-

duced by the reinforcement process. Based on the current

LCS implementation this can be considered as the maxi-

mally specialized population of rules sufficient to cover the

observed environment. Other approaches such as XCS [17]

emphasize maximally general rules, preferring a general rule

over a specialized one if the expected outcome is similar,

however this is based on direct examination rather than

a self-organising operation based on reinforcement. LCS

systems produce overlapping features, where a population

contains general representations as well as specializations

that provide refinements for particular examples. This is

related to cognitive basic level and subordinate categoriza-

tion, such as a ‘bird’ and a ‘penguin’, where a special-

ized category captures specific properties that are different

from the general class [21]. The described implementation

captures specializations where advantage is provided over

a general representation, through preferential selection and

reinforcement. The use of feature representations composed

from parts allows incremental specialization.

While a number of broad goals have been outlined, the

current study explores the interaction between a coarse

learning process for creating and reinforcing features in

a hierarchical structure, and fine-tuning through gradient

descent. This is addressed as a general learning system, with

limited assumptions about the domain. Low level features

respond to a limited region of the input and are convolved

on the input space, and relationships between features are

defined using a vector relationship, implying a particular

dimensionality. Further assumptions such as those used in

CNNs, including connectivity between higher features based

on a limited spatial region, or specific operations such as a

fixed topology of simple and complex cells, such as pooling

operations, are not included, to allow learning based on

limited self-organising principles.

III. EXPERIMENTS

A. MNIST

The MNIST dataset of handwritten digits has been used as

a benchmark for many different techniques, and is based on

a large set of 70,000 images for training and testing, of size

28x28. Training of our system was performed in two phases.

The first phase involved use of the population reinforcement

method for creation and selection of features, to develop the

network topology. This acted in tandem with the gradient

descent method, providing adjustment to the feature weights.

This phase was conducted for 2×105 sample presentations, to

construct the network topology based on the coarse learning

technique. Subsequent fine-tuning was conducted with the

topology fixed, acting using only the gradient descent method

to adjust weights.

Two network structures are examined. The first uses a large

set of 1500 atomic (first level) features and 5000 composites

(approx 2× 105 weights total), the second uses 100 atomic

features and 10,000 composites (1.4 × 105 weights). These

configurations are referred to as 1500A-5000C and 100A-

10000C respectively. The first network allows a larger num-

ber of feature maps, while the second relies on the re-use of

a limited set of features through composition relationships.

The network with a large set of atomic features showed

an average error rate of 0.79% (classification errors on each

run out of 10,000: 63, 69, 71, 71, 80, 81, 81, 83, 83, 83, 89,

93), while the small set network showed an average error

of 0.86%. Further runs were conducted using a randomly

generated topology comparable to that produced by the self-

organising system, with randomly initialized weights. The

use of random initialization produced an average error rate

of 1.25%. A minibatch size of 100 was used, however similar

results were found using stochastic updates, with greater

variation. Results shown are based on Rectified Linear Units

(ReLU) [22], similar performance results were found using

hyperbolic tan units, however ReLUs provided slightly faster

convergence and less processing. No pre-processing of data

is used, other than to scale inputs with mean zero and σ = 1.

Previous results using standard ANN techniques are typ-

ically limited to approximately 1.6% error, while experi-

ments using Restricted Boltzmann Machine based systems

have shown an error rate of 0.95%, and 0.79% using

‘dropout’ [23], described as a record for systems without

prior knowledge or enhanced training sets. Lower error rates

have been shown with systems that use significant pre-

processing, or are based on a specific topology, for example

0.6% has been shown using pre-training and sparse feature

selection in a convolutional network [24].

Our system uses less assumptions than existing convolu-

tional networks, however it is not as general as RBM based

systems. Our result is comparable to that shown by RBM

techniques using dropout, also without the use of enhanced

training sets. Some further assumptions have been included

in our design, based on the assumed dimensionality of the

input, and the use of shared weights to allow convolution of

features. The topology used by our system is self-organising,

and does not make use of specific functions common to

CNNs, such as pooling and local contrast normalization. The

topology and functions used by CNNs are a fundamental

aspect of their design, to the extent that the specific use of

rectification and normalization functions can produce top-

level results even when random features are used [25]. The

Convolutional Deep Belief Network [8] provides another ap-

proach (0.82% error), where pre-trained features are used in

a convolutional architecture, however this approach focuses

on the development of low level features that are used by a

Support Vector Machine, with a kernel function specialized

towards image domains [26]. In contrast our approach is

focused on the development of higher level relationships,
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with minimal domain-specific assumptions.
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Fig. 4. (top) Distribution of the number of child elements per composite
feature in the developed network, and the distribution at feature creation,
showing self-organising preference for fewer child elements. (bottom)
Depth distribution of elements in the developed 1500A-5000C network,
the developed 100A-10000C network, and a randomly constructed 100A-
10000C network using a similar creation process, showing preference for
lower depth.

