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Abstract—This paper proposes a novel ship detection scheme 
in coastal regions for high-resolution synthetic aperture radar 
(SAR) imagery based on prior knowledge of the different 
properties presented by target and clutter. To begin with, image 
segmentation and land masking are applied to eliminate the 
areas that are unlikely to contain targets and get the index image 
which indicates the likely target positions. Ship detection is 
conducted only on these likely target positions using power ring 
algorithm (PR), which can avoid unnecessary and exhaustive 
searches. In the discrimination stage, two new features named 
number of 8 connected regions and average power of target areas 
are proposed and used to form a discriminative feature group. 
Unlike most discriminators, which are based on supervised 
learning, we use an unsupervised method based on K-means 
clustering to deal with the situations where there are few or no 
labeled samples. Experimental results show that the proposed 
scheme is fast in speed and can detect most of the targets while 
few false alarms occur. 

Keywords—synthetic aperture radar (SAR); land masking; ship 
detection; K-Means clustering;  

I. INTRODUCTION 
Synthetic aperture radar (SAR) images have been collected 

by diverse platforms for various applications till now. The 
number of such imagery is growing rapidly, and along with 
that growth is the expanding need for computer-aided or 
automated exploitation of SAR imagery. One of the most 
important applications is automatic target recognition (ATR), 
which aims to find target like regions and attach a class to each 
region. Generally, the SAR ATR processing is split into three 
successive stages: prescreening stage, discrimination stage and 
classification stage as is shown in Fig.1 [1], [15]. The first two 
stages are commonly known as the focus of attention module, 
which has high data load and low computational complexity. 
This paper mainly deals with the focus of attention module and 
tries to find an efficient way to solve this problem. 

The function of prescreening stage is to search through the 
entire scene for the regions of interest, based on the fact that 
the radar cross section (RCS) of a target region is typically 
higher than the surrounding background regions due to corner 
reflection. The commonly used detection methods are based on 
the contrast between target pixels and the surrounding areas. 
Among these methods, constant false alarm rate (CFAR) 
technique is widely used, especially in some real time 

application systems like SAIP [2]. Various CFAR algorithms 
have been proposed with regard to statistical modeling of 
background as well as detector design in order to cope with 
complex circumstances. A suitable model is of great 
importance to the performance of detection. However, it is 
always not easy to make a compromise between the fitness of 
model and its corresponding cost, which in some sense limits 
the further development of CFAR. Besides, non-statistical 
methods like generalized likelihood ratio test (GLRT) and 
power ring (PR) are feasible [3]. GLRT is based on the 
distributions of both target and background to get a theoretical 
Bayesian optimal solution. In real applications, statistical 
modeling of target is unknown, which means GLRT is not a 
practical way. PR is a simple but effective detector if the 
parameters are chosen properly. In this paper, we empirically 
discuss how to set the suitable parameters for PR to get an 
acceptable result. Besides, algorithms that use other image 
features, such as extended fractal (EF), multi-resolution and 
sub-aperture coherent characteristics, are also widely 
investigated [4]-[7]. Calculating these features generally costs a 
lot of time, thus they can’t meet the real time requirement. 

After the detection stage, most of the false alarms are 
eliminated and ship candidates are obtained. However, a large 
number of target like false alarms still exist. To further reduce 
these false alarms, we need to explore features and classifiers 
to distinguish targets from clutter. Actually, this is the function 
of the discrimination stage, which intends to accept target 
candidates and reject the others. Features are crucial as they 
provide information from different perspectives that can be 
integrated to give a judgment of whether the candidate is a 
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Fig.1. General structure of the SAR ATR system 
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target or not. However, not too much effort has been devoted to 
develop effective and robust features [6]. Current features can 
be generally divided into four categories: textural features, size 
features, contrast features and polarimetric features [8]. Among 
these features, Lincoln Laboratory Discrimination Features and 
ERIM Discrimination Features are the most widely used [9]. 
The three texture based features developed by Lincoln 
Laboratory are extracted from the original image and reflect 
the intensity fluctuation, spatial dimensionality and percentage 
of power contained in the brightest scatters respectively. ERIM 
Discrimination Features are extracted from both the binary and 
CFAR image in a target-shaped blob to reflect the size and 
contrast properties. Each of these features can represent a 
certain characteristic of ship candidates and only by combing 
some of them to form a more discriminative feature group can 
we hope to obtain an acceptable outcome. Moreover, two 
features though computed in different ways, may be relevant to 
each other, namely they describe the similar property. Thus, a 
good feature group is the one whose elements are more likely 
to be independent of each other and have complete description 
over the candidates. In this paper, we develop two new features: 
number of 8 connected regions and average power of target 
areas based both on the binary and original images, which are 
proved by experiments to be quite discriminative. 

