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Abstract—In this paper, the existence of oscillatory solutions
for a four coupled FHN network model with delays is investigated.
Some theorems to determine the oscillatory solutions for the
system are obtained. The practical criteria for selecting the
parameters in this network are provided. Computer simulations
are also given to illustrate the effectiveness of the results.

I. INTRODUCTION

The FitzHugh-Nagumo model (FHN) is a simplified ver-
sion of the Hodgkin and Huxley model of an excitable-
oscillatory membrane which is very adequate for emulation
of various biological systems from the dynamic behavior of
spiking neurons to the information processing in the brain via
neural firing. For the following FHN system with time delay
feedback driven by two periodic signals:

𝜀𝑥′(𝑡) = 𝑥(𝑡)− 1

3
𝑥3(𝑡)− 𝑦(𝑡) (1)

𝑦′(𝑡) = −𝑥(𝑡) + 𝑎+ 𝑓 cos(𝜔𝑡) + 𝐹 cos(Ω𝑡)

+𝑘(𝑦(𝑡− 𝜏)− 𝑦(𝑡))
Hu et al. have investigated the phenomenon of vibrational
multi-resonance in system (1). The authors found that the
quasi-periodic and periodic vibrational resonances in the sys-
tem can be induced by the time-delay feedback [1]. With
respect to system (1), a coupled FHN system may be able
to better describe the dynamic characteristic such as its syn-
chronization and stability. Therefore, the dynamic properties of
various coupled FHN systems have recently been investigated
by many researchers for better understanding about their col-
lective behavior [2-7]. In 2009, Wang et al. have investigated
a coupled FHN neural model as follows [2]:

𝑣′1(𝑡) = −𝑣31(𝑡) + 𝑎𝑣1(𝑡)− 𝑤1(𝑡) (2)
+𝑐1 tanh(𝑣2(𝑡− 𝜏))

𝑤′1(𝑡) = 𝑣1(𝑡)− 𝑏1𝑤1(𝑡)

𝑣′2(𝑡) = −𝑣32(𝑡) + 𝑎𝑣2(𝑡)− 𝑤2(𝑡)

+𝑐2 tanh(𝑣1(𝑡− 𝜏))
𝑤′2(𝑡) = 𝑣2(𝑡)− 𝑏2𝑤2(𝑡)

where 𝑎, 𝑏𝑖, 𝑐𝑖(𝑖 = 1, 2) are constants. The authors found that
time delay can control the occurrence of bifurcation in the
coupled FHN neural model and synchronization is sometimes
related to bifurcation transition. Fan and Hong introduced a

second time delay in model (2) as the followng [3]:

𝑥′1(𝑡) = −𝑥31(𝑡) + 𝑎𝑥1(𝑡)− 𝑥2(𝑡) (3)
+𝑐1 tanh(𝑥3(𝑡− 𝜏1))

𝑥′2(𝑡) = 𝑥1(𝑡)− 𝑏1𝑥2(𝑡)
𝑥′3(𝑡) = −𝑥33(𝑡) + 𝑎𝑥3(𝑡)− 𝑥4(𝑡)

+𝑐2 tanh(𝑥1(𝑡− 𝜏2))
𝑥′4(𝑡) = 𝑥3(𝑡)− 𝑏2𝑥4(𝑡)

Defining 𝜏 = 𝜏1 + 𝜏2 as a parameter, the authors have
shown that there is a critical value for this parameter, and a
Hopf bifurcation occurs. The oscillations induced by the Hopf
bifurcation appeared when the parameter passed through the
critical value. Zhen and Xu generalized models (2) and (3) to
a three coupled FHN neurons with time delay as follows [5]:

𝑢′1 = −1

3
𝑢31 + 𝑐𝑢

2
1 + 𝑑𝑢1 − 𝑢2 + 𝛼𝑢21 (4)

+𝛽[𝑓(𝑢3(𝑡− 𝜏)) + 𝑓(𝑢5(𝑡− 𝜏))]
𝑢′2 = 𝜀(𝑢1 − 𝑏𝑢2)
𝑢′3 = −1

3
𝑢33 + 𝑐𝑢

2
3 + 𝑑𝑢3 − 𝑢4 + 𝛼𝑢23

+𝛽[𝑓(𝑢1(𝑡− 𝜏)) + 𝑓(𝑢5(𝑡− 𝜏))]
𝑢′4 = 𝜀(𝑢3 − 𝑏𝑢4)
𝑢′5 = −1

3
𝑢35 + 𝑐𝑢

2
5 + 𝑑𝑢5 − 𝑢6 + 𝛼𝑢25

+𝛽[𝑓(𝑢1(𝑡− 𝜏)) + 𝑓(𝑢3(𝑡− 𝜏))]
𝑢′6 = 𝜀(𝑢5 − 𝑏𝑢6)

where 𝛼 and 𝛽 represent the synaptic strength of the self-
connection and of the neighborhood-interaction, respectively,
𝑓(𝑥) is a sufficiently smooth sigmoid amplification function.
In system (4), Zhen and Xu considered a quadratic term as
the self-connection function to simulate the influence of the
chemical synaptic coupling which does not alter the stability of
the resting state of system (4). For this system the authors have
discussed the Bautin bifurcation which is also known as the
generalized Hopf bifurcation. Bautin bifurcation arises at the
transition between sub-and super-critical Hopf bifurcations has
the property of appearing two limit circles for the parameters
near Bautin bifurcation values. The parameters conditions
for the Bautin bifurcation of the synchronous solution of
system (4) by applying the Bautin bifurcation theorem of
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delay differential equations have been given. Since for each
neuron the synaptic strength of the self-connection 𝛼 and the
neighborhood-interaction 𝛽 are the same, the authors pointed
out that the dynamics of system (4) is completely characterized
by the following system:

