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Abstract—Image change detection is a process to analyze
multi-temproal images of the same scene for identifying the
changes that have occurred. In this paper, we propose a novel
difference image analysis approach based on deep neural
networks for image change detection problems. The deep neural
network learning algorithm for classification includes
unsupervised feature learning and supervised fine-tuning. Some
samples with the labels of high accuracy obtained by a
pre-classification are used for fine-tuning. Since a deep neural
network can learn complicated functions that can represent
high-level abstractions, it can obtain satisfactory results.
Theoretical analysis and experiment results on real datasets
show that the proposed method outperforms some other
methods.

1. INTRODUCTION

MAGE change detection is more and more important in

image processing field. It is a process to analyze two images

of the same scene but taken at different times for identifying
the changes that have occurred between the two images. It has
been used widely in diverse disciplines such as remote sensing,
medical diagnosis, and video surveillance [1]. Since synthetic
aperture radar (SAR) images are independent of atmospheric
and sunlight conditions, they have become valuable sources of
information in change detection. However, SAR images
exhibit more difficulties than optical ones because of the
presence of the speckle noise [2].

Unsupervised change detection in SAR images can be
divided into three steps [3]: (1) Preprocessing. (2) Producing a
difference image (DI) between the multi-temporal images. (3)
Analyzing the DI. Firstly, the preprocessing step often
includes coregistration, geometric correction and denosing.
The task of the second step is to generate a difference image
by comparing two coregistered images pixel by pixel.
Differencing and rationing (R) are the well-known methods
for producing a DI. But because of the multiplicative nature of
speckles, the ratio image is usually expressed in a logarithmic
[4, 5]. In addition, in order to further suppress the effect of
speckles, we proposed a neighborhood-based ratio (NR)
approach to generate a DI [6]. In the third step, DI-analysis is
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actually taken as a process to segment an image. The
thresholding method is a conventional method which applies a
decision threshold to the histogram of the DI. Some classical
thresholding methods such as Otsu [7] and the Kittler and
Ilingworth (KI) [8] are applied to determine the threshold in
an unsupervised manner. For taking the non-Gaussian
distribution of the amplitude values of SAR images into
account, a KI-based method (GKI) was generalized [9]. And a
generalized Gaussian model which is used in a KI approach
was presented in [4]. Another kind of methods for segmenting
images is the clustering method. The fuzzy c-means (FCM)
algorithm which can retain more information than hard
clustering in some cases is one of the most popular clustering
methods. Some excellent algorithms were developed based on
the FCM. We modified the objective function of the robust
fuzzy local information c-means clustering algorithm (FLICM)
[10] and proposed the reformulated FLICM (RFLICM) in
[11].

As mentioned above, change detection technology in SAR
images has developed well. But the involved algorithms can
not satisfy requirements because of the data acquisition
channels and the scope of applications increasing. The
available thresholding methods need to establish suitable
models and the clustering methods are sensitive to noise.
However, deep neural network which has a powerful ability to
learn has many successes in image processing.

Deep learning [12], as a new kind of machine learning
method, has been paid more and more attention in recent years.
In deep learning, we input the signals directly without any
preprocessing, and the features can be learned layer by layer
unsupervisedly. The output of one layer is the input of the next
layer. And the layers form a deep network architecture which
can learn the representations of the input signals. In image
processing, the hierarchical structure can learn different
features at different layers. And the deeper the network is, the
more abstract information can be learned. Deep learning has
attracted widespread interest due to a larger number of
applications in traditional artificial intelligence (Al), such as
natural language processing [13], modeling textures [14],
handwriting recognition [15, 16] and image processing [17,
18], especially classification tasks [19-21]. There are some
deep learning methods including convolutional neural
networks (CNNs) [22], Deep Belief Networks (DBNs) [23]
and auto-encoders [24]. CNNs which are inspired by
biological processes are widely wused models for
image-recognition. DBNs exploit an unsupervised learning
algorithm, the restricted Boltzmann machine (RBM) [25], for
each layer. And auto-encoders apparently exploit the same
principle in [24]. Auto-encoders, RBMs and DBNs can be



trained with unlabeled data. Deep learning has the property of
unsupervised feature learning. It can learn from datasets with a
few labeled data and many unlabeled data, which is important
in our unsupervised change detection method.