By far, most of the effort has been devoted to developing 
effective discriminators based on supervised learning methods 
such as QD, SVM, BNN, QPD and KNN [9]-[11], which 
usually include two steps: training and testing. If enough 
representative training data is available, these methods will 
usually have satisfying performance. While, according to [12], 
it’s nearly an exhausting work to get the training data in real 
world applications. Even though we build a target database 
after great endeavor, we may still not get the expected results 
due to the reason that the training and testing data are collected 
under different background, by different sensors, in different 
weather conditions. What’s more, target itself is also a large 
category where different types of targets are included. A 
commonly used strategy is to divide the candidate chips (image 
patches we extracted after the detection stage) into two groups 
and choose one as the training set and the other as the testing 
set to verify the performance of features as well as classifiers 
[6]. But it is limited to theoretical argument and not enough 
data can be used to learn the classifier well. Inspired by this 
situation, we try to solve the discrimination problem in another 
way. After visualizing the samples collected from SAR images 
in the proposed description manner, we find that targets will 
group together and clutters will scatter but far away from 
targets in the feature space. It is more suitable to use a 
clustering method as K-means to divide the candidates into 
target and clutter groups. Thus, we can use the rules inside the 
candidates instead of learning it from other candidates to 
distinguish between target and clutter. The diagram of the 
proposed scheme is shown in Fig.2. 

The rest of this paper is organized as follows. Section II 
introduces our PR based ship detection method. The newly 
developed feature group and unsupervised discrimination 
strategy is illustrated in Section III. Experimental results are 
provided in Section IV and finally conclusions are given in 
Section V. 

 

II. CANDIDATE DETECTION 
In this section, preprocessing based on Otsu segmentation 

is first introduced in Section II-A to locate the potential target 
areas. Then, in Section II-B, PR is discussed to form a suitable 
detector. Ship candidate chip extraction is finally described in 
Section II-C. 

A. Preprocessing 
For SAR images from coastal regions, there exist ocean, 

land, buildings and ships in the scene. Usually, the image can 
be roughly considered to be composed of two parts based on 
contrast: bright area and dark area. Due to the different scatter 
properties, targets will be in the bright area and the ocean in the 
dark area. Land and buildings also belong to the bright area but 
they have much larger areas than that of targets. 

We use Otsu algorithm [13], [14] to find the optimal 
threshold so as to divide the whole scene into bright and dark 
areas. Otsu is based on statistical decision theory and tries to 
find the maximum between-class variance by choosing a 
proper threshold. The between-class variance  is given by [13] 
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where, k is the threshold variable, 1( )P k is the CDF of the 

image, ( )m k  is the value of the k-th level and Gm is the mean 
value of  image. The optimal threshold  is obtained by [13] 
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Fig.2. Diagram of the proposed ship detection scheme 
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The original image and image after segmentation are shown 
in Figs.3(a) and (b). For this image, the optimal threshold 
computed by Otsu is 60. We apply this threshold to divide the 
whole scene into bright and dark areas. As expected before, 
ships are included in the bright area due to the strong echoes. 

After segmentation, we mainly focus our attention on the 
bright area where the targets lie in. It’s necessary and possible 
to further investigate into the bright area to eliminate the 
obvious non-target areas. Each target area is limited to a certain 
size while land and buildings are often large connected areas. 
Based on this, morphological operation is applied to fill the 
holes in the binary image. Then we remove the regions whose 
areas are much larger than that of the target to obtain the index 
image. In fact, the function of the index image is to indicate 
whether the corresponding pixel under test is a potential target 
pixel or not. The following detection stage is conducted only to 
the potential target pixels according to the index image which 
can help avoiding unnecessary and meaningless search. It’s 
predictable that this preprocessing step can reduce the data size 
a great deal and the speed will surely be improved. 

