
Adaptive Output Feedback Control for Cooperative
Dynamic Positioning of Multiple Offshore Vessels

Lu Liu, Dan Wang, Zhouhua Peng
School of Marine Engineering

Dalian Maritime University
Dalian, China, 116026

Email: wendaoerji@163.com

Abstract—This paper considers cooperative dynamic posi-
tioning (CDP) of multiple offshore vessels in the presence of
dynamical uncertainties, time-varying ocean disturbances and
unmeasured velocity, aimed at collectively holding a relative
formation and reaching a reference position. K-filter observers
are first designed to estimate the unmeasured velocity informa-
tion of each vessel, and then observer based CDP controllers
are developed with the aid of dynamic surface control (DSC)
technique, neural network and iterative learning approach. The
formation among vehicles can be guaranteed if the graph induced
by the vessels and the reference point contains a spanning tree.
It is proved by Lyapunov analysis that the proposed control laws
can ensure that all the signals in the closed-loop systems are
uniformly ultimately bounded, and tracking errors converge to a
small neighborhood of origin.

I. INTRODUCTION

Dynamic positioning (DP) system is defined as a set of
components used to keep a floating structure at a specific
position or to make it follow a pre-determined operation trajec-
tory by means of active thrusters. Several offshore operations
use DP systems, such as oil gas exploration, underwater pipe-
laying, diving support, mineral drilling, etc. Currently, there
are more than 2000 DP vessels operated in different kinds of
offshore operations worldwide now [1].

Generally, the studies of DP controllers have experienced
three stages. The first generation of DP systems was originated
in 1960s, where single-input single-output PID control algo-
rithms in combination with notch filters or low pass filters
were used. In 1970s, control techniques based on optimal
control and Kalman filter theory were proposed as the second
generation of DP systems in [2], and this work was later
modified and improved in many literatures such as [3], [4], [5].
In 1990s, with the application of nonlinear control theories,
various control strategies were developed for DP systems.
The proposed design techniques are ranging from nonlinear
feedback linearizable control [6], backstepping control [7],
nonlinear sliding model control [8], [9], fuzzy control [10],
hybrid control [11], [12] to acceleration feedback control
[13]. However, the above techniques are all devoted to single
DP systems. To execute more challenging tasks, multiple DP
systems are urgently needed in ocean engineering [15], [16].
Relevant applications include mobile nodes of sensor networks,
platforms for oil gas exploitations and salvage operations.

DP systems possess many uncertainties in their dynamics
such as payload variations, unmodeled hydrodynamics, and
time-varying disturbances induced by wind, waves and ocean

currents [17]. Therefore, different kinds of adaptive control
methods have been suggested [18], [19], [20], [21]. In [20], a
robust controller is developed for DP systems with parametric
uncertainties. In [21], an exponential observer is devised to
compensate for the constant unknown ocean currents. Both
the adaptive control methods in [20] and [21] work efficiently
under the parametric uncertainties, however, they cannot deal
with the time-varying ocean disturbances. On the other hand,
in most DP applications, only the position and heading infor-
mation are available for feedback design [22]. This leads to the
study of observers to estimate the unmeasured states which are
required to feedback into the control laws, and the literatures
on this problem is also rich. Some examples include the
Luengberger observer designed in [23], a nonlinear observer
proposed in [13], and a passivity-based scheme considered in
[24].

Motivated by the above observations, this paper considers
the CDP problem of multiple offshore vessels in the presence
of dynamical uncertainties, time-varying ocean disturbances
and unmeasured velocity, for the purpose of collectively hold-
ing a relative formation and reaching a reference position. K-
filter observers are first used to tackle the unmeasured velocity
information of each vessel, and observer based CDP controllers
are proposed by exploiting DSC technique, neural network
and iterative learning approach. The designed controllers are
obviously different from the traditional DP controllers as only
a portion of vessels have access to the reference signals. The
stability properties of the closed-loop systems are proved by
Lyapunov analysis, and tracking errors converge to a small
neighborhood of origin.

The main contributions of the proposed scheme is three-
fold. Firstly, K-filter observers are first designed to cope with
the unmeasured velocity information of each vessel. Secondly,
the problem of “explosion of complexity” inherent in the
traditional backstepping method is avoided by applying the
DSC technique into the controller design. Thirdly, neural
network with iterative learning adaptive laws are proposed to
compensate for the model uncertainties and time-varying ocean
disturbances, and are easier to implement on digital processors
since continuous update laws are replaced by discrete update
laws.

This paper is organized as follows. Section II introduces
some necessary preliminaries and formulates the problem of
CDP in the presence of dynamical uncertainties and time-
varying ocean disturbances. Section III proposes K-filter ob-
servers to estimate the unmeasured velocity. Section IV gives
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the design of the observer based CDP controllers. Section
V presents the stability analysis of the closed-loop systems.
Section VI concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

1) Notation: The following notations are used in this paper.
ℝ
𝑛 is the n-dimensional Euclidean Space. ∣∣ ⋅ ∣∣ represents the

Euclidean norm. (⋅)𝑇 and (⋅)−1 denote transpose and inverse,
respectively. 𝑑𝑖𝑎𝑔{𝑎𝑖} is a block-diagonal matrix with 𝑎𝑖
being the 𝑖th diagonal element. 𝜆𝑚𝑖𝑛(⋅) represents the smallest
eigenvalue of a square matrix (⋅). 𝐼𝑛 denotes a n-dimension
identity matrix. ⊗ denotes the Kronecker product.

