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Abstract—In this paper, a recurrent self-evolving Fuzzy 
Cerebellar Model Articulation Controller (FCMAC) model for 
classification problems is developed, namely the interactively 
recurrent self-evolving fuzzy Cerebellar Model Articulation 
Controller (IRSFCMAC). The interactively recurrent 
structure in an IRSFCMAC is formed as external loops and 
internal feedbacks by feeding the rule firing strength to itself 
and others rules. The IRSFCMAC learning starts with an 
empty rule base and all of rules are generated and learned 
online, through a simultaneous structure and parameter 
learning, while the relative parameters are learned through a 
gradient descent algorithm. The proposed IRSFCMAC is 
tested by the four benchmarked classification problems and 
compared with the well-known traditional FCMAC. 
Experimental results show that the proposed IRSFCMAC 
model enhanced classification performance results, in terms of 
accuracy and RMSE. 

Keywords—interactively recurrent self-evolving fuzzy 
Cerebellar Model Articulation Controller; gradient descent 
algorithm. 

I. INTRODUCTION 
For classification system processing, practical problems 

are generally encountered in a variety of areas, such as 
control, pattern recognition, medicine imaging, and signal 
processing. Recently, artificial neural networks (ANN) and 
fuzzy theory have becomes popular in classification 
behavior applications [1], [2] in order to improve and 
validate the effectiveness and efficiency of classifications. 
Being a still-popular approach in ANN research [3], [4], the 
Cerebellar Model Articulation Controller (CMAC) network 
applies the structure and function of the cerebellum of a 
human brain, in the sense that it is a local network, i.e., for a 
given input vector, only a few of the network nodes (or 
hypercube cells) will be active and will effectively 
contribute to the corresponding network output. In addition, 
the internal mapping structure is built in such a way that it 
implements, for each CMAC memory locations, one linear 
parametric equation of the model input variance. Using this 
technique, the input space is quantized into discrete states as 

well as larger size overlapped areas called hypercube. Each 
hypercube covers many discrete states and is assigned a 
memory cell that stores information for it. The CMAC 
model can be viewed as a basis function network that uses 
plateau basis functions. To compute the output of the model 
for given input data point, only those basis functions 
assigned to the hypercube covering the input data point are 
needed, is characterized by a local weight updating scheme 
which exhibits the advantages of fast learning ability and 
good generalization capability. 

Although the conventional CMAC can learn much faster 
than multilayer feed-forward neural networks do, the 
learning effects are still not good enough for online learning 
systems [5], larger required computing memory [6], 
relatively poor ability of function approximation [7], [8] and 
difficulty of adaptively selecting structural parameters [9], 
[10]. Therefore, in order to overcome these mentioned 
drawbacks, early studies have strived for the improvement 
of the CMAC models topology structure [11], the selection 
of learning parameters [12], and convergence property of 
CMAC [13]. In recent years, many researchers embedded 
fuzzy inference (membership functions) capability into the 
conventional CMAC model to tackle the above-remarked 
disadvantages. Thus, a fuzzy CMAC model, called 
FCMAC, is fully exploited the advantages of fuzzy set 
theory and the local generalization feature of the CMAC 
model [14]-[16]. A non-constant differentiable basis 
function (i.e., Gaussian basis function) is used to model the 
receptive field functions and fuzzy weights. Many learning 
algorithms are proposed for the automatic construction of 
the FCMAC model during the learning procedure. However, 
these methods still have some drawbacks in FCMAC, such 
as not able to find the global optimum solution. Therefore, 
in order to overcome all above-mentioned drawbacks, this 
paper proposes a novel interactively recurrent self-evolving 
FCMAC (IRSFCMAC), which interactively construct the 
consequent part and through the structural strategy to 
strengthen the search abilities for both the local and global 
solutions. The major contributions of the proposed 
IRSFCMAC can be summarized as follows. (1) A novel 
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recurrent structure with interaction feedback incorporates 
the advantages of local and global feedbacks. Local source 
is not sufficient to represent the necessary information (i.e., 
a rule gets feedback from itself only). The global feedback 
in the proposed network means that the necessary 
information is obtained from itself and the other fuzzy rules. 
(2) Many studies [17], [18] have considered only the past 
states in recurrent structure, which is insufficient under the 
assumption without referring to current states. As the result, 
we the proposed model depends on current states along with 
previous states. 

