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Abstract—In this paper, we present a new method to elim-
inate the effect of view angle for efficient gait recognition
via deterministic learning theory. The width of the binarized
silhouette models the periodic deformation of human gait
silhouettes. It captures the spatio-temporal characteristics of
each individual, represents the dynamics of gait motion, and
can sensitively reflect the variance between gait patterns across
various views. The gait recognition approach consists of two
phases: a training phase and a recognition phase. In the
training phase, the gait dynamics underlying different indi-
viduals’ gaits from different view angles are locally accurately
approximated by radial basis function (RBF) neural networks.
The obtained knowledge of approximated gait dynamics is
stored in constant RBF networks. In order to address the
problem of view change no matter the variation is small or
significantly large, the training patters from different views
constitute a uniform training dataset containing all kinds of
gait dynamics of each individual observed across various views.
In the recognition phase, a bank of dynamical estimators is
constructed for all the training gait patterns. Prior knowledge
of human gait dynamics represented by the constant RBF
networks is embedded in the estimators. By comparing the
set of estimators with a test gait pattern whose view pattern
contained in the prior training dataset, a set of recognition
errors are generated. The average L1 norms of the errors
are taken as the similarity measure between the dynamics of
the training gait patterns and the dynamics of the test gait
pattern. Finally, comprehensive experiments are carried out
on the CASIA-B and CMU gait databases to demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

Gait as a biometric has recently gained considerable
attention because of its unobtrusiveness and gait information
can be captured at a distance from a camera. It has the
potential to be applied in various areas of real-world applica-
tions such as surveillance, health care, entertainment, access
control and border control. However, there are a number of
covariate factors that affect gait recognition performance,
such as lighting condition, clothes, carrying status, shoe
type, walking speed, view angle and so on [1]. Hence, in
gait recognition, one important requirement is of robustness
to these variations. Among these factors, view angle is one

Wei Zeng is with the School of Mechanical & Automotive Engineering,
South China University of Technology, Guangzhou 510640, China, and
is with the School of Physics and Mechanical & Electrical Engineering,
Longyan University, Longyan 364000, China (email: zw0597@126.com).
Cong Wang is with the School of Automation Science and Engineering,
South China University of Technology, Guangzhou 510640, China (email:
wangcong@scut.edu.cn).

This work was supported by the National Natural Science Foundation of
China (Grant No. 61304084), by China Postdoctoral Science Foundation
(Grant No. 2013M531851), by Natural Science Foundation of Guangdong
Province (Grant No. S2013040016859), by the Educational and Scientific
Research Project for Middle-aged and Young Teachers of Fujian Province
(Grant No. JA13304), and by the Fundamental Research Funds for the
Central Universities, SCUT (Grant No. 2013ZM0089).

of the most important factors which heavily affects gait
recognition performance [2]. The difficulties lie in that gait
appearance changes due to the variation of views or walking
directions, and it is impossible to expect all the subjects to
walk in a particular direction.

To handle the variation of gait sequences caused by dif-
ferent view angles, many researchers have proposed several
methods to address this problem. They can be roughly
divided into the following categories: (1) extracting view-
invariant gait features; (2) projecting gait feature from one
view angle to the other by using view transformation; and
(3) synthesizing view angle based on a three-dimensional
(3D) model.

In the first category, [3] synthesized a side view from any
other arbitrary view using a single camera. Two methods,
namely the perspective projection model and the optical flow
based structure from motion equations, respectively, were
adopted by working with calibrated single-camera system.
However, this method assumed the subjects to be far away
from the camera and could not cope with large variations in
view angle.

In the second category, approaches aim to learn a map-
ping relationship between gait features of the same subject
observed across views [4, 5]. When matching gait sequences
from different views, the gait features are mapped into
the same view before a distance measure is computed for
matching.

In the third category, a 3D model or visual hull of the
walking body is usually generated for recognition under
multi-camera system. For example, in [6], a 3D human
model is set up from video sequences captured by multiple
cameras. The motion trajectories of lower limbs extracted
from the 3D model are used as dynamic features, and
linear time normalization is exploited for matching and
recognition.