2) Graph theory: Some basic concepts and results on graph
theory are introduced. A graph 𝒢 = {𝒱, ℰ} consists of a node
set 𝒱 = {𝑛1, ..., 𝑛𝑁} and an edge set ℰ = {(𝑛𝑖, 𝑛𝑗) ∈ 𝒱 ×𝒱}
with (𝑛𝑖, 𝑛𝑗) describes the communication from node 𝑖 to node
𝑗. An adjacency matrix is defined as 𝒜 = [𝑎𝑖𝑗 ] ∈ ℝ

𝑁×𝑁 where
𝑎𝑖𝑗 = 1, if (𝑛𝑗 , 𝑛𝑖) ∈ ℰ ; and 𝑎𝑖𝑗 = 0, otherwise. If 𝑎𝑖𝑗 = 𝑎𝑗𝑖,
the digraph is undirected; otherwise is directed. If 𝑎𝑖𝑗 = 1
then 𝑗 ∈ 𝒩𝑖. Define a Laplacian matrix 𝐿 as 𝐿 = 𝐷 − 𝒜,
where 𝐷 = 𝑑𝑖𝑎𝑔{𝑑𝑖} with 𝑑𝑖 =

∑𝑁
𝑗=1 𝑎𝑖𝑗 . A directed path in

the graph is an ordered sequence of nodes such that any two
consecutive nodes in the sequence are an edge of the graph.
A digraph has a spanning tree, if there is a node called as the
root, such that there is a directed path from the root to every
other node in the graph. Further, define a leader adjacency
matrix 𝒜0 = 𝑑𝑖𝑎𝑔{𝑎𝑖0} given by 𝑎𝑖0 = 1, if and only if the
𝑖th vehicle has access to the information of the leader; and
𝑎𝑖0 = 0, otherwise. Finally, define 𝐻 = 𝐿+𝒜0.

B. Problem formulation

Consider a group of 𝑁 vessels governed by a three degree-
of-freedom dynamic model which can be found in [17], and
consists of the kinematics

�̇�𝑖 = 𝑅(𝜓𝑖)𝜈𝑖, (1)

and kinetics

𝑀𝑖�̇�𝑖 = −𝐶𝑖(𝜈𝑖)𝜈𝑖 −𝐷𝑖(𝜈𝑖)𝜈𝑖 − 𝑔𝑖(𝜈𝑖) + 𝜏𝑖 + 𝜏𝑖𝑤(𝑡), (2)

where

𝑅(𝜓𝑖) =

[
cos𝜓𝑖 − sin𝜓𝑖 0
sin𝜓𝑖 cos𝜓𝑖 0
0 0 1

]

; (3)

𝜂𝑖 = [𝑥𝑖, 𝑦𝑖, 𝜓𝑖]
𝑇 ∈ ℝ

3 represents the earth fixed position
and heading; 𝜈𝑖 = [𝑢𝑖, 𝑣𝑖, 𝑟𝑖]

𝑇 ∈ ℝ
3 represents the vessel-

fixed velocity; 𝑀𝑖 = 𝑀𝑇
𝑖 ∈ ℝ

3×3, 𝐶𝑖(𝜈𝑖) ∈ ℝ
3×3, 𝐷𝑖(𝜈𝑖) ∈

ℝ
3×3 are the inertia matrix, coriolis/centripetal matrix, and

damping matrix, respectively; 𝑔𝑖(𝜈𝑖) = [𝑔𝑖𝑢, 𝑔𝑖𝑣, 𝑔𝑖𝑟]
𝑇 ∈ ℝ

3 is
the unmodeled dynamics; 𝜏𝑖 = [𝜏𝑖𝑢, 𝜏𝑖𝑣, 𝜏𝑖𝑟]

𝑇 ∈ ℝ
3 denotes

the control input; 𝜏𝑖𝑤 = [𝜏𝑖𝑤𝑢, 𝜏𝑖𝑤𝑣, 𝜏𝑖𝑤𝑟]
𝑇 ∈ ℝ

3 denotes the
disturbance vector caused by unknown wind, waves and ocean
currents.

Consider a reference point 𝜂𝑟 ∈ ℝ
3 which acts as a virtual

vessel (labeled as 𝑛0), then the communication among the
𝑁 + 1 vessels is described by an augmented directed graph
𝒢 = {𝒱 , ℰ̄} with 𝒱 = {𝑛0, 𝑛1, ..., 𝑛𝑁} and ℰ̄ = {(𝑛𝑖, 𝑛𝑗) ∈
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Fig. 1. Reference frames: Earth-fixed and body-fixed

𝒱 × 𝒱}. Before controllers design, we have the following
assumption:

Assumption 1: The augmented graph 𝒢 contains a spanning
tree with the root node being the leader node 𝑛0.

The control objective of this paper is to design an adaptive
control law 𝜏𝑖 for each vessel (1) (2), for the purpose that they
can hold a relative formation and track the reference signal 𝜂𝑟,
such that

𝜂𝑖 −Δ𝑖 → 𝜂𝑟, 𝑖 = 1, .., 𝑁, (4)

with bounded errors. Δ𝑖 = [Δ𝑖𝑥,Δ𝑖𝑦,Δ𝑖𝜓]
𝑇 ∈ ℝ

3 is the
desired relative deviation between the 𝑖th vessel and the
reference point.