In order to learn complicated functions that can represent
high-level abstractions, a deep architecture is needed [26].
Deep architectures are composed of multiple levels of
non-linear operations, such as in neural nets with many hidden
layers. Automatically learning features at multiple levels of
abstraction allows a system to learn complex functions
mapping the input to the output directly from data. Compared
with a shallow network, a deep network can describes images
more sufficiently. In this paper, we propose a deep
architecture for change detection. Firstly, we make a
pre-classification for obtaining some samples; secondly, we
use RBMs to pre-train a deep neural network and then
fine-tune it; thirdly, we use the trained deep neural network to
classify a DI.

This paper is organized into four sections. In Section II, the
proposed method will be described in details. Section III will
present experimental results on real multi-temporal SAR
images to verify the feasibility of the method. Finally, we will
make a conclusion in the last section.
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Fig.1. Flowchart of generating the deep neural network

II. METHODOLOGY

We consider two co-registered intensity SAR images /,= {/,
(i, )), 1<i<4, 1<j<B} and I= {1, (i, ), 1<i<A4, 1<j<B}. Both of
them have the same size and are acquired over the same
geographical area at two different times ¢, and #, respectively.
We use the log-ratio (LR) operator to generate a difference
image between the two original images.
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The neighborhood features of each pixel on the difference
image are taken as the inputs and we use a logistic output unit
to indicate whether the pixel is changed or unchanged. There
are three main phases in the proposed approach based on a
deep architecture: 1) Pre-classify a difference image and
choose suitable samples; 2) design, train and fine-tune a deep
neural network; 3) use the trained deep neural network to
classify the DI. The flowchart of generating the deep neural
network is shown in Fig.1.

Fig.2. Illustrate how to choose suitable samples

A. Choose suitable samples

We use a simple thresholding method (e.g. KI algorithm) to
pre-classify the difference image. The results of
pre-classification are not entirely correct. The pixels which
have high possibility of being correctly classified are chosen
to train the networks. Suppose that the pixel p;; at the position
(7, /) in the pre-classification result map has the label R;. Let
N;; be a neighborhood with a center at the position (7, j) and of
size n X n. A simulated image as an example is shown in Fig.2,
and there are three kinds of points should be considered. A
point in the changed areas or unchanged areas, like Point 1 in
Fig.2, has a neighborhood in which almost all pixels have the
same labels with it. A point on the edge, like Point 3 in Fig.2,
has a neighborhood in which about half all pixels have the
same labels with it. These two kinds of point can be chosen as
samples. A point that is wrongly classified (also called noise
spot), like Point 2 in Fig.2, has a neighborhood in which a few
or none of the pixels have the same labels with it. This kind of
point should be eliminated. In conclusion, if the point p;; has a
neighborhood N; which satisfies Eq. (2), the point p; can be
chosen as a sample.

(p,, N, AR, =R
st] y sn '/)>a (2)

nxn

and

where the point p_ is in the neighborhood Ny,

O(p,, € N, AR, =R ) means the number of pixels with the

label equal to R; in the neighborhood N;. The parameter o
which decides whether the p;; is chosen as a sample is very
important. o can not be set too small or too large. If a is set too



small, the result will be not robust to noise; and if a is set too
large, the diversity of samples will decrease, which results in
many missed alarms.

B. Using Deep Learning for Change Detection

Training a deep neural network is the core part of the
algorithm. It is difficult to optimize the weights and biases in
nonlinear networks which have multiple hidden layers.
Starting with random weights, multiple BP networks can not
always find a satisfactory result. If the initial weights are large,
the result typically traps into local optimization. But small
initial weights lead the gradients in the early layers to be tiny,
thus making it infeasible to train networks with many hidden
layers. The initial weights close to a good solution can make
gradient descent work well, but finding such initial weights
requires a very different type of algorithm that learns one layer
of features at a time. The restricted Boltzmann machine (RBM)
[25] can help to solve the problem.

