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Abstract—In the machine learning community, most algo-
rithms proposed, particularly for inductive learning, are based
entirely on one crucial assumption: that the training and test data
points are drawn or generated from the exact same distribution.
If this condition is not fully satisfied, most learning algorithms or
models are corrupted. In this paper, we propose a new instance
based transductive transfer learning method based on Boosting
framework by using a distribution measure approach. There
follows a detailed description of this distribution measure ap-
proach. Subsequently, we describe our boosting transfer learning
method in detail and report its performance in facial expression
recognition tasks.
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[. INTRODUCTION ON TRANSFER LEAERNING

ThisleeeparstartTraditional Traditional machine learning
makes a vital assumption: the training and test data should
have the same distribution. However, in practice, such an
assumption may not always hold. There are several examples
that reflect the value of transfer learning and lead to our
interest in this research area.

Imagine there is website in a university; it hosts a huge
amount of web documents previously labelled by experts.
The task is to classify these web documents into several
predefined categories. This is a typical real world application
for web-document classification. Further, as we know, there
are many new websites built every day, leading to another
classification task. A newly built website needs to also perform
web document classification. However, in this case, as the
features or distributions may be slightly different, being from
a different website, and as the experts have not labelled a new
training dataset, we cannot use the previous model trained on
the university website to perform classification in this new
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task. A new challenge is in front of us; how can we build a
model to achieve acceptable classification performance on the
new website by using the limited labelled training set collected
from one website only? In such cases, transfer learning, which
can transfer the classification knowledge into the new domain,
can help.

Another real world example might involve the goal of pro-
viding automatic classification of customer review documents
for a product, for instance a range of CD players, into two
categories, positive and negative. In order to obtain good
performance in this classification task, we need to collect
and assign a label (positive or negative) to as many review
samples as possible. Then we can build or train a model.
However, the distributions of review data for various types
of CD players are different. Therefore, one suggestion may be
to collect the review data and manually assign a label to them
on each individual product type separately, thus training the
classifier for each product separately. Unfortunately, this will
prove to be very expensive. In such cases, we want to train a
classification model on the review data of some products and
apply it to other products review data as well. Naturally this
brings to mind the very concept of the transfer learning, which
can save an immeasurable amount of effort on labeling work
[1].

The initial motivation for the study of transfer learning
comes from observing human behavior; human beings are
able to intelligently apply previous knowledge to deal with
new problems or challenges, creating better solutions without
undergoing a re-learning process. The first discussion on
transfer learning in the machine learning community was in
the NIPS-95 workshop. Since 1995, and as a new research
topic transfer learning has attracted a large amount of attention
and been named in different ways; learning to learn, knowl-
edge transfer, multi-task learning, knowledge consolidation,
incremental learning [2]. Multi-task learning is the technique
most closely related to transfer learning. In multi-task learning
methods [3] the goal is to learn different tasks simultaneously.



Transfer learning tries to extract the knowledge from one or
more data sources and transformationally apply the knowledge
yielded from previous tasks to new ones. It is worth noting,
however, the difference between these two learning techniques.
Multi-task learning aims to learn all the sources and tasks
together. In contrast, transfer learning pays greater attention
to the target task.

Before we make categories for transfer learning, there are
three questions to deal with; what to transfer, how to transfer,
and when to transfer. To answer the first question, we need to
know which parts of the knowledge are available for transfer
to another task. In some tasks there is specific knowledge not
shared with other tasks, but some knowledge may be common
among different tasks. If we can extract more information
from this common knowledge, we may produce improved
performance in the target task. The subsequent question is
how to transfer. Here, learning algorithms should be able to
learn the common knowledge and enable its transfer. The final
question, when to transfer, must be answered in a reverse
fashion; i.e. when should we not perform transfer learning?
Obviously when the source task and target task have no
relationship between them, using transfer learning will corrupt
the performance of learning; we refer to this as negative
transfer.

In traditional machine learning, based on different situations
and learning tasks, transfer learning has been categorized
as follows: inductive transfer learning, transductive transfer
learning and unsupervised transfer learning. When the target
task is different from the source task and there is some labelled
data available in the target task, we perform inductive transfer
learning. In cases where no labelled data is accessible in
the target domain, moreover the target and source tasks are
the same, but the feature space or the marginal probability
distributions of the input data are different, we must perform
transductive transfer learning. Finally, in unsupervised transfer
learning, the target and source tasks are not the same but
related. Moreover the labelling information is unavailable in
both. The unsupervised learning targets, for instance clustering
and density estimation, are concentrated on. In this paper, we
propose a transductive transfer learning based on Boosting
framework.