III. OBSERVER DESIGN

In order to facilitate the observer design, we first introduce
a coordinate transformation

𝜂𝑖1 = 𝑅𝑇𝑖 𝜂𝑖, (5)

whose time derivative with (1) is given by

�̇�𝑖1 = 𝜈𝑖 − 𝑟𝑖𝑆𝜂𝑖1, (6)

where

𝑆 =

[
0 −1 0
1 0 0
0 0 0

]

. (7)

It follows that
⎧
⎨

⎩

�̇�𝑖1 = 𝜈𝑖 − 𝑟𝑖𝑆𝜂𝑖1,
�̇�𝑖 = 𝑀−1𝑖 [−𝐶𝑖(𝜈𝑖)𝜈𝑖 −𝐷𝑖(𝜈𝑖)𝜈𝑖

−𝑔𝑖(𝜈𝑖) + 𝜏𝑖𝑤(𝑡)] +𝑀−1𝑖 𝜏𝑖,
(8)

which can be reshaped into a matrix form
{

�̇�𝑖 = 𝐴𝑖𝑋𝑖 +Φ𝑖 + 𝑒2𝑀
−1
𝑖 𝜏𝑖,

𝑌𝑖 = 𝑒1𝑋𝑖,
(9)
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where

𝑋𝑖 =

[
𝜂𝑖1
𝜈𝑖

]
;𝑌𝑖 = 𝜂𝑖1;𝐴𝑖 =

[
0 𝐼3
0 0

]
; (10)

Φ𝑖 =

⎡

⎢
⎣

−𝑟𝑖𝑆𝜂𝑖1
𝑓𝑖1(𝜈𝑖, 𝑡)
𝑓𝑖2(𝜈𝑖, 𝑡)
𝑓𝑖3(𝜈𝑖, 𝑡)

⎤

⎥
⎦ ; 𝑒1 = [𝐼3, 0] ; 𝑒2 =

[
0,
𝐼3

]
. (11)

Neural network is employed to approximate the unknown
functions, and the following assumption is required.

Assumption 2: The unknow functions 𝑓𝑖𝑛 can be linearly
parameterized by neural network as

𝑓𝑖𝑛 = 𝑊 ∗𝑇𝑖𝑛 (𝑡)𝛽∗𝑖𝑛(𝜌𝑖), ∀𝜌𝑖 ∈ 𝒟 (12)

where 𝜌𝑖 = [𝜈𝑖, 1], and 𝜈𝑖 are the estimation of unknow states,
which will be constructed later; 𝑊 ∗𝑖𝑛(𝑡) ∈ ℝ

𝑚 is an unknown
weight vector satisfying ∣∣𝑊 ∗𝑖𝑛(𝑡)∣∣ ≤𝑀1; 𝛽∗𝑖𝑛 : ℝ4 → ℝ

𝑚 is a
known Lipschitz continuous basis vector of the form 𝛽∗𝑖𝑛(𝜌𝑖) =
[𝛽∗𝑖𝑛1(𝜌𝑖), 𝛽

∗
𝑖𝑛2(𝜌𝑖), ..., 𝛽

∗
𝑖𝑛𝑚(𝜌𝑖)]

𝑇 satisfying ∣∣𝛽∗𝑖𝑛∣∣ ≤ 𝑀2; 𝒟
is a sufficiently large domain.

Remark 1: Unlike the DP system considered in [20] which
only contains linearly parameterized uncertainty, we consider
a more complex situation where the uncertain parts of the
nonlinear system is completely unknown. To deal with the
modeling uncertainties and time-varying ocean disturbances, a
neural network with iterative learning approach is introduced
in this paper.

By substituting (12) into (9), system (9) can be expressed
in the following form

{
�̇�𝑖 = 𝐴𝑖𝑋𝑖 + 𝛽𝑇𝑖 𝑊𝑖0 + 𝑒2𝑀

−1
𝑖 𝜏𝑖,

𝑌𝑖 = 𝑒1𝑋𝑖,
(13)

where

𝛽𝑇𝑖 =

⎡

⎢
⎣

−𝑆𝜂𝑖1
𝛽∗𝑇𝑖1

𝛽∗𝑇𝑖2
𝛽∗𝑇𝑖3

⎤

⎥
⎦ ,𝑊𝑖0 =

⎡

⎢
⎣

𝑟𝑖
𝑊 ∗𝑖1
𝑊 ∗𝑖2
𝑊 ∗𝑖3

⎤

⎥
⎦ ,

and we suppose that there exists a positive constant 𝑀0 such
that ∥�̇�𝑖0∥ ≤ 𝑀0. Note that the velocity information cannot
be measured directly, the following K-filters are proposed

⎧
⎨

⎩

�̇�𝑖 = 𝐴𝑖0𝛿𝑖 + 𝑤𝑖𝜂𝑖1,

Ω̇𝑖 = 𝐴𝑖0Ω𝑖 + 𝛽𝑇𝑖 ,

�̇�𝑖 = 𝐴𝑖0𝜗𝑖 + 𝑒2𝑀
−1
𝑖 𝜏𝑖,

(14)

where 𝛿𝑖 = [𝛿𝑇𝑖1, 𝛿
𝑇
𝑖2]
𝑇 , Ω𝑖 = [Ω𝑇𝑖1,Ω

𝑇
𝑖2]
𝑇 , 𝜗𝑖 = [𝜗𝑇𝑖1, 𝜗

𝑇
𝑖2]
𝑇 ,

𝑤𝑖 = [𝑤𝑇𝑖1, 𝑤
𝑇
𝑖2]
𝑇 , and 𝐴𝑖0 = 𝐴𝑖 − 𝑤𝑖𝑒

𝑇
1 is Hurwitz by

choosing suitable 𝑤𝑖.