In the rest of this paper, the IRSFCMAC model and the 
corresponding on-line learning algorithm are proposed 
respectively in Sections II and III. In Section IV, the 
conducted experimental results for four benchmarked 
classification applications are exhibited and discussed. Final, 
conclusions are drawn in Section V. 

II. STRUCTURE OF THE PROPOSED IRSFCMAC MODEL 
The general concept of the IRSFCMAC model is 

illustrated in Fig. 1, which consists of the input space 
partition, association memory selection, interactively 
recurrent, and defuzzification. Similar to the conventional 
CMAC model, the IRSFCMAC model approximates a 
nonlinear function )(xfy =  by using two primary mappings 

)(xS  and )(αP . These two mappings are realized by fuzzy 
operations. The function )(xS  maps each point x in the input 
space onto an association vector AxS ∈= )(α  that has LN  
nonzero elements ( LN < AN ). Here, 10 ≤≤ α  for all 
components in α ),...,,( 21 nαααα = , is derived from the 
composition of the receptive field functions and sensory 
inputs. Different from the traditional CMAC model, several 
hypercube are addressed by the input state x that hypercube 
value is calculated by product operation through the strength 
of the receptive field functions for each input state. In the 
IRSFCMAC model, the input space is an s-dimensional, s is 
the number of input variables, and the Gaussian basis 
function is applied as the receptive field functions and the 
fuzzy weight functions for learning. Association memory 
space is a ND-dimensional. ND is the user-defined number of 
the hypercube. In addition, we added an interactively 
recurrent method in the consequent parts, and defuzzification 
represents one-dimensional output space. In the following 
paragraphs, the detailed functionality of each layer is fully 
presented. 

 

Fig. 1.  Structure of the proposed IRSFCMAC model. 

For clear understanding of the mathematical formulation 
of each node and layer, the functional relationships between 
each layer of the six-layered proposed model are further 
presented. The net input to the ith node in layer l is 
represented as )(l

iu  and the output value is represents as 
)(l

iO . 

Layer 1 (input layer): The inputs are crisp values and 
),...,,( 21 nxxxx =  are fed as inputs to this layer, while the 

corresponding outputs are computed as 

(1) (1) (1),   and  .i i i iO u u x= =        (1) 

Layer 2 (fuzzification layer): Each node in this layer is 
in fact a Gaussian membership function. For the ith fuzzy 
set i

jA  on the input variable ix , i=1,…,n, a Gaussian 
membership function is defined by refer to (2), i.e., 

)1()2(
2

2)1(
)2(   and  ,

][
exp ii

ij

iji
ij Ou

mu
O =⎟

⎟
⎠

⎞
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⎝

⎛ −
−=

σ
         (2) 

where ijm  and 
ijσ  are respectively the mean and variance of 

the Gaussian membership function of the jth term of the ith 
input variable ix . 

Layer 3 (spatial firing layer): Within this layer each node 
receives one-dimensional membership degree of the 
associated rule from the nodes of a set in layer 2. In other 
words, each node represents one fuzzy rule that computes 
the firing strength in this layer. For the obtained spatial 
firing strength jα , each node performs a fuzzy meet 
operation on inputs, as it receives from the previous layer 
via an algebraic product operation. As a result, the output 
function of each inference node can be computed as, 

)2()3()3()3(   and  , ijijij
i

jj OuuO =∏==α            (3) 

where the )3(
ij

i
u∏ of a rule node represents the firing strength 

of its corresponding rule. 