𝑢′1 = −1

3
𝑢31 + (𝑐+ 𝛼)𝑢21 + 𝑑𝑢1 − 𝑢2 (5)

+2𝛽𝑓(𝑢1(𝑡− 𝜏))
𝑢′2 = 𝜀(𝑢1 − 𝑏𝑢2)

where [𝑢1, 𝑢2]
𝑇 represents a completely synchronous solu-

tion of system (4). The Bautin bifurcation of synchronous
solution for this neural system (5) is investigated. However,
generally speaking, the synaptic strength of self-connection,
neighborhood-interaction for each neuron and the time delays
are different. In this paper, we discuss the following four
coupled FHN network model:

𝑢′1 = −1

3
𝑢31 + 𝑐1𝑢

2
1 + 𝑑1𝑢1 − 𝑢2 + 𝛼1𝑢

2
1 (6)

+𝛽1[𝑓(𝑢3(𝑡− 𝜏3)) + 𝑓(𝑢5(𝑡− 𝜏5))
+𝑓(𝑢7(𝑡− 𝜏7))]

𝑢′2 = 𝜀1(𝑢1 − 𝑏1𝑢2)
𝑢′3 = −1

3
𝑢33 + 𝑐2𝑢

2
3 + 𝑑2𝑢3 − 𝑢4 + 𝛼2𝑢

2
3

+𝛽2[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢5(𝑡− 𝜏5))
+𝑓(𝑢7(𝑡− 𝜏7))]

𝑢′4 = 𝜀2(𝑢3 − 𝑏2𝑢4)
𝑢′5 = −1

3
𝑢35 + 𝑐3𝑢

2
5 + 𝑑3𝑢5 − 𝑢6 + 𝛼3𝑢

2
5

+𝛽3[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢3(𝑡− 𝜏3))
+𝑓(𝑢7(𝑡− 𝜏7))]

𝑢′6 = 𝜀3(𝑢5 − 𝑏3𝑢6)
𝑢′7 = −1

3
𝑢37 + 𝑐4𝑢

2
7 + 𝑑4𝑢7 − 𝑢8 + 𝛼4𝑢

2
7

+𝛽4[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢3(𝑡− 𝜏3))
+𝑓(𝑢5(𝑡− 𝜏5))]

𝑢′8 = 𝜀4(𝑢7 − 𝑏4𝑢8)

where 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝛼𝑖, 𝛽𝑖, 𝜀𝑖(𝑖 = 1, 2, 3, 4) are constants. 𝜏𝑗 >
0(𝑗 = 1, 3, 5, 7) represent the time delays in signal transmis-

sion. System (6) can be rewritten as the follows:

𝑢′1 = [−1

3
𝑢21 + (𝑐1 + 𝛼1)𝑢1 + 𝑑1]𝑢1 − 𝑢2 (7)

+𝛽1[𝑓(𝑢3(𝑡− 𝜏3)) + 𝑓(𝑢5(𝑡− 𝜏5))
+𝑓(𝑢7(𝑡− 𝜏7))]

𝑢′2 = 𝜀1𝑢1 − 𝛾1𝑢2,
𝑢′3 = [−1

3
𝑢23 + (𝑐2 + 𝛼2)𝑢3 + 𝑑2]𝑢3 − 𝑢4

+𝛽2[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢5(𝑡− 𝜏5))
+𝑓(𝑢7(𝑡− 𝜏7))],

𝑢′4 = 𝜀2𝑢3 − 𝛾2𝑢4,
𝑢′5 = [−1

3
𝑢25 + (𝑐3 + 𝛼3)𝑢5 + 𝑑3]𝑢5 − 𝑢6

+𝛽3[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢3(𝑡− 𝜏3))
+𝑓(𝑢7(𝑡− 𝜏7))],

𝑢′6 = 𝜀3𝑢5 − 𝛾3𝑢6.
𝑢′7 = [−1

3
𝑢27 + (𝑐4 + 𝛼4)𝑢7 + 𝑑4]𝑢7 − 𝑢8

+𝛽4[𝑓(𝑢1(𝑡− 𝜏1)) + 𝑓(𝑢3(𝑡− 𝜏3))
+𝑓(𝑢5(𝑡− 𝜏5))],

𝑢′8 = 𝜀4𝑢7 − 𝛾4𝑢8.

where 𝛾𝑖 = 𝜀𝑖𝑏𝑖(𝑖 = 1, 2, 3, 4). It must be emphasized that it is
hard to deal with system (7) using a bifurcating approach since
the delays 𝜏1, 𝜏3, 𝜏5, and 𝜏7 are different positive constants.
On the one hand, to find a completely synchronous solution
of system (7) is difficult when the 𝛼𝑖 and 𝛽𝑖(𝑖 = 1, 2, 3, 4) are
different. On the other hand, to find the bifurcating parameter
is problematical when 𝜏𝑗(𝑗 = 1, 3, 5, 7) are different. In this
paper, we use Chafee’s criterion to discuss the oscillatory
behavior of the solutions for system (7) [8]: For a class of
time delay system which has a unique unstable equilibrium
point, and all solutions of this system are bounded. Then the
system generals a limit cycle, namely an oscillatory solution.
This system (7) can indeed obey to Chafee’s criterion we
refer reader to [9, appendix] for more information on this
point. In the sequel, we will provide some restrictive conditions
which are easy to check to ensure the existence of oscillatory
solutions.