With the above filters, the designed state estimation is

�̂�𝑖 = 𝛿𝑖 +Ω𝑖𝑊𝑖0 + 𝜗𝑖. (15)

Denote state estimation error vector as

𝜖𝑖 = �̂�𝑖 −𝑋𝑖, (16)

where 𝜖𝑖 = [𝜖𝑇𝑖1, 𝜖
𝑇
𝑖2]
𝑇 . The time derivation of (16) is given by

�̇�𝑖 = 𝐴𝑖0𝜖𝑖 +Ω𝑖�̇�𝑖0. (17)

We now divide the error 𝜖𝑖 into two parts

𝜖𝑖 = 𝜖𝑖𝑎 + 𝜖𝑖𝑏, (18)

where 𝜖𝑖𝑎 satisfies

�̇�𝑖𝑎 = 𝐴𝑖0𝜖𝑖𝑎, (19)

with 𝜖𝑖𝑎(0) = 𝜖𝑖(0), and 𝜖𝑖𝑏 =
∫ 𝑡
0
𝑒𝐴𝑖0(𝑡−𝑠)(Ω𝑖�̇�𝑖0)𝑑𝑠. It can

be shown that

∣∣𝜖𝑖𝑏∣∣ ≤
∫ 𝑡

0

∣∣𝑒𝐴𝑖0(𝑡−𝑠)∣∣ ⋅ ∣∣Ω𝑖∣∣ ⋅ ∣∣�̇�𝑖0∣∣𝑑𝑠

≤𝑀0

∫ 𝑡

0

∣∣𝑒𝐴𝑖0(𝑡−𝑠)∣∣ ⋅ ∣∣Ω𝑖∣∣𝑑𝑠

≤𝑀0

∫ 𝑡

0

𝑒−𝜆𝜖(𝑡−𝑠)𝑘𝜖 ⋅ ∣∣Ω𝑖∣∣𝑑𝑠, (20)

where 𝜆𝜖 and 𝑘𝜖 are chosen positive parameters such that

𝑘𝜖𝑒
−𝜆𝜖𝑡 ≥ ∣∣𝑒𝐴0𝑡∣∣,∀𝑡 > 0 (21)

Thus 𝜖𝑖𝑏 satisfies that

∣𝜖𝑖𝑏∣ ≤ ℎ𝑖(𝑡)𝑀0, (22)

where ℎ𝑖(𝑡) is generated by

ℎ̇𝑖 = −𝜆𝜖ℎ𝑖 + 𝑘𝜖(∣∣Ω𝑖∣∣2 + 1
4 ). (23)

To move on, the following donations are needed.

𝜖𝑖 = 𝜖𝑖𝑎 + 𝜖𝑖𝑏 =

⎡

⎢
⎢
⎢
⎢
⎣

𝜖𝑖𝑎
𝜖1𝑎
𝜖2𝑎

...
𝜖𝑁𝑎

⎤

⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎣

𝜖𝑖𝑏
𝜖1𝑏
𝜖2𝑏
...

𝜖𝑁𝑏

⎤

⎥
⎥
⎥
⎥
⎦
,

𝐴𝑖0 =

⎡

⎢
⎢
⎢
⎢
⎣

𝐴𝑖0
𝐴10

𝐴20

. . .
𝐴𝑁0

⎤

⎥
⎥
⎥
⎥
⎦
.

Suppose 𝑃𝑖 is a positive definite matrix satisfying 𝑃𝑖𝐴𝑖0 +
𝐴𝑇𝑖0𝑃𝑖 ≤ −2𝐼 , and let

𝑉0 =

𝑁∑

𝑖=1

𝜖𝑇𝑖𝑎𝑃𝑖𝜖𝑖𝑎. (24)

From (19), the derivative of 𝑉0 is given as

�̇�0 ≤ −2
𝑁∑

𝑖=1

∣∣𝜖𝑖𝑎∣∣2. (25)

From the above filters design, the system (13) can be
represented as
{

�̇�𝑖1 = 𝛿𝑖2 +Ω𝑖2𝑊𝑖0 + 𝜗𝑖2 − 𝜖𝑖2 + 𝛽𝑇𝑖(1)𝑊𝑖0,

�̇�𝑖2 = −𝑤𝑖1𝜗𝑖2 +𝑀−1𝑖 𝜏𝑖,
(26)

where 𝛽𝑇𝑖(1) is the first three rows of 𝛽𝑇𝑖 .
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IV. OBSERVER BASED CDP CONTROLLER DESIGN

In this section, we present the observer based CDP con-
troller design in two steps as follows.

Step 1: Define a neighborhood-based dynamic surface
tracking error

𝑧𝑖1 =
∑𝑁
𝑗=1 𝑎𝑖𝑗 [𝜂𝑖 −Δ𝑖𝑗 − 𝜂𝑗 ] + 𝑎𝑖0[𝜂𝑖 −Δ𝑖 − 𝜂𝑟], (27)

where 𝑎𝑖𝑗 and 𝑎𝑖0 are defined in section II. Considering (1)
and differentiating 𝑧1 with respect to time, we obtain

�̇�𝑖1 = 𝑎𝑖𝑑𝑅𝑖�̇�𝑖1 −
𝑁∑

𝑗=1

𝑎𝑖𝑗𝑅𝑗 �̇�𝑗1 − 𝑎𝑖0�̇�𝑟

= 𝑎𝑖𝑑𝑅𝑖(𝛿𝑖2 + 𝜗𝑖2)−
𝑁∑

𝑗=1

𝑎𝑖𝑗𝑅𝑗(𝛿𝑗2 + 𝜗𝑗2)

− 𝑎𝑖0�̇�𝑟 +Θ𝑖𝑊𝑖 −Υ𝑖𝜖𝑖2. (28)

where 𝑎𝑖𝑑 = 𝑑𝑖 + 𝑎𝑖0, 𝑅𝑖 = 𝑅(𝜓𝑖), and 𝑅𝑗 = 𝑅(𝜓𝑗);
Θ𝑖 = [𝑎𝑖𝑑𝑅𝑖(Ω𝑖2 + 𝛽𝑖(1)),−𝑎𝑖1𝑅1(Ω12 + 𝛽1(1)),−𝑎𝑖2𝑅2(Ω12