Regarding “what to transfer”, different approaches in trans-
fer learning can be assigned to the following cases. The first
case is instance based transfer learning [4], [5], [6], [7], [8],
[9], [10], [11], [12], in which we assume there is data in the
source domain, which can be used as learning samples in the
target domain. The second is referred to as the feature repre-
sentation transfer approach [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. The basic idea behind this is that there
are some common or good features in the feature space, shared
by both the source domain and target domain. If the transfer
learning method can learn the shared feature representation
in the source domain, the performance in the target domain
should be improved. The third case is to take a parameter trans-
fer approach [23], [24], [25], [26], [27]. In this case we assume
that the models generated from the source and target tasks

have some common parameters or prior distributions of the
hyper-parameters. By using these shared parameters between
two models, the knowledge could be transferred. The fourth
can be termed relational knowledge transfer problems [28].
Here it is believed that there are some relationships within
data which is shared or similar between the source and target
tasks. Here, transferring the knowledge amounts to discovering
and transferring the relationships within the data. To sum up,
in order to perform transfer learning there are assuredly certain
common and shareable parts, e.g. common instances, common
features, shareable parameters, and relationships within data.
Finding these shareable or “good” parts between source and
target tasks becomes one vital challenge in transfer learning.

In transductive transfer learning, the source and target tasks
must be exactly the same, and some or all of the unlabeled
samples in the target task must be available. The data distri-
butions in two domains are allowed to be different. In [29]
the authors initially propose transductive transfer learning.
All unlabeled data are requested to be available to them at
training time. Here is a formal description for transductive
transfer learning. Based on two domains, source domain Ds
and target domain Dt, corresponding to two tasks, learning
task Ts and target task Tt, transductive transfer learning aims
to yield a good performance by classification function Ft on
the target task by transferring the knowledge learned in Ds
and Ts, where Ds # Dt and Ts=Tt, to Tt, with help from
some unlabeled instances in Tt at training time. The method
we propose later is related to this type of transfer learning.
In [30], [9], [12] all the approaches proposed by the authors
are related to instance based transductive transfer learning.
The basic ideas behind these approaches are similar; by using
different strategies to add different penalties to each instance
in source task Ts a usable model is generated for target task
Tt. Another type of transductive transfer learning is based
on feature representation. A structural learning algorithm is
proposed by Blitzer et al. [31]. In the first stage, some high
valued features are selected based on the analysis of data from
both domains. In the following stage, these valued features
are used to generate a set of new augmented features by using
singular value decomposition. Finally, a model suitable for the
target task is built on these augmented features.

A. An Introduction on Boosting Learning for Transfer Learn-
ing

As a new research topic, transfer learning, especially trans-
fer Boosting learning, has not yet attracted much attention. Dai
et al. [32] propose an instance base inductive transfer learning
approach based on the Boosting framework, TrAdaBoost. As
an extension of the AdaBoost algorithm TrAdaBoost assumes
that exactly the same feature set and label set are shared
between the source and target data. The only difference is the
distribution between the two. As an instance based transfer
approach, TrAdaBoost also works with the assumption that
certain data points in the source domain could be helpfully
used when learning the target tasks. In TrAdaBoost data in
the source domain are re-weighted for each Boosting iteration;
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useful data are assigned high weights whilst “bad” data receive
relatively low weights. The goal is that TrAdaBoost forces the
Boosting algorithm to learn these “valuable” instances in the
source data and ignore the “bad” ones. In comparison with the
lack of need for labelled samples in the target domain for our
method, as an inductive transfer learning method, TrAdaBoost
asks for some labelled instances to be available in target task.