The process of the proposed method is illustrated in Fig.3.
Firstly, inputting neighborhood features of one pixel on the
difference image. Secondly, a stack of RBM is learned for
pre-training. Next, the RBM’s are “unrolled” to create a deep
neural network for training. And then, the deep neural network
is fine-tuned using BP of error derivatives [27].
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Fig.3. (a) RBM’s are used for pre-training; (b) After pre-training, RBM’s are
“unrolled” to create a deep neural network; (c) Fine-tuning using BP.
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Fig.4. Structure of RBM

An ordinary structure of RBM network is shown in Fig.4.
RBM has [ visible units (v;, v,,..., v; ) corresponding to
features of its inputs and m hidden units (4, h,,..., h,,) that are
trained. And each connection in an RBM must connect a
visible unit to a hidden unit. W, represents a weight matrix
between visible layer and hidden layer; b=(by, b,,... b)) are
biases of visible units and ¢=(cy, ¢,,...c,,) are biases of hidden
units. A joint configuration (v, /) of the visible and hidden
units has an energy [27, 28] given by

E(w,h)=- Z bv — Z ch =2 vhW

i€ pixels

)

Jj& features ij

Suppose that Vi, j,v, €{0,1}, 4, € {0,1} . Fora givenv, the
binary state 4 , of each hidden unit j, is set to 1 with

probability:

P, =11v) = o (I, v, +e,) @)

i=1
where o(x) =1/(1+¢") is a sigmoid function. Once binary
states have been chosen for the hidden units, a reconstruction

is produced by setting each v, to 1 with the probability:

P(v, =1|h)=c(Q_ W, xh +b)
j=1
The states of the hidden units are then updated once more so
that they represent features of the confabulation. The change
in a weight is given by
AW, :g(<vfh/ >data N <v1 h, > ) (6)

where ¢ is a learning rate, <v,h/_ >d‘ is the fraction of times

)

that the feature i and feature detector j are on together when

the feature detectors are being driven by data, and <v‘,hj>

recon
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is the corresponding fraction for reconstruction. A simplified
version of the same learning rule is used for the biases.

A two-layer RBM network in which stochastic, binary
features are connected to stochastic, binary feature detectors
using symmetrically weighted connections can be used to
model pixels. The features correspond to visible units of the
RBM because their states are observed; the feature detectors
correspond to hidden units. The network assigns a probability
to every possible pixel via this energy function in Eq. (3).
Given the set of training samples which are chosen previously,
RBM’s are used to pre-train according to the rules described
above. The pre-training does not use any information of the
class labels. Here, a layer-by-layer learning algorithm is
applied.

After pre-training, the RBM model is “unfolded” to
produce a deep neural network that initially uses the same
weights and biases. A BP algorithm based on minimizing the
cross-entropy error is used through the whole network to
fine-tune the weights for optimal -classification. The
cross-entropy error is represented by

E=-) ¢ 1oggl_ ->.a —el_)log(l—g,,) 7)

where e; is the label of the sample i and e, is the classification

result.

By training and fine-tuning the network, the final deep
neural network is obtained. The neighborhood features of
each pixel on the difference image are inputted into the deep
neural network and the network outputs the class label of the
pixel. Because a logistic output unit is used, the class label 0
represents the pixel being changed and the class label 1
represents the pixel being unchanged.

III. EXPERIMENTAL STUDY

A. Instruction to Datasets

We adopt three datasets to test the proposed algorithm. The
first dataset is the Ottawa dataset, which is a section (290%350
pixels) of two SAR images over the city of Ottawa acquired by
RADARSAT SAR sensor. These images were registered by
the automatic registration algorithm from A.U.G. Signals Ltd
that is available through the distributed computing at
www.signalfusion.com.

The second dataset is the Bern dataset, which is a section
(301x301 pixels) of two SAR images acquired by the
European Remote Sensing 2 satellite SAR sensor over an area
near the city of Bern, Switzerland, in April and May 1999,
respectively. Between the two dates, the river Aare flooded
parts of the cities of Thun and Bern and the airport of Bern
entirely. Therefore, the Aare valley between Bern and Thun
was selected as a test site for detecting flooded areas [4].