+ 𝛽2(1)), ...,−𝑎𝑖𝑁𝑅𝑁 (Ω12 + 𝛽𝑁(1))]; 𝑊𝑖 = [𝑊𝑇
𝑖0 ,𝑊

𝑇
10,𝑊

𝑇
20,

...,𝑊𝑇
𝑁0]

𝑇 ; Υ𝑖 = [𝑎𝑖𝑑𝑅𝑖,−𝑎𝑖1𝑅1,−𝑎𝑖2𝑅2, ...,−𝑎𝑖𝑁𝑅𝑁 ];
𝜖𝑖2 = [𝜖𝑇𝑖2, 𝜖

𝑇
12, 𝜖

𝑇
22, ..., 𝜖

𝑇
𝑁2]

𝑇 . Choose a virtual control law 𝛼𝑖
as follows

𝛼𝑖 =
𝑅𝑇𝑖
𝑎𝑖𝑑

{
− 𝑘𝑖1𝑧𝑖1 − 𝑎𝑖𝑑𝑅𝑖𝛿𝑖2 +

𝑁∑

𝑗=1

𝑎𝑖𝑗𝑅𝑗(𝜗𝑗2 + 𝛿𝑗2)

+ 𝑎𝑖0�̇�𝑟 −Θ𝑖�̂�𝑖 − 𝑧𝑖1ℎ
2𝑀2

0

}
, (29)

where �̂�𝑖(𝑡) is the estimate of 𝑊𝑖(𝑡), and the iterative learning
update law is given by

�̂�𝑖(𝑡) = Γ𝑖�̂�𝑖(𝑡− 𝑡𝑑) + 𝜅𝑖Θ
𝑇
𝑖 𝑧𝑖1, (30)

where 𝑡𝑑 > 0, 𝜅𝑖 > 0, and Γ𝑖 satisfying 0 ≤ Γ𝑇𝑖 Γ𝑖 < 𝜍𝐼𝑙, 0 <
𝜍 < 1/(1 + 𝜀), 𝜀 > 0.

Remark 2: Compared with integrator-based update laws,
the developed iterative learning update law possesses several
advantages. Firstly, it can deal with those time-varying param-
eters without existence of derivatives at some time instants.
Secondly, it can be easier to implement in digital processors
due to the fact that the differentiation need great computational
costs.

For the convenience of analysis, define

𝜚𝑖(𝑡) = 𝜅𝑖Θ
𝑇
𝑖 𝑧𝑖1, (31)

and then we have

𝜚𝑖(𝑡) = 𝑊𝑖(𝑡)− Γ𝑖𝑊𝑖(𝑡− 𝑡𝑑), (32)

where ∣∣𝜚𝑖(𝑡)∣∣ ≤ 𝛿∗, 𝛿∗ = 𝜎𝑖(1+∣∣Γ𝑖(𝑡)∣∣) with 𝜎𝑖 > 0. Define
the estimate error as

�̃�𝑖(𝑡) = �̂�𝑖(𝑡)−𝑊𝑖(𝑡). (33)

Substituting (30) and (32) into (33) gives

�̃�𝑖(𝑡) = Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜚𝑖(𝑡)− 𝜚𝑖(𝑡). (34)

Let 𝛼𝑖 pass through a low-pass first order filter with a time
constant 𝛾𝑖 > 0 to obtain the filtered control signal 𝜈𝑖𝑑 as
follows

𝛾𝑖�̇�𝑖𝑑 + 𝜈𝑖𝑑 = 𝛼𝑖, 𝜈𝑖𝑑(0) = 𝛼𝑖(0). (35)

Remark 3: The addition of the low-pass first order filter
allow the algorithm to be implemented without differentiating
any model nonlinearities and suffering from the problem of
the explosion terms. When the filter time is small enough and
the surface gain is selected reasonably, the controller is easy
and prone to be practiced.

Step 2: Define the second surface tracking error as

𝑧𝑖2 = 𝜗𝑖2 − 𝜈𝑖𝑑, (36)

whose time derivative is given by

𝑀𝑖�̇�𝑖2 =− 𝑤𝑖2𝑀𝑖𝜗𝑖2 + 𝜏𝑖 −𝑀𝑖�̇�𝑖𝑑. (37)

An adaptive control law is constructed as follows

𝜏𝑖 = −𝑘𝑖2𝑧𝑖2 + 𝑤𝑖2𝑀𝑖𝜗𝑖2 +𝑀𝑖�̇�𝑖𝑑. (38)

Substituting (38) into (37) yields

𝑀𝑖�̇�𝑖2 = −𝑘𝑖2𝑧𝑖2. (39)

Therefore, the closed-loop network can be expressed by
⎧
⎨

⎩

�̇�𝑖1 = −𝑘𝑖1𝑧𝑖1 + 𝑎𝑖𝑑𝑅𝑖(𝑧𝑖2 + 𝑞𝑖)

−Θ𝑖�̃�𝑖 −Υ𝑖𝜖𝑖2 − 𝑧𝑖1ℎ
2𝑀2

0 ,
𝑀𝑖�̇�𝑖2 = −𝑘𝑖2𝑧𝑖2,

(40)

where 𝑞𝑖 = 𝜈𝑖𝑑 − 𝛼𝑖. The time derivative of 𝑞𝑖 is

𝑞𝑖 = − 𝑞𝑖
𝛾𝑖

+𝐵𝑖(𝑧𝑖1, 𝑧𝑖2, 𝑞𝑖, �̂�𝑖, 𝜏𝑖, 𝜏𝑗 , 𝜂𝑟, �̇�𝑟, 𝜂𝑟), (41)