II. TRANSFER LEARNING ON FACIAL
EXPRESSION RECOGNTION

A. The Motivation for Using Transfer Learning in Facial
Expression Recognition

In the machine learning community, to obtain a good
performance from a learning algorithm, people hope to have a
training dataset as large as they can. It is hard to say how big
a dataset is required for a particular learning task, it is decided
by the complexity of the task, but as all researchers have a-
greed, a larger training dataset can offer a fuller coverage of the
distribution of entire data and more inherent information for
learning, consequently a better performance for any machine
learning approach is definitely yielded. As a learning task with
high complexity in a high dimension feature space, people
desperately need a large dataset for learning facial expression
recognition task. To collect and label such large amount of
facial expression training images by human only, however, is
always an extremely difficult, expensive, and time consuming
job. This leads to that there is always a struggle with the lack
of training data for learning facial expression recognition task.

Imagine this situation; a set of facial expression images with
correct label information is available to us. Certainly it is not
difficult for us to build a model and yield a good recognition
performance on this set of images. However the target has been
changed. We have another facial expression image set without
labels and the data distribution is different from the previous
one —perhaps this dataset is collected from a different ethnic
group than the labelled facial expression dataset we already
have. We are not able to spend a long time or make huge efforts
in labelling these facial images, but we are then supposed to
yield an acceptable classification performance on this dataset
despite its having no labels. It is worth stating that this
situation differs from one which would use semi-supervised
learning. In semi-supervised learning, although there is also
an unlabeled dataset, we assume that unlabeled data is drawn
from the same distribution as the labelled data. Here, such
an assumption is not necessarily held when using transfer
learning.

When transfer learning is employed, although it allows for
the training and testing datasets to be drawn from different
distributions, a relationship between the two datasets remains
necessary. After Ekman and Izards assertion that the 6 univer-
sal facial expressions —happiness, sadness, surprise, anger,
fear, and disgust —are regardless of the difference in culture
and nationality, using a transfer learning technique becomes
a real possibility in facial expression recognition tasks. No
matter from which nationality the facial expression images
are collected, these 6 universal facial expressions can always

be used as the classification information. Therefore, the same
classification task can be applied to various facial expression
datasets. A proper use of transfer learning in facial expression
recognition tasks can dramatically reduce the amount of effort
and time required for labelling a new facial expression image
set.

B. An Introduction on Maximum Mean Discrepancy (MMD)

In [33] the concentrated issue that the authors address is
whether or not the samples are drawn from different dis-
tributions and how great are the differences between them.
For example two distributions p and g, after regenerating a
Kernel Hilbert Space and mapping the distributions into the
space, a smooth function is employed to justify the difference.
When this smooth function produces a large and positive value
the samples are drawn from different distributions. Contrarily
when a small or negative value is produced by the smooth
function the samples are collected from the similar distribu-
tions. A justification is made by the difference, a relatively
large difference means the two samples possibly are from two
different distributions; otherwise, they are from the similar
distribution. This difference is called as Maximum Mean Dis-
crepancy (MMD). Here, the key challenge is finding a properly
smooth function F; a “rich enough” F can make the MMD be
disappeared when p=q and be as large as possible when p # q.
The authors selected F to be a unit ball in a universal RKHS
H [45] with associated kernel k(.), where a Gaussian kernel
is chosen. Here is a brief explanation of Reproducing Kernel
Hilbert Space (RKHS). The RKHS provides a rigorous and
effective framework for smooth multivariate interpolation of
arbitrarily scattered data and for accurate approximation of
general multidimensional functions. Let X be an arbitrary set
and H a Hilbert space [46] of complex-valued functions on X.
If a linear map from H to the complex numbers is continuous
fro and x in X, we say that H is a reproducing kernel Hilbert
space. After an F is selected the next is using the framework
of statistical hypothesis testing. Two set of samples x and y are
drawn from distributions p and q respectively. The test statistic
MMD [F, x ,y] is produced with a particular threshold; x €
X, y € Y. When the threshold is exceeded the y is placed
in rejecting set Q and is considered to be a sample drawn
from a different distribution than was x. Finally, when the
population is zero in Q the distributions p and q are justified
as the same. In our boosting transfer learning method the test
statistic MMD [F, x ,y] is used as a measure of the size of the
difference between the distributions generating the samples x
and vy.

C. A Transfer Learning Boosting Approach Based on Distri-
bution Measure

Promising applications of Transfer learning to facial expres-
sion recognition tasks have stirred great passion. Here, we
propose a new instance based transductive transfer learning
method based on Boosting framework by using a distribution
measure approach. There follows a detailed description of our
boosting transfer learning method, after then we demonstrate
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the performance on a synthetic dataset and facial expression
recognition tasks.

