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Abstract—Spike-timing-dependent plasticity (STDP) 
learning ability has been observed in physical memristors, but 
whether the STDP is caused by the neuron or the memristor is 
unclear. In this paper, we proved the STDP property in the 
model for both symmetric and asymmetric memristor. We also 
employed the symmetric/asymmetric memristors with STDP 
property and the simplified neurons to perform the STDP 
learning ability. At last, the sequence learning experiment of 
the memritive neural network (MNN) with the symmetric 
memristor synapse further verifies the STDP learning ability of 
the memristor. 

I. INTRODUCTION 
  nanoscale, two-terminal device emulating plasticity 
and energy efficiency of biological synapses is a critical 

element for realizing brain-inspired computational systems 
and real-time brain simulators. And memristor, as a 
nanoscale nonvalatile memory element, is a natural device 
for synapse in artificial neural network. There have been 
many groups working on the use of memristor to build 
electronic synapses which implement synaptic plasticity with 
picojoule level energy consumption. In [1], Persin et al. 
developed a memristor emulator to build a simple memristive 
neural network (MNN) to complete the classical Pavlov 
experiment and proved the associate memory of the MNN. In 
[2], Kim et al. built a memristor bridge synapse to improve 
the traditional synapse circuit structure and exhibit the ability 
of image learning of the MNN. In [3] Liu et al. took 
memristor as synapse in BP neural network for noise 
eliminating training and pattern recall rate improving. 
Besides serving as synapse, memristor has a much more 
widely application due to their special memory and nonlinear 
properties. In [4], Kim et al. built a physical memristor 
crossbar array to store binary image and 10-level gray image, 
and the result verified the ability of memristor serving as a 
new type of memory material. In [5] and [6], memristor as the 
forth basic circuit element device, brought a new perspective 
for the oscillating circuit, it also brought new blood for the 
dynamical of nonlinear systems because of the nonlinear 
variation behavior as [7] exhibited.   
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  However, since the first physical memristor was found by 
the HP labs in 2008[8], memristor has not yet been popular 
even though there are more and more researchers working on 
it, this is because the properties of memristors are highly 
affected by the material, size and fabricating process, for 
example, the behavior of TiO2 memristor[9] is major 
different from the WOx memristor[10]. It is difficult to 
produce the uniform memristor in industry, so memristor is 
still a device stays in lab. But along with the found of 
memristor with different materials, more and more 
distinctive properties of memristor are observed, such as the 
short-term/long-term memory[11], the bipolar/unipolar 
property[12], and the Spike-timing-dependent plasticity 
(STDP) learning ability[13]. These new properties make 
memristor become hotter and hotter, but also more and more 
complex for investigation[14].  
  In general, the STDP learning rule, which adjusts the 
connection strengths between neurons based on the relative 
timing, serves as a supplement learning rule to the classical 
Hebb learning rule. There are many different forms for STDP 
learning rule as Fig.1 shows[15], in (b) and (d) the weight 
increases or decreases only deterred by the relative time, 
which is similar with the HEBB learning rule but is described 
“fire more closely, wire more strongerly” , not “fire together, 
wire together” . (a) and (c) is a kind of more general form for 
STDP , the weight increases or decreases are deterred by both 
the relative firing time of the presynaptic and post-synaptic 
neurons and the firing sequence of them. For example, under 
the STDP process, if the pre-synaptic neuron fires earlier 
than the post-synaptic neuron, the connection will get 
stronger (Long-term potentiation), otherwise, the connection 
will get weaker (Long-term depression), hence, it’s 
“spike-timing-dependent plasticity”. In [16], Masquelier et al. 
compared the STDP learning rule with the HEBB learning 
rule for image learning and feature extraction, and proved the 
validation of the STDP learning rule. In [17], the STDP 
phenomenon similar with (a) and (c) is also observed in 
memristor. In this paper, we focus on the STDP property of 
memristor and analysis the difference of the STDP rule in 
symmetric and asymmetric memristors. We prove the STDP 
property of a memristor model and apply it to a MNN for the 
sequence learning ability for forecasting function.  
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Fig. 1 The different forms of SDTP learning rule, image 
comes from [15]. 