Details of the network produced by our system are shown

in Figure 4. The developed network shows the distribution of

the number of child elements per feature skewed towards a

smaller number than the creation distribution, resulting from

selective pressure, and indicating a self-organising preference

towards a smaller branching factor. The number of child

elements per feature is several orders of magnitude smaller

than that used in layer-wise fully connected networks, while

the depth of the network is greater. The depth distribution

is shown for the network produced using 1500A-5000C

features, for the network produced using 100A-10000C, and

for a randomly constructed network using 100A-10000C.

This shows that a much flatter network is produced when

a larger number of atomic features are available. The use of

100A-10000C features in a self-organized network is deeper,

however compared to the distribution from a randomly

constructed network using the same creation method, the

average depth is smaller. This is a result of a bias from

co-occurrences of active features, and selective preference

towards a shallower network. This may be indicative of a

point where addition of specialization features to existing

representations produces structures that are not useful and

are not reinforced, related to ‘terminal features’ [27].

‘Dropout’ has been shown to improve performance and

generality of ANNs at a cost of increased training time,

improving the error rate of a standard feedforward network

from 1.6% to about 1.3% using dropout on the hidden units,

and about 1.1% using dropout of visible units. Introducing

dropout into our system showed significantly degraded per-

formance. This may be due to the use of weights initialized

to represent conjunction relationships, as inhibited activation

of units will lead to greater reduction in activation of parent

nodes. Our network captures sparse relationships using a dif-

ferent approach, and as such the random inhibition behaviour

of dropout does not appear to be beneficial.

B. Normalized-uniform NORB

Tests were conducted on the normalized-uniform (small)

NORB dataset, with minimal changes to the model and

parameters where possible. This dataset is a set of images

based on photographs of objects at various angles, of size

96x96 stereo images. Results using Support Vector Machines

have shown 11.6%, logistic regression 19.6%, k-nearest-

neighbours 18.4%, and Convolutional Neural Networks 5.6%

error [28], [29]. Previous general approaches using neural

networks have used reduced dimension inputs for tractability.

Using a ‘foveal’ representation of dimension 72x72, [30]

showed results of 6.5% error using a multi-layer network

with a greedy pre-trained first layer, without the use of data

augmentation. Further results using 32x32 subsampling have

shown 8.9% error using pre-training and fine-tuning [31].

We have used a similar model as for the MNIST example,

using 100 atomic (first layer) features, and 10,000 sparse

higher level features. These parameters may be considered

a meta-model, as the actual topology is self-organising. Our

model has shown 11.96% error. This result is promising con-

sidering a largely general model has been used, with minimal

domain assumptions or parameter tuning, and without the use

of pre-training.

First level features produced from the MNIST and NORB

datasets are shown in Figure 5.

IV. DISCUSSION

Our system has demonstrated the use of a deep feature

network constructed using a coarse learning method, in

combination with gradient descent learning, acting as an

Artificial Neural Network. This provides a novel means for

constructing the network topology and for initialising the

network, that shows faster learning and higher accuracy

than a similar network initialized randomly. The method

demonstrated uses convolutional features, however fewer
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Fig. 5. First-level features developed from the MNIST dataset (top), and
NORB (bottom)

domain-specific assumptions are used than Convolutional

Neural Networks. Our system addresses a different problem,

emphasising discovery of higher level relationships between

features, and the combination of coarse and fine learning,

rather than discovery of low level features. As such a

complementary relationship with existing systems may be

found.

The topology produced is deep and very sparse. This

is a property of the process that develops the network, a

larger branching factor has not been used as there is a

clear preference for smaller numbers of connections with

each composite feature. The depth of the network is mostly

a reflection of the creation process and the number of

composite units, as new features are constructed based on

observed co-occurrences of active features, and in order to

capture a comparable number of weights with other systems

a large number of units are used.