where 𝑖 = 1, ..., 𝑁, 𝑗 ∈ 𝒩𝑖, and 𝐵𝑖(⋅) is a continuous

function expressed as 𝐵𝑖(⋅) =
�̇�𝑇𝑖
𝑎𝑖𝑑

{
− 𝑘𝑖1𝑧𝑖1 − 𝑎𝑖𝑑𝑅𝑖𝛿𝑖2 +

∑𝑁
𝑗=1 𝑎𝑖𝑗𝑅𝑗(𝜗𝑗2 + 𝛿𝑗2) + 𝑎𝑖0�̇�𝑟 − Θ𝑖�̂�𝑖 − 𝑧𝑖1ℎ

2𝑀2
0

}
+

𝑅𝑇𝑖
𝑎𝑖𝑑

{
− 𝑘𝑖1�̇�𝑖1 − 𝑎𝑖𝑑�̇�𝑖𝛿𝑖2 − 𝑎𝑖𝑑𝑅𝑖�̇�𝑖2 +

∑𝑁
𝑗=1 𝑎𝑖𝑗 [�̇�𝑗(𝜗𝑗2 +

𝛿𝑗2) +𝑅𝑗(�̇�𝑗2 + �̇�𝑗2)] + 𝑎𝑖0𝜂𝑟 − Θ̇𝑖�̂�𝑖 −Θ𝑖
˙̂
𝑊𝑖 − ℎ2𝑀2

0 �̇�𝑖1 −
2ℎℎ̇𝑀2

0 𝑧𝑖1

}
.

Remark 4: In contrast to the traditional dynamic positioning
controllers, the realization of the proposed CDP controller is
based on the information of neighboring vessels. Individuals in
the system exchange information through a directed network
and only a small portion of vessels know the reference signals.

V. STABILITY ANALYSIS

The main result of this paper is stated as follows.

Theorem 1: Consider a networked system consisting of
𝑁 marine vessels governed by the dynamics (1) (2) with
Assumption 1 and 2 satisfied. Select the control law (38) with
the update law (30), together with the filters (14). For bounded
initial conditions 𝑉 (0) ≤ 𝜛 where 𝜛 is a positive constant
and 𝑉 is defined in (42), all signals in the system are uniformly
ultimately bounded and the positioning tracking errors can be
made in a very small neighborhood of origin.
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Proof: Consider the following Lyapunov function candidate

𝑉 =
1

2

𝑁∑

𝑖=1

{
𝑧𝑇𝑖1𝑧𝑖1 + 𝑧𝑇𝑖2𝑀𝑖𝑧𝑖2 + 𝑞𝑇𝑖 𝑞𝑖

+

∫ 𝑡

𝑡−𝑡𝑑
�̃�𝑇
𝑖 (𝑠)�̃�𝑖(𝑠)

𝑇 𝑑𝑠
}
+ 𝑉0, (42)

whose time derivative is given by

�̇� ≤
𝑁∑

𝑖=1

{
− 𝜆𝑚𝑖𝑛(𝐾1)𝑧

𝑇
𝑖1𝑧𝑖1 −Υ𝑖𝜖𝑖𝑎2𝑧

𝑇
𝑖1 −Υ𝑖𝜖𝑖𝑏2𝑧

𝑇
𝑖1

− ℎ2𝑀2
0 𝑧

2
𝑖1 − 𝑧𝑇𝑖1Θ𝑖[Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜚𝑖(𝑡)− 𝜚𝑖(𝑡)]

+ 𝑎𝑖𝑑𝑧
𝑇
𝑖1𝑅𝑖(𝑧𝑖2 + 𝑞𝑖)− 𝜆𝑚𝑖𝑛(𝐾2)𝑧

𝑇
𝑖2𝑧𝑖2 − 𝑞𝑇𝑖 𝑞𝑖

𝛾𝑖

+ 𝑞𝑇𝑖 𝐵𝑖(⋅)− 𝜉𝑖�̃�
𝑇
𝑖 (𝑡)�̃�𝑖(𝑡) + 𝜗𝑖�̃�

𝑇
𝑖 (𝑡)�̃�𝑖(𝑡)

− �̃�𝑇
𝑖 (𝑡− 𝑡𝑑)�̃�𝑖(𝑡− 𝑡𝑑)

}
+ 𝑉0, (43)

where 𝐾1 = 𝑑𝑖𝑎𝑔(𝑘11, ..., 𝑘𝑁1), 𝐾2 = 𝑑𝑖𝑎𝑔(𝑘12, ..., 𝑘𝑁2),
𝜉𝑖 > 0, and 𝜗𝑖 = 1 + 𝜉𝑖. Expanding the term 𝜗𝑖�̃�

𝑇
𝑖 (𝑡)�̃�𝑖(𝑡)

with (34) produces

�̇� ≤
𝑁∑

𝑖=1

{
− 𝜆𝑚𝑖𝑛(𝐾1)𝑧

𝑇
𝑖1𝑧𝑖1 −Υ𝑖𝜖𝑖𝑎2𝑧

𝑇
𝑖1 −Υ𝑖𝜖𝑖𝑏2𝑧

𝑇
𝑖1

− ℎ2𝑀2
0 𝑧

2
𝑖1 − 𝑧𝑇𝑖1Θ𝑖[Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜚𝑖(𝑡)− 𝜚𝑖(𝑡)]

+ 𝑎𝑖𝑑𝑧
𝑇
𝑖1𝑅𝑖(𝑧𝑖2 + 𝑞𝑖)− 𝜆𝑚𝑖𝑛(𝐾2)𝑧

𝑇
𝑖2𝑧𝑖2 − 𝑞𝑇𝑖 𝑞𝑖

𝛾𝑖
+ 𝑞𝑇𝑖 𝐵𝑖

− 𝜉𝑖�̃�
𝑇
𝑖 (𝑡)�̃�𝑖(𝑡)− �̃�𝑇

𝑖 (𝑡− 𝑡𝑑)�̃�𝑖(𝑡− 𝑡𝑑)