The third dataset is the Yellow River dataset, which is used
in the experiments consists of two SAR images acquired by
Radarsat-2 at the region of Yellow River Estuary in China in
June 2008 and June 2009, as shown in Fig.7. It is worth noting
that the two images are single-look image and four-look image,
respectively. This means that the influence of speckle noise on
the image acquired in 2009 is much greater than that of the one

414

acquired in 2008. The huge difference of speckle noise level
between the two images used may complicate the processing
of change detection. The original size of these two SAR
images acquired by Radarsat-2 is 7666x7692. They are too
huge to show the detail information in such small pages. As
shown in Fig.8, we select one typical area (280%450 pixels)
for the experiment.

The available ground truths (reference images) in the three
datasets were all created by integrating prior information with
photo interpretation based on the input images.

() (® (©
Fig.5. Multi-temporal images relating to Ottawa used in the experiments. (a)
is the image acquired in July 1997 during the summer flooding, (b) is the
image acquired in August 1997 after the summer flooding, (c) is the ground
truth.

(@) (b) (©)
Fig.6. Multi-temporal images relating to the city of Bern used in the
experiments. (a) is the image acquired in April 1999 before the flooding, (b)
is the image acquired in May 1999 after the flooding, (c) is the ground truth.

(@ (b)
Fig.7. Multi-temporal images relating to Yellow River Estuary used in the
experiments. (a) is the image acquired in June, 2008, (b) is the image
acquired in June, 2009.

(@ (b) ©
Fig.8. Multi-temporal images relating to one area of the Yellow River
Estuary used in the experiments. (a) is the image acquired in June, 2008, (b)
is the image acquired in June, 2009, (c) is the ground truth.



B. Evaluation Criteria and Experimental Settings

In this paper, we use some criteria to evaluate the change
detection results. FN and FP represent the false negatives
(changed pixels that undetected) and the false positives

(unchanged pixels wrongly detected as changed), respectively.

The overall error (OF) is defined as:
OE =FP + FN ®)
Moreover, true positive represents the number of pixels that
are detected as the changed area in both the reference image
and the result. It is short for 7P. And true negative is short for
TN, which represents the number of pixels that are detected as
the unchanged area in both the reference image and the result.
The percentage correct classification (PCC) is given by

PCC = (TP +TN)/(TP + FP+TN + FN) )

As an overall evaluation criterion, Kappa statistic [29] is
used to evaluate the effect of the image segmentation results. It
is calculated as:

PCC - PRE
1- PRE

Kappa = (10)

where
(TP + FP)-(TP+ FN)

(TP +TN + FP + FN)’
4_(FN’+77\7)~(FP+7W)

(TP +TN + FP+ FN)’

o is an important parameter in the process of choosing
samples (seen as Section II1.4.). We set a to 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9 and 0.95 for testing it. The relationship between a
and the criteria on the Ottawa dataset is shown in Fig.9, Fig.10
and Fig.11. It is seen that the results are stable when a is
between 0.45 and 0.7. When «a is too small, the result is
sensitive to noise which yields a high FP; when « is too large,
the diversity of sample is decreased which yields a high FN.
Furthermore, when « is set suitably, the proposed method can
keep a balance between FP and FN.

For all datasets, every hidden layer is pre-trained 50 passes
through the entire training set and a 25-250-200-100-1
network is used. In addition, a clustering algorithm RFLICM
and a threshold algorithm GKI respectively used on difference
images generated by LR operator are presented as
comparative methods. DNN is short for the proposed method
based on a deep neural network. It is noted that all images are
not filtered.

PRE =
(11)
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Relationship between a and Kappa on the Ottawa dataset
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Fig.9. Relationship between « and Kappa on the Ottawa dataset
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C. Experimental Results and Analysis

In this section, we will exhibit the results of the main
experiment and the two comparison experiments in two ways:
the final maps in figure form and the criteria in tabular form. In



the table, the results of our proposed method are written in
bold.

a. Results on the Ottawa Dataset

The change detection results generated by the proposed
method and the two comparative methods on the Ottawa
dataset are presented in Fig.12. As shown in Fig.12 (a), there

are many white noise spots emerging on the black background.