We first assume that 𝑓𝑗(𝑢𝑗(𝑡 − 𝜏𝑗))(𝑗 = 1, 3, 5, 7) are
continuous monotone bounded functions, satisfying

lim
𝑢𝑗→0

𝑓𝑗(𝑢𝑗(𝑡))

𝑢𝑗(𝑡)
= 𝑙𝑗 , 𝑓𝑗(0) = 0 𝑗 = 1, 3, 5, 7. (8)

For example, the activation functions tanh(𝑢𝑖(𝑡)),
arctan(𝑢𝑖(𝑡)), and 1

2 (∣𝑢𝑖(𝑡) + 1∣ − ∣𝑢𝑖(𝑡) − 1∣) satisfy
condition (8). From this assumption (8), the linearization of
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system (7) about the zero point leads to the following:

𝑢′1 = 𝑑1𝑢1 − 𝑢2 + 𝛽1[𝑙3(𝑢3(𝑡− 𝜏3)) (9)
+𝑙5(𝑢5(𝑡− 𝜏5)) + 𝑙7(𝑢7(𝑡− 𝜏7))]

𝑢′2 = 𝜀1𝑢1 − 𝛾1𝑢2
𝑢′3 = 𝑑2𝑢3 − 𝑢4 + 𝛽2[𝑙1(𝑢1(𝑡− 𝜏1))

+𝑙5(𝑢5(𝑡− 𝜏5)) + 𝑙7(𝑢7(𝑡− 𝜏7))]
𝑢′4 = 𝜀2𝑢3 − 𝛾2𝑢4
𝑢′5 = 𝑑3𝑢5 − 𝑢6 + 𝛽3[𝑙1(𝑢1(𝑡− 𝜏1))

+𝑙3(𝑢3(𝑡− 𝜏3)) + 𝑓(𝑢7(𝑡− 𝜏7))]
𝑢′6 = 𝜀3𝑢5 − 𝛾3𝑢6
𝑢′7 = 𝑑4𝑢7 − 𝑢8 + 𝛽4[𝑙1(𝑢1(𝑡− 𝜏1))

+𝑙3(𝑢3(𝑡− 𝜏3)) + 𝑙5(𝑢5(𝑡− 𝜏5))]
𝑢′8 = 𝜀4𝑢7 − 𝛾4𝑢8

The matrix form of system (9) is the follows:

𝑈 ′(𝑡) = 𝑃𝑈(𝑡) +𝑄𝑈(𝑡− 𝜏) (10)

where 𝑈(𝑡) = [(𝑢1(𝑡), 𝑢2(𝑡), ..., 𝑢8(𝑡))]
𝑇 , 𝑈(𝑡−𝜏) = [(𝑢1(𝑡−

𝜏1), 0, 𝑢3(𝑡− 𝜏3), 0, 𝑢5(𝑡− 𝜏5), 0, 𝑢7(𝑡− 𝜏7), 0)]𝑇 .

𝑃 = (𝑝𝑖𝑗)8×8

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑑1 −1 0 0 0 0 0 0
𝜀1 −𝛾1 0 0 0 0 0 0
0 0 𝑑2 −1 0 0 0 0
0 0 𝜀2 −𝛾2 0 0 0 0
0 0 0 0 𝑑3 −1 0 0
0 0 0 0 𝜀3 −𝛾3 0 0
0 0 0 0 0 0 𝑑4 −1
0 0 0 0 0 0 𝜀4 −𝛾4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

𝑄 = (𝑞𝑖𝑗)8×8

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 𝛽1𝑙3 0 𝛽1𝑙5 0 𝛽1𝑙7 0
0 0 0 0 0 0 0 0
𝛽2𝑙1 0 0 0 𝛽2𝑙5 0 𝛽2𝑙7 0
0 0 0 0 0 0 0 0
𝛽3𝑙1 0 𝛽3𝑙3 0 0 0 𝛽3𝑙7 0
0 0 0 0 0 0 0 0
𝛽4𝑙1 0 𝛽4𝑙3 0 𝛽4𝑙5 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

II. PRELIMINARIES

Lemma 1 Suppose that 𝑏𝑖 > 0, 0 < 𝜀𝑖 ≪ 1, 𝑑𝑖 < 0, 3(𝑐𝑖 +
𝛼𝑖)

2 + 4𝑑𝑖 < 0(𝑖 = 1, 2, 3, 4), then each solution of system
(6) (or (7)) is bounded.

Proof Noting that 𝑓𝑗(𝑢𝑗(𝑡 − 𝜏𝑗))(𝑗 = 1, 3, 5, 7) are con-
tinuous monotone bounded functions, therefore, there exist
𝑁𝑗 > 0 such that ∣𝑓𝑗(𝑢𝑗(𝑡− 𝜏𝑗))∣ ≤ 𝑁𝑗(𝑗 = 1, 3, 5, 7). Since
𝑑𝑖 < 0, 3(𝑐𝑖 + 𝛼𝑖)

2 + 4𝑑𝑖 < 0(𝑖 = 1, 2, 3, 4), this implies that
there exist constants 𝑘𝑖 > 0 such that for any values 𝑢𝑖 we
have

−1

3
𝑢22𝑖−1 + (𝑐𝑖 + 𝛼𝑖)𝑢2𝑖−1 + 𝑑𝑖 (11)

= −1

3
[𝑢2𝑖−1 − 3

2
(𝑐𝑖 + 𝛼𝑖)]

2 +
3

4
(𝑐𝑖 + 𝛼𝑖)

2 + 𝑑𝑖

≤ −𝑘𝑖 < 0 (𝑖 = 1, 2, 3, 4).