On each of these tasks improved performance can be

found using more specialized techniques, particularly CNNs,

which introduce assumptions about the connectivity of the

network and the use of specific functions at each layer. In

order to develop advances in artificial learning it is important

to explore both domain-specific and more general learning

techniques.

Studies of vision-specific CNNs have shown that a critical

aspect of performance is the choice of topology, notably

the use of absolute value rectification, local contrast normal-

ization and average pooling [25], and that such a structure

allows top-level results regardless of the feature development

method used. This occurs to the extent that the use of

random features within the given topology provides results

comparable to those with more sophisticated features.

A contrary perspective in [32] shows that benchmark

results can be obtained with simple models such as a single-

layer topology, when specific choices of hyperparameters and

pre-processing are used. Does this mean that the method of

feature development and the processes involved are irrele-

vant? While benchmark results can be found through such

widely varying approaches on standard datasets, it is not nec-

essarily the case that the same approaches will be effective

as the scale and complexity of problems change. One of

the principles behind deep learning is to capture functional

and representational modularity that allows the structure of

a problem or environment to be captured [28], in order to

provide advantages in terms of scaling and versatility. As

such addressing representational and functional issues is a

way of maintaining these goals, to work towards allowing

autonomy in more challenging environments.

In human cognition, rapid processing is used to identify

context and establish expectations of objects that are likely to

be present. The brain is able to store information on an im-

mense range of experiences and retrieve relevant information

quickly, and it is likely that the processes used, along with the

cognitive biases they exhibit, such as the misinterpretation of

objects according to context [33], [12], are significant for

allowing such tasks to be performed. As such, capturing

the interaction between specific operations that act using

independent local rules is likely to offer important benefits

in addressing larger and more complex tasks. The use of

coarse learning based on reinforcement, and the development

of higher level feature relationships, are a step towards the

broader aims of capturing cognitive processes that operate at

higher levels of abstraction, such as contextual effects that

provide top-down facilitation [13].

Recent experiments in computer vision have shown that

increasing the amount of computing power enable CNNs

to scale to allow identification of a large collection of

objects, and with a higher resolution than those used in tasks

performed on desktop computers [34]. This is a promising

indication of the effectiveness of the techniques, however

open questions remain regarding the ability to combine and

integrate information, and to be able to develop functional

and representational modularity. More versatile algorithms

will likely be needed for these tasks, our approach aims

to provide a contribution towards these goals, by presenting

alternative means for feature discovery and representation.

V. CONCLUSIONS

Capturing modularity and higher level effects is an im-

portant goal in allowing learning systems to address more

complex tasks based on generalized learning techniques.

Artificial Neural Networks are an effective technique for

capturing relationships based on local operations, although

they are typically based on optimization of a single objective

function, with limited modularity. Recent techniques such as

pre-trained networks introduce independent learning goals of

feature discovery and fine-tuning, however other effects such

as coarse learning processes require further abstraction.

This study has demonstrated the use of a coarse learn-

ing process, related to more abstract cognitive processes

than neural level effects commonly addressed in ANNs.

The system acts using population-based measures related to

Learning Classifier Systems. This allows the development

of a feature network using local operations that act on

a broader scale, related to the construction of symbolic

grammars. The feature network is captured using the weights

of a neural network, providing a coarse learning process
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that constructs and alters the topology of the network. This

introduces a novel approach for capturing self-organising

principles at a higher level of abstraction. This provides

a means for identification of features in a deep network

before fine-tuning takes place, related to the task addressed

by pre-trained neural network techniques. Experiments have

shown high level results on the benchmark MNIST task,

showing a classification accuracy of the same order as the

best general learning techniques (0.79% error), and with

greater generality than specialised CNN techniques. Current

RBM and CNN techniques show significant improvement

over the first results presented by the techniques (1.23% and

0.95% with no distortions respectively). The self-organising

network developed by the coarse learning process provides a

significant improvement over a similar random network using

randomly initialized weights (0.79% vs 1.25%), indicating a

significant role for this process in the early stages of learning.

The implementation has shown the development of a

representation capturing features of increasing specialization,

where the population maintains a balance of generalized and

specialized rules. The method provides a means of addressing

irregular domains with ANNs, and a means of introducing

gradient-descent based learning with ‘evolutionary’ systems.

This provides a new approach for capturing modularity with

the aim of allowing more scalable, flexible learning with

general learning algorithms.
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