Gait is a dynamic shape model such that it varies in pose
and size throughout a walking cycle [7]. In practice, the
gait shape of an individual can be easily altered by many
factors, particularly by the change of views. Individuals can
walk at various directions to the cameras in any real-world
situations, and gait shape changes nonlinearly according
to views. This will lead to significant changes to walking
patterns and generate difficulties for gait recognition.

In our previous studies, gait dynamics represented by
suitable periodic features, such as lower limb joint angles
and angular velocities, will be approximated by radial basis
function (RBF) neural networks [8, 9]. The difference of
gait dynamics between different individuals during walking
can be used for gait recognition. Following this idea, we
continue to search for periodic gait features that constitute
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the gait dynamics and can reflect the variance between gait
patterns across various views. Recent gait research revealed
that silhouette cues, such as the width of the outer contour
and silhouette area, play a primary role in gait recognition.
This finding enlightens us to extract silhouette features for
gait identification.

II. PRELIMINARIES AND PROBLEM
FORMULATION

Consider a general nonlinear human gait dynamical sys-
tem in the following form:

ẋ = F (x; p), x(t0) = x0 (1)

where x = [x1, . . . , xn]
T ∈ Rn is the state of the system

representing the gait features, p is a constant vector of
system parameters (different p will in general generate dif-
ferent gait patterns under different view angles). F (x; p) =
[f1(x; p), . . . , fn(x; p)]

T is a smooth but unknown nonlinear
vector field.

Assumption 1: The gait system state x remains uniformly
bounded. Moreover, the system trajectory starting from x0,
denoted as φζ(x0), is in either a periodic or periodic-like
(recurrent) motion regardless of the view angle variation.

For the human gait system, Ref. [10] suggested that
human gait is a form of periodic or quasi-periodic motion
no matter the view angle variation is large or small .
Our objective is to choose suitable human gait features
satisfying Assumption 1 and design a dynamic RBF network
to identify and approximate the unknown vector F (x; p)
under different view angles. The approximation result can
be used to represent the gait dynamics which will be stored
and used for view-invariant gait recognition.

III. GAIT FEATURE EXTRACTION AND GAIT
SIGNATURE DERIVATION

In this section, we investigate four kinds of periodic
silhouette width features. They seem suitable for capturing
discriminatory gait information from sequences of extracted
silhouettes and for representing gait dynamics under dif-
ferent view angles. An important issue in gait recognition
is the extraction of salient features that will effectively
capture gait characteristics. The features must reflect the
view variation and should yield good discriminability across
individuals. For each image sequence, we first introduce
the silhouette segmentation and preprocessing methods, then
present the proposed silhouette representation method. After
that, we describe how to obtain silhouette features of each
gait sequence. Finally, the gait signature consisting of gait
dynamics under different view angles is derived.

A. Silhouette Extraction

Silhouettes in a walking image sequence can be extracted
using the method proposed in [11]. Note that some extracted
silhouettes are incomplete. To solve this problem , we
use mathematical morphology method to fill in holes and
remove noise. Edge images are produced by applying the
Canny operator with hysteresis thresholding. Finally, the

(a) background image (b) original image

(c) segmented regions (d) smoothed segmented regions
with shadow elimination and mor-
phological post-processing

width

height

(e) binary silhouette with a
bounding box

(f) silhouette contour

Fig. 1. Extraction of a moving silhouette

body silhouette is determined followed by dilation and
erosion. A bounding box is then placed around the part of
the motion image that contains the moving person. These
boxed binarized silhouettes can be used directly as image
features or further processed to derive the width vector and
the ratio vector of the silhouette’s height and width as in the
next item. Fig. 1 shows an example of human silhouette
extraction of a gait image.

B. Width of the Outer Contour of the Binary Silhouette

Width contains structural as well as dynamical infor-
mation of gait. Owing to influenced by the traction force
produced by muscle and skeleton, athletics apparatus (foot,
hip and hand etc.) of an individual are always in periodic
diversification state, and the width of silhouette produced
from the projection in photography plane also changes in
a periodic state. Between the width feature of different
individuals’ gaits, there is a lot of dissimilarity in period and
distribution due to the diversity in individuals’ geometrical
configuration, state of healthiness, psychology and view
angle.