Noting that 𝛾𝑖 = 𝜀𝑖𝑏𝑖 > 0 (𝑖 = 1, 2, 3, 4), from (7) when
𝑢𝑖(𝑡) ≥ 0 we get ∣𝑢𝑖(𝑡)∣ = 𝑢𝑖(𝑡)(𝑖 = 1, 2, ..., 8), and 𝑑∣𝑢1(𝑡)∣

𝑑𝑡 =
𝑑𝑢1(𝑡)
𝑑𝑡 ≤ −𝑘1𝑢1−𝑢2+∣𝛽1∣(𝑁3+𝑁5+𝑁7) ≤ −𝑘1∣𝑢1∣+∣𝑢2∣+
∣𝛽1∣(𝑁3 + 𝑁5 + 𝑁7). While as 𝑢𝑖(𝑡) < 0 we get ∣𝑢𝑖(𝑡)∣ =
−𝑢𝑖(𝑡)(𝑖 = 1, 2, ..., 8). and 𝑑∣𝑢1(𝑡)∣

𝑑𝑡 = −𝑑𝑢1(𝑡)
𝑑𝑡 ≤ −𝑘1(−𝑢1)−

(−𝑢2) + ∣𝛽1∣(𝑁3 +𝑁5 +𝑁7) ≤ −𝑘1∣𝑢1∣+ ∣𝑢2∣+ ∣𝛽1∣(𝑁3 +
𝑁5 +𝑁7). Similarly, we always have

𝑑∣𝑢1(𝑡)∣
𝑑𝑡

≤ −𝑘1∣𝑢1∣+ ∣𝑢2∣+ ∣𝛽1∣(𝑁3 +𝑁5 +𝑁7)(12)

𝑑∣𝑢2(𝑡)∣
𝑑𝑡

≤ −𝛾1∣𝑢2∣+ 𝜀1∣𝑢1∣,
𝑑∣𝑢3(𝑡)∣
𝑑𝑡

≤ −𝑘2∣𝑢3∣+ ∣𝑢4∣+ ∣𝛽2∣(𝑁1 +𝑁5 +𝑁7)

𝑑∣𝑢4(𝑡)∣
𝑑𝑡

≤ −𝛾2∣𝑢4∣+ 𝜀2∣𝑢3∣,
𝑑∣𝑢5(𝑡)∣
𝑑𝑡

≤ −𝑘3∣𝑢5∣+ ∣𝑢6∣+ ∣𝛽3∣(𝑁1 +𝑁3 +𝑁7)

𝑑∣𝑢6(𝑡)∣
𝑑𝑡

≤ −𝛾3∣𝑢6∣+ 𝜀3∣𝑢5∣,
𝑑∣𝑢7(𝑡)∣
𝑑𝑡

≤ −𝑘4∣𝑢7∣+ ∣𝑢8∣+ ∣𝛽4∣(𝑁1 +𝑁3 +𝑁5)

𝑑∣𝑢8(𝑡)∣
𝑑𝑡

≤ −𝛾4∣𝑢8∣+ 𝜀4∣𝑢7∣

Since system (12) is a first order linear system of equations
with constant coefficients, the eigenvalues of system (12) can
be obtained by setting 𝑣𝑖 = ∣𝑢𝑖∣(𝑖 = 1, 2, ..., 8), and first
considering

𝑣′1 = −𝑘1𝑣1 + 𝑣2 + ∣𝛽1∣(𝑁3 +𝑁5 +𝑁7) (13)
𝑣′2 = −𝛾1𝑣2 + 𝜀1𝑣1,

Since ∣𝛽1∣(𝑁3 +𝑁5 +𝑁7) is a constant, thus we only discuss
the associated homogeneous system with (13) as follows

𝑣′1 = −𝑘1𝑣1 + 𝑣2 (14)
𝑣′2 = −𝛾1𝑣2 + 𝜀1𝑣1,

The eigenvalues of system (14) is the follows:

𝜆11,12 =
−(𝑘1 + 𝛾1)±

√
(𝑘1 + 𝛾1)2 − 4𝑘1𝜀1 − 4𝜀1

2
(15)

Noting that 𝑘1 > 0, 0 < 𝜀1 ≪ 1, 𝑏1 > 0, thus −(𝑘1 + 𝛾1) < 0
and 𝜆11,12 < 0 if (𝑘1 + 𝛾𝑖)2 − 4𝑘1𝜀1 − 4𝜀1 > 0, or 𝜆11,12 are
complex numbers with 𝑅𝑒𝜆11,12 < 0 if (𝑘1 + 𝛾1)2 − 4𝑘1𝜀1 −
4𝜀1 < 0. This implied that the solutions of system (14) and
consequently the solutions of (13) are bounded since ∣𝛽1∣(𝑁3+
𝑁5+𝑁7) is a constant. In other words, the solutions 𝑢1 and 𝑢2
are bounded in system (12). Similarly, we get other eigenvalues
of system (12) as follows:

𝜆𝑖1,𝑖2 =
−(𝑘𝑖 + 𝛾𝑖)±

√
(𝑘𝑖 + 𝛾𝑖)2 − 4𝑘𝑖𝜀𝑖 − 4𝜀𝑖

2
(16)

(𝑖 = 2, 3, 4)

Based on the assumptions that 𝑘𝑖 > 0, 0 < 𝜀𝑖 ≪ 1, 𝑏𝑖 >
0 (𝑖 = 2, 3, 4), this leads −(𝑘𝑖 + 𝛾𝑖) < 0 and𝜆𝑖1,𝑖2 < 0 if
(𝑘𝑖 + 𝛾𝑖)

2 − 4𝑘1𝜀1 − 4𝜀𝑖 > 0, or 𝜆𝑖1,𝑖2 are complex numbers
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with 𝑅𝑒𝜆𝑖1,𝑖2 < 0 if (𝑘𝑖+𝛾𝑖)2−4𝑘1𝜀1−4𝜀𝑖 < 0 (𝑖 = 2, 3, 4).
Therefore, all the solutions of system (12) and consequently
the solutions of system (6) are bounded.

Lemma 2 Suppose that the matrix 𝐴(= 𝑃 +𝑄) is nonsin-
gular, then system (9) has a unique equilibrium point.

Proof An equilibrium point 𝑈∗ = [𝑢∗1, 𝑢
∗
2, ..., 𝑢

∗
8]
𝑇 is the

solution of the following algebraic equation

𝑃𝑈∗ +𝑄𝑈∗ = (𝑃 +𝑄)𝑈∗ = 𝐴𝑈∗ = 0 (17)

Assuming that 𝑈∗ and 𝑉 ∗ are two equilibrium points of system
(9), then we have

(𝑃 +𝑄)(𝑈∗ − 𝑉 ∗) = 𝐴(𝑈∗ − 𝑉 ∗) = 0 (18)

Since 𝐴 is a nonsingular matrix, this implies that 𝑈∗−𝑉 ∗ = 0,
and consequently 𝑈∗ = 𝑉 ∗. Thus system (9) has a unique
equilibrium point. Obviously, this equilibrium point is ex-
actly the zero vector. Noting that the activation functions
are continuous monotone bounded functions, satisfying that
𝑓𝑗(0) = 0 (𝑗 = 1, 3, 5, 7). Therefore, system (9) has a unique
equilibrium point implies that system (6) also has a unique
equilibrium point. By means of Chafee’s criterion of limit
cycle, this paper discusses the oscillatory behavior of the
solutions for a four coupled FHN neurons model where the
synaptic strength of the self-connection, the neighborhood-
interaction for each neuron and the time delays are different. In
the following we provide some restrictive conditions to ensure
that the unique equilibrium point of system (6) is unstable.

III. OSCILLATION ANALYSIS

In this paper, we adopt the following norms
of vectors, matrices and measure of a matrix [11]:
∥𝑢(𝑡)∥ =

∑8
𝑖=1 ∣𝑢𝑖(𝑡)∣, ∥𝑃∥ = 𝑚𝑎𝑥𝑗

∑8
𝑖=1 ∣𝑝𝑖𝑗 ∣, ∥𝑄∥ =

𝑚𝑎𝑥𝑗
∑8
𝑖=1 ∣𝑞𝑖𝑗 ∣, 𝜇(𝑃 ) = 𝑙𝑖𝑚𝜃→0

∥𝐸+𝜃𝑃∥
𝜃 , which for the cho-

sen norms reduce to 𝜇(𝑃 ) = 𝑚𝑎𝑥1≤𝑗≤8[𝑝𝑗𝑗+
∑8
𝑖=1,𝑖 ∕=𝑗 ∣𝑝𝑖𝑗 ∣].

For more details of the measure of a matrix we refer to [11]
and [12].

Theorem 1 Suppose that 𝛽𝑖 > 0, 𝑏𝑖 > 0, 0 < 𝜀𝑖 ≪ 1, 𝑑𝑖 <
0, 3(𝑐𝑖+𝛼𝑖)

2+4𝑑𝑖 < 0(𝑖 = 1, 2, 3, 4), the activation functions
are continuous monotone increasing functions and 𝐴 = 𝑃 +𝑄
is a nonsingular matrix. Assume that 𝜇(𝑃 ) satisfies

∣𝜇(𝑃 )∣ < ∥𝑄∥ (19)

then the trivial solution of system (9) is unstable, implying that
the trivial solution of system (6) is also unstable. There exists
an oscillatory solution for system (6).

Proof From the assumptions, we know that the restrictive
conditions of Lemma 1 and Lemma 2 are satisfied, each
solution of system (6) is bounded and system (9) has a
unique equilibrium point. We shall prove that this unique
equilibrium point is unstable. Since 𝛽𝑖 > 0(𝑖 = 1, 2, 3, 4),
and the activation functions are monotone increasing func-
tions, so 𝑙𝑗 > 0(𝑗 = 1, 3, 5, 7). In other words, each
entry 𝑞𝑖𝑗 of the matrix 𝑄 is positive or zero. The proof is
accomplished by means of a Lyapunov functional 𝑉 (𝑡, 𝑢) =
(𝑉1(𝑡, 𝑢), 𝑉2(𝑡, 𝑢), ..., 𝑉8(𝑡, 𝑢))

𝑇 , where

𝑉𝑖(𝑡, 𝑢) = ∣𝑢𝑖(𝑡)∣+
8∑

𝑗=1

𝑞𝑖𝑗

∫ 𝑡

𝑡−𝜏𝑗
∣𝑢𝑗(𝑠)𝑑𝑠∣, (20)