By way of clarification for the proposal of our method;
our method is related to an instance base transductive transfer
learning method. When two sets of data points, A and B
are available, A with labels and B without, the aim is to
generate a classifier trained on dataset A which achieves
acceptable performance on dataset B with aid from B. For
such a situation, the original motivation is revealed at pervious
section.

The basic idea behind our method is that after the test
statistic MMD produces the measure of difference for the
two distributions based on each pair of samples, the measure
is employed to guide the Boosting method towards greater
respect for data points with relatively small difference. A
detailed description follows.

In our approach the first step is initialization, where the test
statistic MMD produces the difference of each pair of samples,
a and b where a € A and b € B. Afterwards, for each a, we
summarize its difference with every point in set B.

N
SMMD; = MMD(a,b;)

Jj=1

()]

Where N is the size of set B. Subsequently, we employ
a squeeze mapping function to adjust the factor, SM M D;,
which is inversely mapped into between [0],[1] interval non-
linearly. The squeeze mapping function is defined as:

1

IMF(SMMDi) = 1y

(@)

Where a is a sample in set A. ¢ is coefficient to adjust the
shape of this mapping function. After we adjust the steepness
of this non-liner function by choosing a range of ¢, ¢ is set to 2
in our implementation. Here, we call the output the importance
factor (IMF) where a large difference yielded from MMD will
be inversely mapped to a relatively small value; conversely, a
big importance factor is obtained when the difference is small.

After we yield IMF for each of the data points in set A, in
the following step we modify the current Boosting approach,
AdaBoost, to make it learn each instance in set A based on its
IMF. In other words, training samples in set A with large IMF
will be assigned large cost values in Boosting algorithm. Here,
we propose a new Boosting approach called ITRBoost, which
is related to instance based transductive transfer learning. We
define a cost function as:

N
F) =" Bilog(1+e ¥iF ) 3)

=1

Where, N is the size of set A, (3; is the IMF of sample i.
y; is the label. Subsequently, we can derive ITRBoost by the
sequential minimization of this cost function (3).

Given that we have chosen f; 1, we wish to choose ;1
to minimize the cost function:
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By using the inner product — < VC(F), f >, it is found
that finding an f maximizing — < VC(F), f > is equivalent
to finding an f minimizing the weighted error of samples,

Z D(i) More details are provided in the following.
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is equivalent to finding an f minimizing the weighted error

N
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Let us define ITRBoost: an instance based transductive
transfer learning. Assuming F is a linear combination of base
hypotheses class, and f={-1,+1}. Y is the label, Y={-1,+1},
Y €Y.

A formal description of the Boosting transfer learning
method we propose based on binary classification problems
has been provided at follow. As can be seen from the algo-
rithm, in each Boosting iteration round, the training instances
with large IMF will relate to larger training weights. In other
words, the training samples in dataset A with relatively larger
differences from the distribution of dataset B will be weakly
learned or ignored by our Boosting method. At the end, our
method is trained on the data points with similar distribution
to dataset B. Hence a reasonably good performance on dataset
B is the result.



ITRBoost:

Input one labeled data seta, Importance factors IMF, A
base learning algorithm learner and the maximum
number of iterations T, N 1s the number of training

instances. Initialize the mitial weight vector,

1.
D,(i) = N(l =L...N).F(x)=0
For t=1,...T
Search for ff(x) which minimizes the weighted

error
ZD,(i)f(yi £ fi(x).

1 if condition=ture
I(condition) = . ;

0 otherwise
Calculate the error of f,(x)

N
3 pe
)
LI
B30
]
=L,
Update the new distribution
—¥.F (x) N —VF (%)
e e
fe” 1 Z,Z = Z Le” — )
e Bl
a normalization term. Qutput the final classifier:

F(x)= Sigﬂ(z &.J1(x)).

1
&=—=In
) (

D= 14+ F

Fig. 1. ITRBoost

III. EXPERIMENTS

In this section, in order to demonstrate the effectiveness of
ITRBoost on transfer learning we first generate two synthetic
datasets with the same task and different distributions, subse-
quently we extend our method to multi-class problems with a
one-against-rest strategy [34] and apply it to facial expression
recognition tasks with two facial expression datasets. The
effectiveness of this method has been validated.