Distance between left and right extremities of the silhou-
ette gives the width vector. From the binarized silhouette,
the left and right boundaries are traced. In order to reflect
the local shape and its change of human gait influenced
by view angle, the gait silhouette has been divided into
four equal subregions from top to bottom, namely subregion
1, subregion 2, subregion 3 and subregion 4, as shown in
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Fig. 2.
Width calculation is shown in Fig. 2. Here, X axis de-

notes the row index and Y axis denotes the width associated
with that row. H is the height of the silhouette. The width
along a given row is simply the difference between leftmost
and rightmost boundary pixels (1-valued) in that row. For a
binary gait image b(X,Y ) indexed spatially by pixel location
(X,Y ), Y 1

X represents the Y-coordinate of the leftmost
boundary pixel in the Xth row, and Y 2

X represents the Y-
coordinate of the rightmost boundary pixel in the same row.

For all rows, the holistic width feature Wd is generated
by

Wd = max
X∈[0,H]

(Y 2
X − Y 1

X) (2)

For specific rows, the desired width features W 1
d and W 2

d of
subregions 3 and 4 are generated by the following equations,
respectively.

W 1
d = max

X∈[ 24H,
3
4H]

(Y 2
X − Y 1

X) (3)

W 2
d = max

X∈[ 34H,H]
(Y 2
X − Y 1

X) (4)

where d denotes the dth frame binary silhouette. During a
walking period, the width of subregions 1 and 2 changes
slightly with the view angle variation while the width of
subregions 3 and 4 changes significantly. In accordance with
life experience, the upper limbs swing lightly while the lower
limbs swing more sharply when the view changes.

The mean and median width W 3
d and W 4

d of the silhouette
will reflect the variation of the whole silhouette when the
view changes, and will be obtained as:

W 3
d = mean

X∈[0,H]
(Y 2
X − Y 1

X) (5)

W 4
d = median

X∈[0,H]
(Y 2
X − Y 1

X) (6)

Hence, the four vectors W 1
d ,W

2
d ,W

3
d and W 4

d thoroughly
reflect the influence of view angle variation on silhouette
shapes. Fig. 3 and Fig. 4 show the width feature curves of
one person under different view angles. It is seen that the
four width vectors are periodic or quasi-periodic.

subregion 1

subregion 2

subregion 3

subregion 4
X

Y

H

Fig. 2. Width feature extraction.
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Fig. 3. The four width vectors for one person under 36◦ view angle in a
gait sequence.
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Fig. 4. The four width vectors for one person under 108◦ view angle in
a gait sequence.

C. Derivation of Gait Signature

Gait signatures are the most effective and well-defined
representation method for dynamic gait analysis. They can
be extracted by motion information from human gait. To
recognize individuals walking in different view angles by
their gait easily, we need to firstly select the most efficient
gait features which can best represent the gait characteristics
and reflect the view variation.

The width vectors W 1
d , W 2

d , W 3
d and W 4

d are combined
as silhouette features for gait recognition. They capture the
spatio-temporal characteristics of each individual, represent
the dynamics of gait motion, and can sensitively reflect the
variance between different gait patterns generated by differ-
ent view angles. This derives the gait signature consisting
of gait dynamics under different view angles.
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IV. TRAINING AND LEARNING MECHANISM
BASED ON SILHOUETTE FEATURES

In this section, based on deterministic learning theory we
present a scheme for identification of gait system dynamics
under different view angles.

In order to more accurately describe the human walking,
the gait dynamics can be modeled as the following form:

ẋ = F (x; p) + v(x; p) (7)

where x = [x1, . . . , xn]
T ∈ Rn are the states of system (7)

which represent the combined silhouette features of the hu-
man body under different view angles, p is a constant vector
of system parameters. F (x; p) = [f1(x; p), . . . , fn(x; p)]

T is
a smooth but unknown nonlinear vector representing the gait
system dynamics under different view angles, v(x; p) is the
modeling uncertainty. The system trajectory starting from
initial condition x0, is denoted as φζ(x0).