B. Ship Candidate Detector 
Contrast based detection methods usually adopt a sliding 

window to make decision as is shown in Fig.4. The test cell is 
at the center of the defined local region and the cells in the 
boundary stencil are used to estimate the characteristics of the 
local clutter such as mean, standard deviation and probability 
density function [13]. The guard area ensures that no target 
cells are included in the estimation of clutter characteristics. 
For PR algorithm we used here, we choose a target support 
area to estimate the mean of the region of interest (ROI) and a 
clutter support area to estimate the mean of local background. 
The decision is made according to the following formula [3]: 
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where ROIμ  is the average power in ROI around the test pixel,   

Cμ is the average power of surrounding clutter and λ  is 
chosen empirically so as to get a satisfying detection result. 
Here, we set the number of target support cells to be 9, the 
number of clutter support cells to be 400 and λ  to be 3. 

Before detection, image pad is first performed such that 
locations near the image borders can also be examined. The sli- 

 

 
ding window then slips through all the potential target pixels 
according to the index image to search for the ship candidates. 
The index image and binary image after detection are shown in 
Figs.5(a) and (b) respectively. As we can see from the result 
that there is no significant missing detection in our proposed 
method and the number of false alarms is acceptable. We will 
discuss this further in Section IV. 

C. Ship Candidate Chip Extraction 
After detection stage, we get a binary image and the ship 

candidate chips are extracted based on this image. First, three 
morphological operations: hole filling, erosion and dilation are 
used to regulate the shape of the detected regions [13], [14]. 
After that, too big or too small regions are removed in order to 
eliminate the influence of nontarget chips. Finally, ship 
candidate chips are cut from both the original and binary 
images according to each detected region in the binary image. 
Note that we will combine the information from original chips 
with that from binary chips in the discrimination stage to get a 
better description of the extracted candidate chips. Based on 
the prior knowledge of the image resolution as well as the 
general scale of the ships, we set the size of the chip to be 64×  
64. Fig.6 shows some of the extracted chips containing both 
targets and clutters.  

III. SHIP DISCRIMINATION 
In this section, the three features used for discrimination are 

firstly described and analyzed in Section III-A. Section III-B 
develops a new discriminator based on K-Means clustering 
method. 

A. Discrimination Features 
The three features we use here are log standard deviation  

(proposed by Lincoln Laboratory), number of 8 connected 
regions and average power of target areas (proposed by us). 
Log standard deviation provides information about the fluctua- 

 

   
                         (a)                                                    (b) 

Fig.5. (a) Index image. (b) Binary image after detection with PR. 

Guard area

Ship target

Target supportTest pixel

Clutter support

 
Fig.4. Sliding window used for the power ratio (PR) algorithm
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Fig.3. (a) Original SAR image. (b) Image after Otsu segmentation.
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tions in intensity across the region. Number of 8 connected 
regions is a measure of spatial distribution of the brightest 
scatters in the region. Average power of target areas reflects 
the average intensity of the target blob. The three features are 
extracted from the original image, binary image and both 
images respectively, which provide information from texture, 
region and contrast. 

The log standard deviation of a region is defined as the 
standard deviation of the radar returns (in dB) from the region. 
If the radar intensity from range r and azimuth a is denoted by 

( , )P r a , then the log standard deviation σ  can be estimated 
as follows [16]: 

        

2
2 1( / ) / ( 1),S S N Nσ = − −                          (4) 

             1 1010log ( )   ( , ) region,S P r,a r a= ∈∑                    (5) 