A. Experiments on Synthetic Data Classification

Here, Fig. 2 and Fig. 3 illustrate two synthetic datasets for
source and target tasks respectively generated by two differ-
ent sets of Gaussian distributions with the same means and
different covariance. In order to perform transfer learning on
the two datasets, the same classification task, two categories,
is provided in both. In source domain 400 data points are
generated, 200 points for each category; target domain has 200
points, 100 point for each. In the following we perform the
transfer learning by using AdaBoost and ITRBoost, training
classifier on source task and testing on target task; two decision
boundaries are generated by them respectively, the MLP with
3 hidden neurons was employed as base learner, and the
maximum number of iteration is set as 20.

In the following the decision boundary on the target domain
generated by AdaBoost trained on the source domain is shown
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in Fig. 4. Clearly this decision boundary is suitable for the
source task but is poor on the target task.

Fig. 2. Synthetic Dataset for Source Task

Fig. 3.

Synthetic Dataset for Target Task

Fig. 4. Decision Boundary of AdaBoost on Target Task

Fig. 5. Decision Boundary of AdaBoost on Target Task



From Fig. 5 it is clear that ITRBoost successfully answers
the question “what is transferred”. These points in the source
domain, which is close to the distribution of the target domain,
are found out and employed as transfer training samples in
ITRBoost. A decision boundary with better performance on
the target task is built.

B. Experimental Facial Expression Datasets and the Repre-
sentation Method Details

In this paper, to demonstrate and evaluate the performance
of the approaches we propose for facial expression recognition
and analysis problems, we mainly conduct our experiments
using two facial expression databases; the Japanese Female
Facial Expression (JAFFE) dataset [35] and the AR face
database [36]. Here, we give some samples and details of
each of the datasets. A powerful representation method, Gabor
wavelet representation, is chosen as the feature extraction
method in our experiments. A detailed description for using
this method is given in this section as well.

JAFFE: This database contains 213 images of Japanese
female facial expression. Ten female facial expressers are
involved in this dataset. Each of the expressers poses 3 or
4 times for each of the 7 universal facial expressions (anger,
disgust, fear, happiness, neutral, sadness, and surprise). There
are some samples from the JAFFE dataset in Fig. 6. The
original image size is 256256 pixels. As our work is essentially
focused on the classification step, we have manually cropped
every face image to remove the influence of the background.
The resized image is 120160 pixels. This is, however, not an
absolute necessity if all the subjects are located at roughly the
same position and detected well in every image.

Anger Fear

Disgust

Happiness Neutral Sadness Surprise

Fig. 6. Facial Expression Samples from Japanese Female Facial Expression
(JAFFE) Dataset

AR: In the AR face dataset there are 56 female and 70
male facial expressers. Each expresser shows four expressions:
neutral, smile, anger, and scream. Some examples selected
from the AR database are shown in Fig. 7. For each persons
expression, two images are taken from two different sessions.
Thus in all we have a total of 1008 pictures of 768x576
pixels each. We also reduce each image to 230x250 pixels. All
the pictures are collected in situations involving different il-
lumination conditions, different backgrounds, with the subject
wearing glasses and scarf or not. All these diverse situations
make the difficulties in making accurate facial expression
recognition on this database far higher than with other datasets.
However, this makes the recognition task much closer to a true
situation in the real world.

Representation of Facial Expression Datasets: In [37] there
is a comparison of a range of feature extraction methods for
facial expression recognition. At the end, the authors point out

that the best recognition performance is obtained when using
Gabor representation as Gabor representation provides more
discriminatory power.

Neutral Smile Anger Scream

Fig. 7. Facial Expression Samples from AR Dataset

The 2-D Gabor wavelet filters have been proven to be a
very useful tool in computer vision and image analysis, [38],
[39], [40], [41], [42], [43]. One of benefit is the lack of
sensitivity to differences in illumination. Use of 2-D Gabor
wavelet representation in computer vision was pioneered by
Daugman in the 1980s [44]. The Gabor wavelet representation
allows description of spatial frequency structure in the image
while preserving information about spatial relations.