Since the modeling uncertainty v(x; p) and the gait system
dynamics F (x; p) cannot be decoupled from each other, we
consider the two terms together as an undivided term, and
define ϕ(x; p) := F (x; p)+v(x; p) as the general gait system
dynamics. The objective of the training or learning phase is
to identify or approximate the general gait system dynamics
ϕ(x; p) under different view angles to a desired accuracy via
deterministic learning.

Based on deterministic learning theory [12], the following
dynamical RBF networks are employed to identify the gait
system dynamics ϕ(x; p) = [ϕ1(x; p), . . . , ϕn(x; p)]

T :

˙̂x = −A(x̂− x) + ŴTS(x) (8)

where x̂ = [x̂1, . . . , x̂n] is the state vector of the dynamical
RBF networks, A = diag[a1, . . . , an] is a diagonal matrix,
with ai > 0 being design constants, localized RBF networks
ŴTS(x) = [ŴT

1 S1(x), . . . , Ŵ
T
n Sn(x)]

T are used to ap-
proximate the unknown ϕ(x; p).

The NN weight updating law is given by:

˙̂
Wi =

˙̃Wi = −ΓiS(x)x̃i − σiΓiŴi (9)

where x̃i = x̂i − xi, W̃i = Ŵi − W ∗i , W ∗i is the ideal
constant weight vector such that ϕi(x; p) = W ∗i

TS(x) +
ϵi(x), ϵi(x) < ϵ∗ is the NN approximation error, Γi = ΓTi >
0, and σi > 0 is a small value.

With Eqs. (7)-(8), the derivative of the state estimation
error x̃i satisfies

˙̃xi = −aix̃i+ ŴT
i S(x)−ϕi(x; p) = −aix̃i+ W̃T

i S(x)− ϵi
(10)

By using the local approximation property of RBF net-
works, the overall system consisting of dynamical model
(10) and the NN weight updating law (9) can be summarized
into the following form in the region Ωζ[

˙̃xi
˙̃Wζi

]
=

[
−ai Sζi(x)

T

−ΓζiSζi(x) 0

] [
x̃i
W̃ζi

]
+

[
−ϵζi

−σiΓζiŴζi

]
(11)

and
˙̂
Wζ̄i =

˙̃Wζ̄i = −Γζ̄iSζ̄i(x)x̃i − σiΓζ̄iŴζ̄i (12)

where ϵζi = ϵi − W̃T
ζ̄i
Sζ̄(x). The subscripts (·)ζ and (·)ζ̄

are used to stand for terms related to the regions close to
and far away from the trajectory φζ(x0). The region close
to the trajectory is defined as Ωζ := Z|dist(Z,φζ) ≤ dι,
where Z = x, dι > 0 is a constant satisfying s(dι) > ι,
s(·) is the RBF used in the network, ι is a small positive
constant. The related subvectors are given as: Sζ(x) =
[sj1(x), . . . , sjζ(x)]

T ∈ RNζ , with the neurons centered in
the local region Ωζ , and W ∗ζ = [w∗j1, . . . , w

∗
jζ ]

T ∈ RNζ is
the corresponding weight subvector, with Nζ < N . For lo-
calized RBF networks, |W̃T

ζ̄i
Sζ̄(x)| is small, so ϵζi = O(ϵi).

The norminal part of system (11) is referred to as system
(11) without the terms −ϵζi and −σiΓζiŴζi. For the human
gait system, Ref. [10] suggested that human gait is a form
of periodic or quasi-periodic motion. In Section III, we have
shown that the silhouette features are quasi-periodic signals
generated from the free human walking sequences. Hence,
the NN input x = [W 1

d ,W
2
d ,W

3
d ,W

4
d ]
T is quasi-periodic.