II. SYMMETRIC/ASYMMETRIC MEMRISTOR WITH STDP 
PROPERTY 

A. The memristor model  
Memristor is firstly proposed by Leon Chua based on the 
completeness of circuit theory in 1971[18], it is a memory 
device that record the history of the passing through current, 
it defined the relationship between charge and flux as 

mR dq d ; and it is expanded as memristive system to 

be  ,x f q ,  i f v . For describing different 
properties of memristor, different models are 
proposed[1][7][9][10][19]-[22], for example, the HP 
memristor model describes the nonlinear property of 
memristor[9], the threshold memristor model describes the 
threshold property of memristor[1], the WOx model 
describes the asymmetric property of memristor[10], the 
compact model describes all the nonlinear, threshold, and 
asymmetric properties, but it is too complex for analysis and 
application[19]. Here a simplified model of memristor is 
improved from [20], compared with the previous models, it 
may not be so powerful in fitting with the datas of physical 
memristors, but it can also describe the nonlinear, threshold 
and symmetric/asymmetric properties of memristor, what’s 
more, it can exhibit the STDP property. The model of 
memristor is described as: 
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where 0a  , 0b  ,  f x is the window function , x  is 

the inner state which belongs to (0,1). Since the memristance 
is dependent on a tunneling effect, which is highly nonlinear, 
any change in the tunnel barrier width (the inner state x ) 
changes the memristance, and is assumed to change in an 
exponential manner. The relationship between memristance 

mR and the inner state x  becomes: 
x

m onR R e ,                         (2) 
where   is a fitting parameter, onR and offR  are the 
equivalent effective resistance at the bounds, similar to the 
notation in the linear ion drift model, and 

satisfy  log off onR R  , note that here x  increases 
while memristance increases, decreases while memristance 
decreases, so the positive voltage will decrease both x  and 
memristance mR  while the negative voltage will increase 
both. The current i  passes through the memristor is: 

mi v R    .                          (3) 
We build the Simulink model to perform the behavior of 

the memristor, it consists of the voltage source, the integrator 
and the window function as shown in Fig. 2: 
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Fig. 2 The Simulink of the memristor model 
 
Set the initial inner state value 0.2ox  , 100onR   , 

16000offR   ,     
221 0.5 0.75f x x    , 

0.8thv  , 0.5a  , 0.5b   for the symmetric memristor 
and 0.8a  , 0.5b    for the asymmetric memristor. Apply 
a sinusoidal voltage with amplitude 1.2Vv  , 
frequency 0.25w  to the memristor, the simulation 
results of the classical hysteresis loop are shown in Fig. 3(a) 
and Fig. 3(b) respectively, it is obvious that the i-v curve in 
Fig. 3(b) is asymmetric: 
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Fig. 3 (a) The simulation result of the symmetric memrsitor. 
(b) The simulation result of the symmetric memrsitor. 
 

B. The STDP property of the memristor 
In this section, we prove the STDP property of the memristor 
model proposed in this paper. Assume the relative spiking 
time between the pre-synaptic and post synaptic neurons are: 

post pret t t  .                             (4) 
Divide the relative time t  into three parts, that is: 
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Integrate (1), assume  2v f x  as a constant value and get: 
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 2a av f x ,  2b bv f x .  (2) can be rewritten as: 
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The derivative of mR is: 
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where , ,1 ,1on onA a R A b R a b           . Both 
1t  and 2t  are closely related to the relative time t , so the 

variation of memristance will depend on the relative spiking 
time.   