+ 𝜗𝑖�̃�
𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜗𝑖𝜚

𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)

+ 𝜗𝑖𝜚
𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)− 2𝜗𝑖𝜚

𝑇
𝑖 (𝑡)Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑)

+ 2𝜗𝑖�̃�
𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 𝜚𝑖(𝑡)− 2𝜗𝑖𝜚

𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)

}
+ 𝑉0. (44)

Using Young’s inequality yields the following inequalities
⎧
⎨

⎩

∣𝑧𝑇𝑖1𝑅𝑖𝑧𝑖2∣ ≤ 1
2∥𝑧𝑖1∥2 + 1

2∥𝑧𝑖2∥2,∣𝑧𝑇𝑖1𝑅𝑖𝑞𝑖∣ ≤ 1
2∥𝑧𝑖1∥2 + 1

2∥𝑞𝑖∥2,
∣𝑞𝑇𝑖 𝐵𝑖(⋅)∣ ≤ 1

2𝜁𝑖1
∥𝑞𝑖∥2∥𝐵𝑖(⋅)∥2 + 𝜁𝑖1

2 ,

−∣Υ𝑖𝜖𝑖𝑎2𝑧𝑇𝑖1∣ ≤ 1
4∥Υ𝑖∥2∥𝑧𝑖1∥2 + ∥𝜖𝑖𝑎∥2,−∣Υ𝑖𝜖𝑖𝑏2𝑧𝑇𝑖1∣ ≤ 1
4∥Υ𝑖∥2 + ℎ2𝑀2

0 ∥𝑧𝑖1∥2,

(45)

where 𝜁𝑖1 > 0, and then we have

�̇� ≤
𝑁∑

𝑖=1

{
− [𝜆𝑚𝑖𝑛(𝐾1)− 𝑎𝑖𝑑 − ∥Υ𝑖∥

2

4 ]𝑧𝑇𝑖1𝑧𝑖1 − [𝜆𝑚𝑖𝑛(𝐾2)

− 𝑎𝑖𝑑
2 ]𝑧𝑇𝑖2𝑧𝑖2 − [ 1

𝛾𝑖
− ∥𝐵𝑖(⋅)∥22𝜁𝑖1

− 𝑎𝑖𝑑
2 ]𝑞𝑇𝑖 𝑞𝑖 +

𝜁𝑖1
2

− 𝑧𝑇𝑖1Θ𝑖[Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜚𝑖(𝑡)− 𝜚𝑖(𝑡)]

− 𝜉𝑖�̃�
𝑇
𝑖 (𝑡)�̃�𝑖(𝑡)− �̃�𝑇

𝑖 (𝑡− 𝑡𝑑)�̃�𝑖(𝑡− 𝑡𝑑)

+ 𝜗𝑖�̃�
𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑) + 𝜗𝑖𝜚

𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)

+ 𝜗𝑖𝜚
𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)− 2𝜗𝑖𝜚

𝑇
𝑖 (𝑡)Γ𝑖�̃�𝑖(𝑡− 𝑡𝑑)

+ 2𝜗𝑖�̃�
𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 𝜚𝑖(𝑡)− 2𝜗𝑖𝜚

𝑇
𝑖 (𝑡)𝜚𝑖(𝑡)

+ ∥𝜖𝑖𝑎∥2 + ∥Υ𝑖∥
2

4

}
+ 𝑉0. (46)

Note the following inequality

2𝜗𝑖�̃�
𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 𝜚𝑖(𝑡) ≤ 𝜁𝑖2�̃�

𝑇
𝑖 (𝑡− 𝑡𝑑)Γ

𝑇
𝑖 Γ𝑖

�̃�𝑖(𝑡− 𝑡𝑑) +
𝜗2
𝑖

𝜁𝑖2
𝜚𝑇𝑖 (𝑡)𝜚𝑖(𝑡), (47)

where 𝜁𝑖2 > 0. Substituting (47) into (46) and using (31) with
𝜅𝑖 = − 1

2𝜗𝑖
, it follows that

�̇� ≤
𝑁∑

𝑖=1

{
− [𝜆𝑚𝑖𝑛(𝐾1)− 𝑎𝑖𝑑 − ∥Υ𝑖∥

2

4 ]𝑧𝑇𝑖1𝑧𝑖1 − [𝜆𝑚𝑖𝑛(𝐾2)

− 𝑎𝑖𝑑
2 ]𝑧𝑇𝑖2𝑧𝑖2 − [ 1

𝛾𝑖
− ∥𝐵𝑖(⋅)∥22𝜁𝑖1

− 𝑎𝑖𝑑
2 ]𝑞𝑇𝑖 𝑞𝑖 +

𝜁𝑖1
2

− 𝜉𝑖�̃�
𝑇
𝑖 (𝑡)�̃�𝑖(𝑡) + (𝜗𝑖 +

𝜗2
𝑖

𝜁𝑖2
)𝜚𝑇𝑖 (𝑡)𝜚𝑖(𝑡)

− �̃�𝑇
𝑖 (𝑡− 𝑡𝑑)(𝐼𝑙 − (𝜗𝑖 + 𝜁𝑖2)Γ

𝑇
𝑖 Γ𝑖)�̃�𝑖(𝑡− 𝑡𝑑)

+ ∥𝜖𝑖𝑎∥2 + ∥Υ𝑖∥
2

4

}
+ 𝑉0. (48)

Letting 𝜇𝑖 =
1

𝜗𝑖+𝜁𝑖2
< 1, we obtain

�̇� ≤
𝑁∑

𝑖=1

{
− [𝜆𝑚𝑖𝑛(𝐾1)− 𝑎𝑖𝑑 − ∥Υ𝑖∥

2

4 ]𝑧𝑇𝑖1𝑧𝑖1 − [𝜆𝑚𝑖𝑛(𝐾2)