(𝑖 = 1, 2, ..., 8)

when 𝑢𝑖(𝑡) > 0 we have ∣𝑢𝑖(𝑡)∣ = 𝑢𝑖(𝑡) and 𝑉𝑖(𝑡, 𝑢) = 𝑢𝑖(𝑡)+∑8
𝑗=1 𝑞𝑖𝑗

∫ 𝑡
𝑡−𝜏𝑗 𝑢𝑗(𝑠)𝑑𝑠. Calculating the derivative of 𝑉𝑖(𝑡, 𝑢)

through system (9) as 𝑢𝑖(𝑡) > 0, we get

𝑉1(𝑡, 𝑢)∣(9) (21)

= 𝑢′1(𝑡) +
8∑

𝑗=1

𝑞1𝑗(𝑢𝑗(𝑡)− 𝑢𝑗(𝑡− 𝜏𝑗))

= 𝑑1𝑢1 − 𝑢2 + 𝛽1[𝑙3(𝑢3(𝑡− 𝜏3)) + 𝑙5(𝑢5(𝑡− 𝜏5))
+𝑙7(𝑢7(𝑡− 𝜏7))] + 𝛽1(𝑙3𝑢3 + 𝑙5𝑢5 + 𝑙7𝑢7)
−𝛽1[𝑙3(𝑢3(𝑡− 𝜏3))− 𝑙5(𝑢5(𝑡− 𝜏5))
−𝑙7(𝑢7(𝑡− 𝜏7))]

= 𝑑1𝑢1 − 𝑢2 + 𝛽1(𝑙3𝑢3 + 𝑙5𝑢5 + 𝑙7𝑢7)

𝑉2(𝑡, 𝑢)∣(9) = 𝑢′2(𝑡) = 𝜀1𝑢1 − 𝛾1𝑢2 (22)

Similarly, we have

𝑉3(𝑡, 𝑢)∣(9) = 𝑑3𝑢3 − 𝑢4 + 𝛽2(𝑙1𝑢1 + 𝑙5𝑢5 + 𝑙7𝑢7) (23)

𝑉4(𝑡, 𝑢)∣(9) = 𝜀2𝑢3 − 𝛾2𝑢4. (24)

𝑉5(𝑡, 𝑢)∣(9) = 𝑑5𝑢5 − 𝑢6 + 𝛽3(𝑙1𝑢1 + 𝑙3𝑢3 + 𝑙7𝑢7) (25)

𝑉6(𝑡, 𝑢)∣(9) = 𝜀3𝑢5 − 𝛾3𝑢6. (26)

𝑉7(𝑡, 𝑢)∣(9) = 𝑑7𝑢7 − 𝑢8 + 𝛽4(𝑙1𝑢1 + 𝑙3𝑢3 + 𝑙5𝑢5) (27)

𝑉8(𝑡, 𝑢)∣(9) = 𝜀4𝑢7 − 𝛾4𝑢8. (28)

So, the derivative of 𝑉 (𝑡, 𝑢) through system (9) as 𝑢𝑖(𝑡) >
0(𝑖 = 1, 2, ..., 8) can be represented as a matrix form

𝑉 (𝑡, 𝑢)∣(9) (29)

= (𝑉1(𝑡, 𝑢)∣(9), 𝑉2(𝑡, 𝑢)∣(9), ..., 𝑉8(𝑡, 𝑢)(9))𝑇
= 𝑃𝑈(𝑡) +𝑄𝑈(𝑡)

While as 𝑢𝑖(𝑡) < 0 then ∣𝑢𝑖(𝑡)∣ = −𝑢𝑖(𝑡) and
𝑉𝑖(𝑡, 𝑢) = −𝑢𝑖(𝑡) +

∑8
𝑗=1 𝑞𝑖𝑗

∫ 𝑡
𝑡−𝜏𝑗 (−𝑢𝑗(𝑠))𝑑𝑠 = −[𝑢𝑖(𝑡) +

∑8
𝑗=1 𝑞𝑖𝑗

∫ 𝑡
𝑡−𝜏𝑗 𝑢𝑗(𝑠)𝑑𝑠], and

𝑉1(𝑡, 𝑢)∣(9) (30)

= −[𝑢′1(𝑡) +
8∑

𝑗=1

𝑞1𝑗 [𝑢𝑗(𝑡)− (𝑢𝑗(𝑡− 𝜏𝑗))]

= −[𝑑1𝑢1 − 𝑢2 + 𝛽1(𝑙3𝑢3 + 𝑙5𝑢5 + 𝑙7𝑢7)]
= 𝑑1(−𝑢1)− (−𝑢2) + 𝛽1(𝑙3(−𝑢3)

+𝑙5(−𝑢5) + 𝑙7(−𝑢7))
So as 𝑢𝑖(𝑡) < 0 we get

𝑉 (𝑡, 𝑢)∣(9) = 𝑃 (−𝑈(𝑡)) +𝑄(−𝑈(𝑡)) (31)

Thus, we always have

𝑉 (𝑡, 𝑢)∣(9) = 𝑃 ∣𝑈(𝑡)∣+𝑄∣𝑈(𝑡)∣ (32)

From (32), since ∣𝜇(𝑃 )∣ < ∥𝑄∥, therefor for any 𝑢𝑖(𝑡) ∕= 0,
we have 𝑉 (𝑡, 𝑢)∣(9) > 0, and the trivial solution of system (9)
is unstable. Similar to [10, Theorem 4.1.1], one can prove
that the trivial solution or the unique equilibrium point of
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system (6) is also unstable. Since all solutions of system (6)
are bounded, according to Chafee’s criterion, there exists an
oscillatory solution of system (6).
In the following, we consider the case that some 𝛽𝑖(𝑖 =
1, 2, 3, 4) are not larger than zero.