It is due to the necessity to search an optimal threshold by
modeling data for the GKI method. Any little error in
threshold may result in the presence of noise on the final map.
As for RFLICM, the final map in Fig.12 (b) seems better but
there are many missed detections. RFLICM which
incorporates both local spatial and gray information is
relatively insensitive to noise. By contrast, the proposed DNN
algorithm applying deep learning has the best performance.
This method has no requirements for the model or the data
distribution. On the contrary, it has a strong ability to learn
complicated functions. In TABLE 1, the performances of the
three methods are given intuitively. The OF yielded by DNN
is the lowest and the Kappa yielded by DNN is the highest.
Although DNN dose not result in the lowest /P and FN, it can
balance the two criteria better. This point can be seen from the
final map.

b. Results on the Bern Dataset

The results of the experiments on the Bern Dataset are
illustrated in Fig.13 and listed in TABLE II. There are many
noise spots on the final map generated by GKI (seen from
Fig.13 (a)). The method can not get a good result when the
considered images are not filtered. Although the sensitivity to
noise of RFLICM is decreased, many changed areas are
detected as the unchanged by RFLICM. Compared with the
two above methods, DNN performs well seen form both the
final map and the table. The OF yielded by DNN is equal to
290, lower than those by GKI and RFLICM. Moreover, as the
overall evaluation, both the PCC and Kappa of DNN are
among the best.

c. Results on the Yellow River Dataset

For the Yellow River dataset, the changed areas are
relatively small. Fig.14 illustrates the final maps of the three
methods on the dataset. GKI presents the worst performance.
There are many noise spots on the final map. In Fig.14 (b), the
final map obtained by RFLICM has many false alarms
because of the existence of noise. This is due to that the
influence of noise is great on the Yellow River dataset. Seen
from the figure, the proposed method DNN is the best to
complete the detection task. Moreover, quantitative analysis
in TABLE III also declares this point. The Kappa yielded by
DNN equal to 76.51% is much higher than that of 59.98% by
RFLICM and that of 30.25% by GKI.

To sum up, the proposed approach fits the three situations
where the changed areas appear large and scattered (the
Ottawa dataset), centralized (the Bern dataset) and small (the
Yellow River dataset). It also verifies its relatively far-ranging
applicability.
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(@ (b)
Fig.12. Change detection results of Ottawa dataset achieved by (a) GKI, (b)
RFLICM, (c) DNN.

TABLE I
CHANGE DETECTION RESULTS OF OTTAWA DATASET OBTAINED BY
GKI, RFLICM AND DNN METHODS

Method FP FN OE PCC Kappa
GKI 2811 214 3025 | 97.02% | 89.49%
RFLICM 170 2535 2605 | 97.33% | 89.35%
DNN 883 1059 1942 | 98.09% | 92.78%

()

(b)
Fig.13. Change detection results of Bern dataset achieved by (a) GKI, (b)
RFLICM, (c) DNN.

TABLE I
CHANGE DETECTION RESULTS OF BERN DATASET OBTAINED BY
GKI, RFLICM AND DNN METHODS

Method FpP FN OF PCC Kappa

GKI 1382 127 1509 98.33% | 56.93%
RFLICM | 31 297 328 99.64% | 83.77%
DNN 147 143 290 99.68% | 87.31%

) ®)

(©
Fig.14. Change detection results of Yellow River dataset achieved by (a)
GKI, (b) RFLICM, (c) DNN.

TABLE III
CHANGE DETECTION RESULTS OF YELLOW RIVER DATASET OBTAINED BY
GKI, RFLICM AND DNN METHODS

Method FP FN OE pPCC Kappa

GKI 5252 115 5367 95.74% | 30.25%
RFLICM | 1361 172 1533 98.78% | 59.98%
DNN 47 480 527 99.58% | 76.51%

IV. CONCLUDING REMARKS

This paper has presented a novel change detection
algorithm specifically focusing on analyzing multi-temporal
SAR images based on a deep neural network. Deep neural



network has a powerful ability to learn features, and to
represent images in an abstract way. For a deep architecture
used on change detection, it is not necessary to model data and
the result is robust to noise. Compared with a clustering
method RFLICM and a thresholding method GKI, the
proposed method exhibits good performance.

The experiments on the datasets which have different
features verify the effectiveness of the proposed methods. In
the future, we will try to extract the change detection results
directly from the two original images rather than a difference
image using deep leaning. And we will do research on the
application of deep learning to the change detection in two
images which have not been registered or obtained by
different sensors.
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