− 𝑎𝑖𝑑
2 ]𝑧𝑇𝑖2𝑧𝑖2 − [ 1

𝛾𝑖
− ∥𝐵𝑖(⋅)∥22𝜁𝑖

− 𝑎𝑖𝑑
2 ]𝑞𝑇𝑖 𝑞𝑖 − 𝜉𝑖�̃�

𝑇
𝑖 (𝑡)�̃�𝑖(𝑡)

− �̃�𝑇
𝑖 (𝑡− 𝑡𝑑)(𝐼𝑙 − 𝜇−1𝑖 Γ𝑇𝑖 Γ𝑖)�̃�𝑖(𝑡− 𝑡𝑑)− ∥𝜖𝑖𝑎∥2

}
+ 𝑐,

(49)

where 𝑐 =
∑𝑁
𝑖=1[

𝜁𝑖1
2 + (𝜗𝑖 +

𝜗2
𝑖

𝜁𝑖2
)𝛿∗2 + ∥Υ𝑖∥2

4 ]. Since for

𝜛 > 0, the set Ξ =
∑𝑁
𝑖=1[𝑧

𝑇
𝑖1𝑧𝑖1 + 𝑧𝑇𝑖2𝑀𝑖𝑧𝑖2 + 𝑞𝑇𝑖 𝑞𝑖 +∫ 𝑡

𝑡−𝑡𝑑 �̃�
𝑇
𝑖 (𝑠)�̃�𝑖(𝑠)𝑑𝑠] ≤ 2𝜛 is compact. Therefore, there

exists positive constants 𝐵∗𝑖 such that ∥𝐵𝑖(⋅)∥ ≤ 𝐵∗𝑖 .

Choose suitable parameters satisfying
⎧
⎨

⎩

ℏ𝑖1 = 𝜆𝑚𝑖𝑛(𝐾1)− 𝑎𝑖𝑑 − ∥Υ𝑖∥
2

4 > 0,
ℏ𝑖2 = 𝜆𝑚𝑖𝑛(𝐾2)− 𝑎𝑖𝑑

2 > 0,

ℏ𝑖3 = 1
𝛾𝑖
− ∥𝐵∗𝑖 ∥22𝜁𝑖1

− 𝑎𝑖𝑑
2 > 0,

ℏ𝑖4 = 𝜉𝑖 > 0,
ℏ𝑖5 = 𝜆𝑚𝑖𝑛(𝐼𝑙 − 𝜇−1𝑖 Γ𝑇𝑖 Γ𝑖) > 0,

(50)

and then (49) can be expressed in a compact form

�̇� ≤
𝑁∑

𝑖=1

{
− ℏ𝑖1∣∣𝑧𝑖1∣∣2 − ℏ𝑖2∣∣𝑧𝑖2∣∣2 − ℏ𝑖3∣∣𝑞𝑖∣∣2

− ℏ𝑖4∣∣�̃�𝑖(𝑡)∣∣2 − ℏ𝑖5∣∣�̃�𝑖(𝑡− 𝑡𝑑)∣∣2 − ∥𝜖𝑖𝑎∥2
}
+ 𝑐. (51)

Either ∣∣𝑧𝑖1∣∣ >
√

𝑐/ℏ𝑖1 or ∣∣𝑧𝑖2∣∣ >
√

𝑐/ℏ𝑖2 or ∣∣𝑞𝑖∣∣ >√
𝑐/ℏ𝑖3 or ∣∣�̃� (𝑡)∣∣ > √

𝑐/ℏ𝑖4 or ∣∣�̃� (𝑡 − 𝑡𝑑)∣∣ >
√

𝑐/ℏ𝑖5
renders �̇� < 0. Therefore, all signals in the closed-loop
network are uniformly ultimately bounded. Furthermore, ∣∣𝑧𝑖1∣∣
is bounded by ∣∣𝑧𝑖1∣∣ ≤

√
𝑐/ℏ𝑖1.

Define the absolute positioning tracking error as

𝑒𝑖 = 𝜂𝑖 −Δ𝑖 − 𝜂𝑟. (52)

Letting 𝑧1 = [𝑧𝑇𝑖1, ..., 𝑧
𝑇
𝑖𝑁 ]

𝑇 and 𝑒 = [𝑒𝑇1 , ..., 𝑒
𝑇
𝑁 ]
𝑇 , it follows

that

𝑧1 = (𝐻 ⊗ 𝐼3)𝑒, (53)

where 𝐻 is defined in section II. The following inequality is
satisfied under Assumption 1

∣∣𝑒∣∣ ≤ ∣∣𝑧1∣∣𝑜(𝐻) , (54)
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where 𝑜(𝐻) denotes the minimal singular value of 𝐻 . Then,
∣∣𝑒∣∣ is bounded by

∣∣𝑒∣∣ ≤
√
𝑐1

𝑜(𝐻)
√
ℏ𝑖1

. (55)

By appropriately increasing the parameter ℏ𝑖1, the absolute
positioning tracking errors can be made in a very small
neighborhood of origin. The proof is complete.

VI. CONCLUSIONS

This paper considered the CDP problem of multiple off-
shore vessels in the presence of dynamical uncertainties, time-
varying ocean disturbances and unmeasured velocity. K-filters
are first designed to estimate the unmeasured velocity of each
vessel, and the observer based CDP controllers are proposed
by making use of DSC technique, neural network, and adaptive
iterative learning approach. The designed controllers can guar-
antee that a relative formation among vessels is reached if the
graph induced by the vessels and the reference point contains a
spanning tree. It is proved by Lyapunov stability analysis that
all signals in the closed-loop systems are uniformly ultimately
bounded.
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