          2

2 10[10log ( )]    ( , ) region,S P r,a r a= ∈∑                (6) 

where, N is the number of units in the region. Usually, there are 
large fluctuations in the target regions and as a result, the value 
of standard deviation for target region is much larger than non-
target region. Number of 8 connected regions is the number of 
independent or unconnected regions in the binary chips. We 
can determine this feature by using morphological methods. 
The brightest scatters in target regions often gather together 
and around the centroid of target blob, while for nontarget 
regions, this is just the opposite. Therefore, target regions will 
have smaller number of 8 connected regions than nontarget 
regions. For example, the first region in Fig.4(b) has one 8 
connected regions while the third region in Fig.4(d) has four. 
Average power of target areas is calculated from original chips 
according to the blobs of binary chips. The blob of the binary 
image can be viewed as an index used to point out the pixel 
positions of the target. We use the pixel values of the target 
positions from the original image to calculate this feature by: 

(1 / ) ( , )   ( , ) target blob,Apt N P r a r a= ∈∑              (7) 

where, Apt represents the average power of target areas and N 
is the number of target pixels. This feature is discriminative 
due to the reason that it is robust to different size of targets and 
can give a contrast based measurement. For target chip, Apt is 
much larger than that of clutter chip. 

The other two features developed by Lincoln Laboratory 
are fractal dimension and weighted-rank fill ratio [16], [17]. 
They are effective in most of the cases but not always. The two 
new features described above are in fact the improved version 
of the fractal dimension and weighted-rank fill ratio. As can be 
seen later, our new features are more discriminative and robust 
than the classical version. 

B. K-means Discriminator 
As we have stated earlier, current discriminators are based 

on supervised learning method, which require a large amount 
of samples and usually a lot of time to train a classifier. Is it 
possible to find another way to solve this problem? By 
reviewing this problem, we may find that what we do is to tell 
whether the chip under test contains a target or not regardless 
of what kind of information we use or what kind of method we 
adopt. Current discriminators train some labeled data to form 
decision rules and use the rules to make decisions for unlabeled 
data. After observing the feature space formed by the three 
features, we may find that targets will group together and 
clutters will scatter but far away from targets as can be seen in 
Fig.7. If we normalize the three feature values in interval [0,1], 
the ideal situation may be that target points will gather around 
position [1,0,1] and clutter points will gather around position 
[0,1,0]. This leads to the use of K-means for discrimination 
between target and clutter. 

The K-means discriminator makes use of both the target 
and clutter feature information to guide its clustering process. 
To eliminate modality-dependent amplitude differences, we 
normalize the features into interval [0,1]. After normalization, 
target group will gather around [1,0,1] and clutter group around 
[0,1,0] in the feature space. The number of clusters is set to be 
2 and their initial centers are predefined as [1,0,1] and [0,1,0] 
respectively. The motivation behind this lies in the fact that we 
hope to assign the target points to the first cluster and clutter 
points to the second one by prior information based clustering 
process. After a small number of iterations, this algorithm will 
converge to a stable state, which is not time consuming [18]. 
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Fig.7. Distribution of target and clutter points in the feature space 

      
(a) 

      
                                              (b) 

      
(c) 

      
(d) 

Fig.6. Extracted ship candidate chips. (a) Six target chips extracted from 
the original image. (b) The binary chips corresponding to (a). (c) Six 
clutter chips extracted from the original image. (d) The binary chips 
corresponding to (c). 
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After chip extraction, 28 candidate chips pass to the 
discrimination stage, including 21 ship targets and 7 clutters. 
Through the above described discrimination stage, the ship 
targets are well kept and one false alarm is misjudged to be 
target. The result before and after discrimination are shown in 
Figs.8(a) and (b) respectively. 

IV. EXPERIMENTAL RESULTS 
The proposed approach is verified using an X-band 

TerraSAR data collected near the strait of Gibraltar. The 
polarization mode is HH and the azimuth and range resolutions 
are 1m respectively. The data covers a scene of about 4134m 
×2987m, which corresponds to an image size of 4134×2987. 
The experimental results after detection and discrimination 
stage will be presented and analyzed in the following.  

Large amount of redundant information exists in the 
original image, which is a main source of computational 
burden. Preprocessing stage aims at eliminating the nontarget 
points and thus to alleviate the data load for detection stage. 
After Otsu segmentation and land masking, we remove dark 
area and land area. Table I shows the number of pixels that are 
considered to be target pixels in each step. 