Theorem 2 Suppose that 𝑏𝑖 > 0, 0 < 𝜀𝑖 ≪ 1, 𝑑𝑖 <
0, 3(𝑐𝑖+𝛼𝑖)

2+4𝑑𝑖 < 0(𝑖 = 1, 2, 3, 4), the activation functions
are continuous monotone functions and 𝐴 is a nonsingular
matrix. Let 𝜌𝑘 = 𝜌𝑘1 + 𝑖𝜌𝑘2(𝜌𝑘2 may equal to zero) and
𝜎𝑘 = 𝜎𝑘1 + 𝑖𝜎𝑘2(𝜎𝑘2 may equal to zero) (𝑘 = 1, 2, ..., 8)
denote the eigenvalues of matrices 𝑃 and 𝑄 respectively. If
for some 𝑘, ∣𝜌𝑘1∣ < 𝜎𝑘1, then the trivial solution of system
(9) is unstable, implying that system (6) has an oscillatory
solution.

Proof The assumptions guarantee that system (9) has a
unique equilibrium point. Setting 𝜏∗ = min{𝜏1, 𝜏3, 𝜏5, 𝜏7},
and considering first 𝜏𝑖 = 𝜏(𝜏 ≤ 𝜏∗, 𝑖 = 1, 3, 5, 7) in system
(9). Since 𝜌𝑘 and 𝜎𝑘(𝜎𝑘2 (𝑘 = 1, 2, ..., 8) are eigenvalues of
matrices 𝑃 and 𝑄 respectively, then the characteristic equation
of system (9) is the following:

8∏

𝑘=1

(𝜆− 𝜌𝑘 − 𝜎𝑘𝑒−𝜆𝜏 ) = 0 (33)

Without loss of generality, we assume that the 𝜌𝑘 satisfying
the conditions of Theorem 2 is 𝜌1. Therefore, we consider the
following equation:

𝜆− 𝜌1 − 𝜎1𝑒−𝜆𝜏 = 0 (34)

Let 𝜆 = 𝜆1 + 𝑖𝜆2. Separating the real and imaginary parts
from (34) yields the following two equations:

𝜆1 − 𝜌11 − 𝜎11𝑒−𝜆1𝜏 cos(𝜆2𝜏) = 0 (35)

𝜆2 − 𝜌12 + 𝜎12𝑒−𝜆1𝜏 sin(𝜆2𝜏) = 0 (36)

We shall show that 𝜆1 > 0, and there is an eigenvalue
which has positive real part in system (34). Let 𝑓(𝜆1) =
𝜆1 − 𝜌11 − 𝜎11𝑒−𝜆1𝜏 cos(𝜆2𝜏), then 𝑓(𝜆1) is a continuous
function of 𝜆1. If 𝜌11 > 0, then we can select a suit-
able delay 𝜏 such that 𝜎11 cos(𝜆2𝜏) > −𝜌11. Therefore,
𝑓(0) = −𝜌11 − 𝜎11 cos(𝜆2𝜏) < 0. Noting that 𝑒−𝜆1𝜏 → 0
as 𝜆1 → +∞, there exists a suitably large 𝜆1(> 0) such
that 𝑓(𝜆1) = 𝜆1 − 𝜌11 − 𝜎11𝑒−𝜆1𝜏 cos(𝜆2𝜏) > 0. By the
continuity of 𝑓(𝜆1), there exists a positive 𝜆∗1 ∈ (0, 𝜆1) such
that 𝑓(𝜆∗1) = 0. If 𝜌11 < 0, since ∣𝜌11∣ < 𝜎11(𝜎11 ∕= 0), then
there exists a suitable delay 𝜏0 and a positive 𝜆0 such that
𝜎11 cos(𝜆2𝜏0) < −𝜌11, and 𝜆0−𝜌11−𝜎11𝑒−𝜆0𝜏0 cos(𝜆2𝜏0) <
0 both hold. Subsequently 𝑓(0) = −𝜌11 − 𝜎11 cos(𝜆2𝜏0) > 0,
and 𝑓(𝜆0) = 𝜆0−𝜌11−𝜎11𝑒−𝜆0𝜏0 cos(𝜆2𝜏0) < 0. Again from
the continuity of 𝑓(𝜆1), there exists a positive 𝜆∗∗1 ∈ (0, 𝜆0)
such that 𝑓(𝜆∗∗1 ) = 0. Thus, there is an eigenvalue of system
(34) that has a positive real part. This implies that the trivial
solution of system (9) is unstable and consequently the trivial
solution of system (6) is unstable. Since all solutions of system
(6) are bounded, according to the Chafee’s criterion, system
(6) generates an oscillatory solution. Based on the theory
of delayed differential equation [13, 14], the instability of
the solution will be maintained as the time delay increases.
Therefore, for any 𝜏𝑖 ≥ 𝜏(𝑖 = 1, 3, 5, 7), the trivial solution of
system (9) is still unstable, implying that the trivial solution of

system (6) is also unstable. So, for any 𝜏𝑖 ≥ 𝜏(𝑖 = 1, 3, 5, 7),
system (6) generates an oscillatory solution. In these conditions
since we select a suitable delay 𝜏 such that system (6) has an
oscillatory solution, we can refer to this process as a delay
induced oscillation.