According to Theorem 1 in [12], the regression subvector
Sζi(x) satisfies PE condition almost always. This will lead
to exponential stability of (x̃i, W̃ζi) = 0 of the nominal part
of system (11) [13]. Based on the analysis results given in
[12], the NN weight estimate error W̃ζi converges to small
neighborhoods of zero, with the sizes of the neighborhoods
being determined by ϵζi and ∥ σiΓζiW ∗ζi ∥, both of which
are small values. This means that the entire RBF network
ŴT
i S(x) can approximate the unknown ϕi(x; p) along the

trajectory φζ , and

ϕi(x; p) = ŴT
i S(x) + ϵi1 (13)

where ϵi1 = O(ϵζi).
By the convergence result, we can obtain a constant vector

of neural weights according to

W̄i = meant∈[ta,tb]Ŵi(t) (14)

where tb > ta > 0 represent a time segment after
the transient process. Therefore, we conclude that accurate
identification of the function ϕi(x; p) is obtained along the
trajectory φζ(x0) by using W̄T

i Si(x), i.e.,

ϕi(x; p) = W̄T
i S(x) + ϵi2 (15)

where ϵi2 = O(ϵi1) and subsequently ϵi2 = O(ϵ∗).
Hence, locally-accurate identification of the gait system

dynamics ϕi(x; p) under different view angles to the error
level ϵ∗ is achieved along the trajectory φζ(x0). Time-
varying gait dynamical patterns can be effectively repre-
sented by the locally-accurate NN approximations of the gait
system dynamics, and this representation is time-invariant.
The gait system dynamics under different view angles con-
stitute a uniform training gait patterns dataset which is used
for the following view-invariant gait recognition.
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V. GAIT RECOGNITION MECHANISM

In this section, we present a scheme for rapid recognition
of human gait using the learned gait system dynamics under
different view angles.

Consider a training dataset containing dynamical human
gait patterns φkζ under different view angles, k = 1, . . . ,M ,
with the kth gait training pattern φkζ generated from

ẋ = F k(x; pk) + vk(x; pk), x(t0) = xζ0 (16)

where F k(x; pk) denotes the gait system dynamics,
vk(x; pk) denotes the modeling uncertainty, pk is the system
parameter vector.

As shown in Section IV, the general gait system dynamics
ϕk(x; pk) := F k(x; pk) + vk(x; pk) can be accurately
identified and stored in constant RBF networks W̄ kT S(x).
By utilizing the learned knowledge obtained in the training
phase, a bank of M estimators is first constructed for the
trained gait systems as follows:

˙̄χk = −B(χ̄k − x) + W̄ kT S(x) (17)

where k = 1, . . . ,M is used to stand for the kth esti-
mator, χ̄k = [χ̄k1 , . . . , χ̄

k
n]
T is the state of the estimator,

B = diag[b1, . . . , bn] is a diagonal matrix which is kept the
same for all estimators, x is the state of an input test pattern
generated from Eq. (7).

In the test phase, by comparing the test gait pattern
generated from human gait system (7) with the set of M
estimators (17), we obtain the following recognition error
systems:

˙̃χki = −biχ̃ki + W̄ kT

i Si(x)− ϕi(x; p),
i = 1, . . . , n, k = 1, . . . ,M (18)

where χ̃ki = χ̄ki −xi is the state estimation (or synchroniza-
tion) error. We compute the average L1 norm of the error
χ̃ki (t)

∥χ̃ki (t)∥1 =
1

Tc

∫ t

t−Tc

|χ̃ki (τ)|dτ, t ≥ Tc (19)

where Tc is the cycle of human gait.
The fundamental idea of human gait recognition is that

if one person appearing whose view pattern contained in
the prior training dataset similar to the trained gait pattern
s (s ∈ {1, . . . , k}), the constant RBF network W̄ sT

i Si(x)
embedded in the matched estimator s will quickly recall
the learned knowledge by providing accurate approximation
to the human gait dynamics. Thus, the corresponding error
∥ χ̃si (t) ∥1 will become the smallest among all the errors
∥ χ̃ki (t) ∥1. Based on the smallest error principle, the
appearing person can be recognized. We have the following
recognition scheme.