 

III. NEURON NETWORK FOR THE STDP  

A. The neuron model  
Neuron and synapse are the basic components of artificial 
neural network.  Neuron is excited by the input signal of 
synapses. It processes and transmits information through the 
electrical signal. A typical neuron possesses a cell body, 
multiple dendrites and an axon which may branch hundreds 
of times before it terminates. Electrical signals (the pre-spike 
and the post-spike) are sent from the axon of one pre-synaptic 

neuron to a dendrite of one postsynaptic neuron as Fig. 4 
shows.  
 

 
Fig. 4 The structure between neurons, image comes from 

[25]. 
 

The neuron will transmit an action potential when 
membrane potential surpass a threshold, but the exact shape 
of action potential, among neuroscientists, is difficult to 
measure precisely since the experimental setup influences 
strongly. Furthermore, different action potential shapes have 
been recorded for different types of neurons, although in 
general they all display a certain resemblance. For our 
discussion, it suffices to assume a generic action potential 
shape with the following properties. During spike on-set, 
membrane voltage increases to a positive pulse amplitude F . 
After this, it changes quickly to a negative pulse amplitude 
F  and returns to its resting potential. A shape of the type 
shown in Fig. 5 (N1 and N2) can be expressed 
mathematically, as 
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 B. The STDP behavior of the MNN 
The mechanism for STDP learning rule is less well 
understood, in [23], Duygu Kuzum et al. studied the STDP 
property of memristor itself and claimed that the asymmetric 
memristor has the ability of the STDP learning ability while 
the symmetric not. In some references[13][24], the STDP 
property is explained as the overlap of the forward pulse of 
the pre-synaptic neuron and the feedback voltage of the 
postsynaptic neuron. In this case, whatever the type of 
memristor is, they will be always with the STDP property. In 
the above, we have proved the intrinsic STDP property in 
both symmetric and asymmetric memristor. Here in order to 
make the intrinsic STDP property of memristor controlled by 
the neuron, we combined the memristor with STDP property 
and the neuron with overlap signal together to study the 
STDP behavior of the MNN. 
   Because both the pre-synaptic action potential and the post 
synaptic action potential are worked on the synapse 
memristor, we assume that the positive voltage works on 
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memristor is v  , the negative voltage works on memristor is 
v  , thus, the dynamic of memristor will become: 
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It can be described by the signal of the S in Fig. 5(a) where N1 
is the signal transited from the pre-synaptic neuron, N2 is the 
signal transited from the postsynaptic neuron. From (10), we 
can find that the dynamic of memristor is affected by both the 
memristor itself and the voltage working on it. Therefore, we 
can control the STDP learning of the MNN by adapting the 
amplitude of the action potentials of pre-synaptic neuron and 
post synaptic neuron as Fig. 5(b) shows. Besides, we can 
obtain the assumptions as follow: 

 1, The symmetric memristor will leads to symmetric 
STDP learning rule, if a b , v v   . 

 2, The asymmetric memristor will leads to 
asymmetric STDP learning rule, if a b , 
v v   . 

 3, The asymmetric memristor will leads to 
symmetric STDP learning rule, if a b , 
v v  , and 2 2av bv  . 
 

 (a) 

 (b) 
Fig. 5 The STDP mechanism (a) The STDP of the MNN with 
symmetric memristors. (b) The STDP of the MNN with 
asymmetric memristors. 

 

C. The Simulink of the STDP of the MNN 
We simulate the MNN to verify the conclusions in the above 
as shown in Fig. 6. It consists of the memristor proposed in 
Section 2 and the action potentials of pre- and post- synaptic 
neurons.  
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Fig. 6 The Simulink of the STDP of the MNN 
 

When the MNN is with symmetric memristor used in the 
above and symmetric neuron which 0.9Vv v    (both 
pre- and post- synaptic neuron are with 0.6VF  , 

0.3VF   , the period of the action potential is 1s) , the 
inner state x  increases and decrease as shown in Fig. 7(a), 
and we can see that the corresponding STDP form in Fig. 7(b) 
is ideal symmetric form like the third one in Fig. 1. When the 
MNN is with asymmetric memristor and symmetric neuron 
which 0.9Vv v    , the corresponding STDP form is 
not ideal symmetric form as shown in Fig. 7(c), but if we 
replace the symmetric neuron with asymmetric neurons that 