IV. SIMULATION RESULTS

In system (6), the parameter values are fixed as 𝛼1 =
−1.6, 𝛼2 = −1.3, 𝛼3 = −1.2, 𝛼4 = −1.1; 𝑏1 = 0.16, 𝑏2 =
0.25, 𝑏3 = 0.12, 𝑏4 = 0.15; 𝑐1 = 1.3, 𝑐2 = 1.302, 𝑐3 =
1.305, 𝑐4 = 1.308; 𝑑1 = −0.695, 𝑑2 = −0.698, 𝑑3 =
−0.704, 𝑑4 = −0.708;𝛽1 = 1.5, 𝛽2 = 0.5, 𝛽3 = 0.45, 𝛽4 =
0.18; 𝜀1 = 0.05, 𝜀2 = 0.025, 𝜀3 = 0.085, 𝜀4 = 0.035,
respectively. It is easily checked that the conditions of Lemma
1 and Lemma 2 hold. The activation function is selected as
tanh(𝑢). In this case, 𝛾1 = 𝛾3 = 𝛾5 = 𝛾7 = 1, and
∣𝜇(𝑃 )∣ = 0.994, ∥𝑄∥ = 2.35. Therefore, ∣𝜇(𝑃 )∣ < ∥𝑄∥.
Based on Theorem 1, there exists an oscillatory solution (see
Fig.1). In order to compare the effect of the time delays, in Fig.
2 we changed the time delays from (1, 2, 3, 2) to (4, 7, 9, 6),
the other parameters are kept the same as in Figure 1. We see
that, in these conditions, the oscillatory frequency decreases
when the delays are increased. Both in Fig. 3 and Fig. 4, apart
from time delays, we take the following parameters: 𝛼1 =
−1.3, 𝛼2 = −1.6, 𝛼3 = −1.4, 𝛼4 = −1.5; 𝑏1 = 0.25, 𝑏2 =
0.16, 𝑏3 = 0.24, 𝑏4 = 0.18; 𝑐1 = 1.268, 𝑐2 = 1.582, 𝑐3 =
1.894, 𝑐4 = 1.685; 𝑑1 = −0.5, 𝑑2 = −0.48, 𝑑3 = −0.65, 𝑑4 =
−0.68;𝛽1 = 1.18, 𝛽2 = 0.6, 𝛽3 = 0.75, 𝛽4 = 0.42; 𝜀1 =
0.085, 𝜀2 = 0.095, 𝜀3 = 0.075, 𝜀4 = 0.098, respectively. The
activation function is selected as arctan(𝑢). We still keep
𝛾1 = 𝛾3 = 𝛾5 = 𝛾7 = 1. The eigenvalues of matrices 𝑃 and
𝑄 are 𝜌1 = −0.1763, 𝜌2 = −0.4917, 𝜌3 = −0.4586, 𝜌4 =
−0.2374, 𝜌5 = −0.2606 + 0.1664𝑖, 𝜌6 = −0.2606 −
0.1664𝑖, 𝜌7 = −0.2476 + 0.2025𝑖, 𝜌8 = −0.2476 − 0.2025𝑖,
and 𝜎1 = 2.1341, 𝜎2 = −0.9937, 𝜎3 = −0.4721, 𝜎4 =
−0.6638, 𝜎5 = 0, 𝜎6 = 0, 𝜎7 = 0, 𝜎8 = 0, respectively.
Since ∣𝜌1∣ = 0.1763 < 𝜎1, there is an oscillatory solution
as predicted by Theorem 2. From the figures, we see that the
frequency of oscillation also decreases as delays are increased.
In order to show the effect of 𝛽𝑖, in Fig. 5, we only change
the values of 𝛽2 = −0.6, 𝛽4 = −0.42, the values 𝛽1, 𝛽3 and
the other parameters are all the same as in Fig. 3 and Fig.
4. The oscillation is still maintained, however, the oscillatory
frequency is higher.

V. CONCLUSION

This paper discusses a four coupled FHN neurons model
where the synaptic strength of the self-connection, the
neighborhood-interaction for each neuron and the time delays
are different. By using Chafee’s criterion of limit cycle, two
theorems are provided to determine the oscillatory behavior
of the solutions. The present theoretical developments provide
a new set of conditions to investigate the nature of excitable
cell models and develop a better understanding of the dynamic
behavior of networks made up of spiking neurons.

ACKNOWLEDGMENTS

This research was supported by National Natural Science
Foundation of China (Grant 11361010) to C. Feng and by
NSERC grant ( RGPIN-915) to R. Plamondon.

2780



0 100 200 300 400 500 600

−2

−1

0

1

2
Fig. 1 Oscillatory behavior of the solutions, activation function: tanh(u), delays: (1, 2, 3, 2).
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 Fig. 2 Oscillatory behavior of the solutions, activation function: tanh(u), delays: (4, 7, 9, 6).
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Fig. 3 Oscillatory behavior of the solutions, activation function: arctan (u), delays: (1, 2, 3, 2)
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Fig. 4 Oscillatory behavior of the solutions, activation function: arctan (u), delays: (4, 8, 6, 9)
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Fig. 5 Oscillatory behavior of the solutions, activation function: arctan(u), delays: (4, 8, 6, 9).
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