Human gait recognition scheme: If there exists some
finite time ts, s ∈ {1, . . . , k} and some i ∈ {1, . . . , n} such
that ∥ χ̃si (t) ∥1<∥ χ̃ki (t) ∥1 for all t > ts, then the appearing
person can be recognized.

VI. EXPERIMENTS

In our experiments, two widely adopted multiview gait
databases are used to evaluate the performance of the pro-
posed method, which include: CASIA-B gait database [14]
and CMU MoBo gait database [15]. These databases directly
support the study of gait recognition with respect to the
variation of views. Moreover, from the research perspective,
there are different advantages from the two databases: 1) the
CASIA-B gait database contains a large number of subjects;
2) the CMU Mobo gait database has been widely used by a
large number of papers. The experiments are implemented
using matlab software and tested on an Intel Core i5 3.5GHz
computer with 4GB RAM.

Different from experiments in other works, we construct
a uniform training dataset consisting of gait patterns under
different view angles. When a test pattern whose view
angle cannot be known priorly but contained in the training
dataset appears, it can be rapidly recognized. This makes it
more applicable in real-world applications. Since the training
dataset is different from that of other works, we do not
compare the recognition performance of our method with
other benchmark methods in [4–6].

A. CASIA-B Gait Database

The CASIA-B is a large dataset, including 124 different
subjects (93 males and 31 females) with variations in view
angle and walking status (normal, in a coat, or with a
bag) [14]. The videos were synchronously captured from 11
different views (namely 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦,
126◦, 144◦, 162◦ and 180◦) in a well controlled laboratorial
environment. There were 11 USB cameras around the left
side of the subject when he/she was walking, and the angle
between two nearest views is 18◦. The video sequences have
spatial resolution and frame rate of 320 × 240 pixels and
25 frames per second, respectively. Fig. 5 shows sample
images in this gait database. As we only focus on the view
factor affecting the gait recognition performance, six normal
walking sequences of each subject collected from all these
11 views are selected in the following experiments. The
corresponding width features are extracted for each sequence
and the silhouette image is resized to a fixed 128×88 image.

Fig. 5. Sample frames from 11 different views of one subject in the
CASIA-B gait database.

Eleven experiments designed for this database are listed
in Table I. We assign sequences to training set for all the
124 subjects to construct a uniform training database. Each
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subject contains three sequences for each view angle. That
is, there are 124 × 3 × 11 = 4092 patterns in the training
dataset. Based on the method described in Section III,
we extract all the 124 persons’ silhouette features through
walking image sequences, which means the input of the RBF
networks x = [W 1

d ,W
2
d ,W

3
d ,W

4
d ]
T . In order to eliminate

the data difference between different silhouette features, all
the silhouette feature data is normalized to [−1, 1]. One
example of silhouette feature normalization for a walking
image sequence is shown in Fig. 6.
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Fig. 6. Normalization of silhouette feature data.

Fig. 7 and Fig. 8 show an example of the training and
recognition of the person numbered 001 under different
view angles in the 124-person dataset. Consider recognition
of the test person 001 under 54◦ view angle. There are
three sequences to training set (labeled ‘001-nm-01-054’,
‘001-nm-02-054’ and ‘001-nm-03-054’ in the database) and
three sequences to test set (labeled ‘001-nm-04-054’, ’001-
nm-05-054’ and “001-nm-06-054’ in the database). In the
training phase, the RBF network ŴT

i Si(x) is constructed
in a regular lattice, with nodes N = 83521, the centers µi
evenly spaced on [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], and
the widths η = 0.15. The weights of the RBF networks are
updated according to Eq. (9). The initial weights Ŵi(0) = 0.
The design parameters for (8) and (9) are ai = 0.5,Γ =
diag{1.5, 1.5, 1.5, 1.5}, σi = 10, (i = 1, . . . , 4). The con-
vergence of neural weights is shown in Fig. 7, which
demonstrates partial parameter convergence, that is, only the
weight estimates of some neurons whose centers close to the
orbit are activated and updated. These weights converge to
their optimal values W ∗i . Based on the deterministic learning
theory, the gait dynamics ϕki (x; p

k) can be locally accurately
approximated by W̄ kT

i Si(x), (k = 1, . . . , 4092) along recur-
rent system trajectory, then these constant weights are stored
for each training pattern.