0.9, 1.1Vv v     ( 0.7VF  , 0.3VF    in 

presynaptic neuron, 0.6VF  , 0.4VF   in 
postsynaptic neuron), the STDP form can be recovered to be 
symmetric one as Fig. 7(d) shows. The simulation results of 
Fig. 7 verify the assumptions in Part B. 
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Fig. 7 (a) The plasticity of memristance. (b) The symmetric 
STDP form of the MNN with symmetric memristor and 
symmetric neuron. (c) The asymmetric STDP form of the 
MNN with asymmetric memristor and symmetric neuron. (d) 
The symmetric STDP form of the MNN with asymmetric 
memristor and asymmetric neuron. 
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IV. THE APPLICATION OF THE MNN WITH THE STDP  
In this section, we build a Hopfield-like recurrent MNN with 
the STDP learning rule for Sequence learning[25][26]. In the 
MNN, N  neurons are full connected with each other by 
N N  memristor synapses as shown in Fig. 8[25]. Here 

=25N , and the synaptic weight matrix (SWM) is randomly 
initialized. We divide all the neurons into five groups G1 to 
G5, every five neurons is a group. G1 to G5 are stimulated 
with 0.05s timing difference. Fig. 9 is the change of the SWM 
after 10 training epochs in the network of 25 neurons and 625 
synapses. Fig. 9(a) and Fig. 9(b) are the SWMs with 
symmetric and asymmetric memristor synapse respectively. 
The color corresponds to the relative change in synaptic 
strength. The red means the increase memristance, and the 
blue is corresponding to the decrease memristance. From Fig. 
9, it is obvious that synaptic weights are adjusted according to 
stimulation sequence, for example, synapse connections 
between G1-G2  get stronger  and stronger (the blue one) 
while G1-G3, G1-G4, G1-G5 do not, synapse connections 
between G2-G1 get weaker and weaker while G2-G3, G2-G4, 
G2-G5 do not. The same phenomenon is also occurred in 
G2-G3, G3-G4, G4-G5. The connections between other 
nonadjacent groups will not be affected by the input signals. 
Thus, a trained MNN can forecast the sequence of the next 
group neuron if a group of signals is input, i.e., if we input 
signals in G1, the MNN will active G2 as a forecast. Both the 
learning results of the MNN with symmetric and asymmetric 
memristor are verified the effectiveness of the MNN 
consisting with memristor with STDP property, the only 
difference is that the synaptic strength of the MNN with 
asymmetric memristor in Fig. 9(b) will get stronger than the 
MNN with symmetric memristor in Fig. 9(a), which is good 
for strengthening associating connections. Because of the 
limitation of Hopfiled-like neural network, all the neurons 
here are the same kind, that is, symmetric ones, so the STDP 
learning rule of the memristor can’t be controlled by the 
neurons. If we change the type of the MNN, such as a feed 
forward neural network, we may use the asymmetric neurons 
to control the learning effect of the SWM to get a better 
performance, and this is what we will do in the future.  
 

 
Fig. 8 The structure of the MNN, the different color of 
synaspes means different memristance. Image comes from  
[25]. 
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Fig. 9 The sequence learning. (a) The MNN with symmetric 
memristor. (b) The MNN with asymmetric memristor. 
 

V. CONCLUSION 
In this paper, we simplified and proved a memristor model 

with STDP property for both symmetric and asymmetric 
memristor. Based on the developed memristor model, we 
studied the STDP learning rule and built a MNN with 
sequence learning ability to verify the function of the MNN 
consisting of the memristor with STDP property. However, 
because all the neuron in the Hopfield neural network is the 
symmetric neurons, the function of the MNN with 
asymmetric neuron needs another kind of experiment to 
support it, and we will do it in our next work.  
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