In our work, after an original image is transformed by the
Gabor filter bank, in a Gabor feature space there are 24 Gabor
feature images. For each Gabor filter, the output is a Gabor
component-feature. Finally, we concatenate all the outputs of
every Gabor filter and derive a Gabor feature vector. Appar-
ently the dimensionality of a Gabor feature vector is extremely
high. Thus, for receiving a better generalized performance and
to decrease the computational cost, we employ the principal
component analysis (PCA) to reduce the dimensions.

To conclude, we keep the top 40 and 100 PCA coefficients
to form a feature vector for the JAFFE and AR datasets re-
spectively. Now in a feature space, an original facial expression
image is represented by a vector with 40 elements for JAFFE
or 100 elements for AR.

C. Experimental Results and Analysis on Facial Expression
Recognition Tasks

In this section, we describe a series of simulation studies
which demonstrate the performances of the method we pro-
pose for facial expression recognition tasks.Two facial expres-
sion datasets are involved, JAFFE and AR. The JAFFE dataset
is a collection of female facial expression images from Japan.
The AR dataset involves a set of facial expression images
collected from Europeans of different genders. Obviously,
the differences in nationality, ethnic group and gender make
the distributions of the two datasets dissimilar. There is one
condition, involving the same task in different datasets, which
must be met before we can perform transfer learning. Thus,
we select samples with the same facial expressions between
the two datasets - anger, happiness and natural - and we keep
the top 40 PCA coefficients to form a feature vector for both
of the datasets. Now, in feature space both have the same
dimensions. In order to achieve fair experimental results, we
balance the sizes between the two datasets, selecting around
90 images from each. In the experiments, MLP is employed
as base learner; and the number of hidden neurons is 30, and
50 is used as the maximal number of iterations.
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Experiment 1: In this experiment, the JAFFE dataset is used
as the source training set, and the performances are yielded
from testing on the AR data.

Figure 8 shows the performances of AdaBoost and our
method used to do transfer learning from JAFFE to AR. A
significant improvement has been produced by our method.

70
65

%)

55
50
45
40

Test Error

AdaBoost ITRBoost

Fig. 8. Transfer learning from JAFFE to AR

Experiment 2: Another experiment is carried out in reverse.
We swap the source training set and target set. In other words
we transfer the knowledge learned in the AR dataset to the
JAFFE dataset.

~J
w

~J
[=}

)
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45

AdaBoost ITRBoost

Fig. 9. Transfer learning from AR to JAFFE

Figure 8 and 9 provide the results based on testing perfor-
mances of transfer learning by using two facial expression
datasets. It can be clearly observed that AdaBoost as a
successful supervised learning method cannot yield a good
performance in the case of training and testing sets drawn
from different distributions. As ITRBoost uses the difference
of distribution between the two dataset, a significant improve-
ment is achieved.

IV. SUMMARY AND FURTHER WORK

In this paper, we have made an investigation into transfer
learning and presented a transfer learning method based on
a Boosting framework by using the method of measuring
the difference of distributions. After comparison between the
testing performances of the baseline method, AdaBoost, and
our method on two facial expression datasets with obviously
dissimilar distributions, promising results are yielded. Re-
cently, another Boosting transfer learning approach [32] has
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been proposed, namely TrAdaboost. This method is related
to instance base inductive transfer learning. Therefore, labels
in the source (training) dataset are necessary; moreover a
number of samples in the target (testing) dataset must have
label information as well. This is in contrast with our method,
where this effort is unnecessary.

As a pilot study of transfer learning in facial expression
recognition tasks, there is a lot of ongoing work for us. Our
experiments thus far have involved only two facial expression
datasets. Clearly, more facial expression image sets are needed
to further evaluate the effectiveness of our method. In the
current stages, the measure of difference between distributions
is used to guide a Boosting algorithm to selectively learn
the training samples. However it is not comprehensive and a
large amount of unlabeled data in target domain has not been
involved in the Boosting learning process. To further improve
the performance, we believe that when using transfer learning
to transfer the knowledge, we should not ignore the unlabeled
data which contains rich learning information in the target
domain. A new Boosting transfer learning method, in which
both labelled data in source domain and unlabeled data in the
target domain is able to be involved in the learning process
and a closer distribution of target data can be discovered, is
among our ongoing work.
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