In coastal regions, there are different types of clutter and 
it’s difficult to use a model to describe the clutter distribution 
properly. Non-model based methods as PR will outperform 
model based methods as 2-para CFAR [1], [9]. Fig.9 shows the 
detection results by using PR and 2-para CFAR respectively. 
Table II shows the computation time and number of candidates 
for each detector after detection. 

To verify the validity of the proposed features, we display 
the feature values of the 28 candidates in Fig.10. Due to the 
similarity between target and clutter as well as the diversity 
existing within targets, each feature is discriminative to certain 
candidates and only by choosing a proper feature group can we 
hope to achieve a satisfactory performance. The three features 
proposed by Lincoln Laboratory will be used to form a feature 
group and the two new features along with log standard 
deviation will be used to form another feature group. We use 
the above proposed discriminator to verify the ability of the 
two feature groups. The discrimination results are shown in 
Fig.11. As can be seen from the result, one target is lost in 
three Lincoln Laboratory features while the new feature group 
finds all the targets. Besides, one false alarm occurs in both 
two feature groups. 

 

 

 

 

 

V. CONCLUSION 
For ship detection in coastal regions of high resolution 

SAR imagery, a new preprocessing method based on Otsu is 
first applied. Ship targets are usually small bright regions 
scattering in the whole scenario and searching the large areas 
of land and ocean for targets is exhausting. By focusing only 
on the potential target area, we filter out a lot of false alarms 
while targets areas are well preserved. Simulation results show 
that data load for the following stages are greatly alleviated by 
the proposed method.  

Different types of ground objects have different scatter 
properties and thus it is a quite challenging work to model the 
clutter. Experimental Results indicate that PR outperforms 2-
para CFAR in both speed and accuracy. For coastal regions, 
it’s preferred to use a detection method without modeling the 
clutter. Note that we are focusing on the general SAR ATR 
process and aiming at improving the performance as a whole. 
Sometimes, if too much effort is put into one stage, say finding 
a suitable but complex model for the clutter in the detection 
stage, the improvements made in this stage will not necessary 
be kept. 

Prior knowledge is of great significance to ship detection 
and discrimination. To some extent, the whole process is based 
on prior knowledge, such as the difference in target and clutter 

TABLE II. COMPUTATION TIME AND NUMBER OF
CANDIDATES 

 Computation time (s) Number of 
candidates 

PR 40.6518 200 
2-para CFAR 55.6705 608 

   
(a)                                            (b) 

Fig.8. (a) Candidates before discrimination. (b) Discrimination result.

  
 (a)                                        (b) 

Fig.9. (a) Detection result with PR. (b) Detection result with 2-para 
CFAR. 

TABLE I. NUMBER OF PIXELS IN EACH STEP

Image Original 
image 

Otsu 
image 

Index image 

Pixel number 12348258 1372412 176917 

 

   
(a)                                                    (b) 

Fig.11. Discrimination results. (a) Lincoln Laboratory feature group. (b) 
New feature group. 

408



 

echoes, difference in land and target areas, high contrast 
between target point and its surrounding areas. Current 
discriminators such as QD, SVM and BNN also take advantage 
of the prior knowledge from similar training samples. However, 
this kind of knowledge is not easy to access and at the current 
time is not reliable. K-means discriminator makes use of the 
feature information of target and clutter in feature space to 
discriminate target from clutter. If the feature group is chosen 
properly, K-means will behave well. Experimental results 
present that the proposed feature group is more discriminative 
than the Lincoln Laboratory feature group. 

Currently, the proposed scheme has been verified using 
TerraSAR-X data and some preliminary results are  obtained. 
Further testing is needed to verify the effectiveness of this 
scheme in diversified high resolution SAR imagery as long as 
the data is available. 
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Fig.10. The five discrimination features extracted from the 28 
candidates. (a) Log standard deviation. (b) Number of 8 connected 
regions. (c) Average power of target areas. (d) Fractal dimension. (e) 
Weighted rank fill ratio. Asterisk represents targets and cross represents 
clutters. 
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