In the test phase, by using the constant networks
W̄ kT

i Si(x), (k = 1, . . . , 4092), 4092 RBF network estima-
tors are constructed based on (17). The parameters in (17)
and (19) are bi = −25 (i = 1, . . . , 4), Tc = 1.01s. Consider
recognition of the test person 001 under 54◦ view angle
(represented by the test pattern ‘001-nm-04-054’) by 4092
training patterns. The average L1 norms of the synchroniza-
tion errors, that is, ∥ x̃ki (t) ∥1 (k = 1, . . . , 4092) are shown

230 240 250 260 270 280 290 300
−4
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Time (second)

W1

Fig. 7. Partial parameter convergence of Ŵ1 in one training pattern.

in Fig. 8. It is obvious that after certain time, the average
L1 norm generated by the training pattern ‘001-nm-01-054’
becomes smaller than the others.

Fig. 8. Recognition of person 001 under 54◦ view angle using smallest
error principle.

The recognition performance of the proposed methods is
reported in terms of the correct classification rate (CCR).
The Rank-1 recognition performance of our approach is
presented in Table II.

TABLE II
GAIT RECOGNITION PERFORMANCE (%, RANK-1) ON THE CASIA-B

GAIT DATABASE.

Experiment CCR (%)
A 55.4%
B 44.2%
C 66.7%
D 77.8%
E 77.8%
F 87.9%
G 66.7%
H 77%
I 75.8%
J 76.7%
K 57.9%

B. CMU MoBo Gait Database

This database comprises gait sequences from 25 subjects
and two different walking speeds, namely slow walking and
fast walking. It contains walking subjects captured from six
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TABLE I
ELEVEN EXPERIMENTS ON THE CASIA-B GAIT DATABASE FOR ROBUSTNESS TEST.

Experiment Gallery Set (containing 11 view angles) Probe Set Gallery Size Probe Size
A 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 0◦ 124×3×11 124×3
B 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 18◦ 124×3×11 124×3
C 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 36◦ 124×3×11 124×3
D 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 54◦ 124×3×11 124×3
E 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 72◦ 124×3×11 124×3
F 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 90◦ 124×3×11 124×3
G 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 108◦ 124×3×11 124×3
H 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 126◦ 124×3×11 124×3
I 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 144◦ 124×3×11 124×3
J 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 162◦ 124×3×11 124×3
K 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, 180◦ 180◦ 124×3×11 124×3

cameras located in positions as shown in Fig. 9. We use five
(see Fig. 10) out of the six available viewing directions,
omitting the north view, since it is practically identical to
the south view (i.e., the frontal view).

Fig. 9. Camera arrangement in the CMU MoBo gait database [16]. Six
cameras are oriented clockwise in the east (E), southeast (SE), south (S),
southwest (SW), northwest (NW), north (N), with the walking subject
facing toward the south.

(a) NW (b) SW (c) S (d) SE (e) E

Fig. 10. Five different views in the CMU MoBo database.

Several experiments designed for this database are listed
in Table III and Table V. The process of training and
recognition is similar to the examples of CASIA-B database
shown in Section VI-A and is omitted here for clarity and
conciseness. The Rank-1 performance of our approach is
presented in Table IV and Table VI.

It is seen from the experiments that the proposed method
achieves very promising performance no matter the view
change is small or significantly large.

VII. CONCLUSIONS

A new view-invariant gait recognition approach based
on silhouette features via deterministic learning theory is
presented in this paper. Based on the method for feature
extraction, silhouette features representing the gait dynamics
and reflecting the view variation can be extracted. The
gait system dynamics under different view angles can be
accurately approximated by RBF networks and the obtained
knowledge will be stored in constant RBF networks. A
uniform training dataset consisting of gait patterns under
different view angles is constructed. Then, according to the
dynamical estimators and the smallest error principle, the
view-invariant gait recognition can be achieved.
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