Layer 4 (temporal firing layer): Each node here is a 
recurrent rule node, which formulates an internal feedback 
(self-loop) and external interaction feedback loop. The 
output of a recurrent rule node is a temporal firing strength 
that depends on both the current spatial and the previous 
temporal firing strengths. The temporal firing strength is a 
linear combination function and is expressed as 

)3()4(

1

)4()4()4(   and  ,)1())1(( jj
k

j
q
jk

q
kjj OuutOO =⋅−+−⋅=∑

=
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1
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=
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q
kjq

kj
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q
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q
j R

M
R

λλγ 　  is the rule 

interaction weight between itself and other rules, and M is 
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the total number of current rules. The recurrent weights q
jkλ  

determine the compromised ratio between the current and 
previous inputs to the network outputs. 

Layer 5 (consequent layer): Each node is an optional 
node by way of fuzzy weight in this layer. Each fuzzy 
weight is inferred to produce a partial fuzzy output by 
applying the value of its corresponding association memory 
selection vector as )4(

jO matching degree. The formula 
expressed as 

σ
j

m
jjj wwOO )4()5( =            (5) 

Layer 6 (output layer): The partial fuzzy output is 
defuzzified into a scalar output by the centroid of area 
(COA) approach. Then the actual output y is derived as 
follows 

∑
∑

=

== NL

j jj

NL

j j
m
jj

wO

wwO
y

1
)4(

1
)4(

σ

σ

    (6) 

where m
jw  denotes the mean value of the fuzzy weights, σ

jw  
the variance value of the fuzzy weights, and NL the number 
of the hypercube cells. 

III. LEARNING ALGORITHMS OF THE PROPOSED 
IRSFCMAC MODEL 

This section presents an online learning algorithm for 
constructing the IRSFCMAC model. The proposed learning 
algorithm comprises both the structural and parametric 
learning phases. Fig. 2 displays the flow diagram of the 
learning scheme for the proposed IRSFCMAC model. 
Firstly, the structure learning scheme is used to decide the 
proper input space partition. The self-constructing input 
space partition is based on the degree measure to 
appropriately determine the various distributions of the input 
training data. In other words, structure learning is used to 
determine whether a new rule should be added to satisfy the 
fuzzy partitioning of input variables. Secondly, the parameter 
learning scheme is based on supervised learning algorithms. 
The backpropagation algorithm minimizes a given cost 
function by adjusting the linked weights in the consequent 
part and the parameters of the membership functions. The 
proposed model is created dynamically and automatically in 
the learning process about receiving the on-line incoming 
training data by performing the structure and parameter 
learning processes. Initially, there are nodes in the network 
except the input-output nodes, i.e., there are no nodes in the 
IRSFCMAC model. The nodes are created automatically as 
learning proceeds, upon the reception of online incoming 
training data in the structure and parameter learning 
processes. For the initial system, the values of the turning 
parameters m

jw  and σ
jw  are generated randomly, where m is 

generated by incoming training data and σ  is generated by a 
proper value. The rest of this section details the structural 
and parametric learning phases, respectively. 

A. Structure learning phase 
In general, structure learning aims to determine whether 

a new rule should be extracted from the training data and to 
resolve the number of fuzzy sets in the universe of discourse 
of each input variable, since one cluster in the input space 
corresponds to one potential fuzzy logic rule, in which 

ijm  
and ijσ  represent the mean and variance of that cluster, 
respectively. Therefore, we can use the product operation of 
the firing strength obtained directly from )3(

ij
i

u∏  as the 

degree measure 

)3(
ij

i
j u∏=α         (7) 

where iju  represents the degree of the firing strength of the 
input vector for i=1,2,…,ND and the association vector 

]1,0[∈jα . Equation (8) states the criterion of the degree 
measure for generating a new hypercube cell of new 
incoming data, i.e., to find the maximum degree maxα  

jNj L

αα
≤≤

=
1max max            (8) 

where NL is the number of nonzero elements of association 
vector. If αα ≤max , then a new hypercube cell is generated. 
Here, ]1,0[∈α  is a prespecified threshold that should decay 
during the learning process in order to limit the size of the 
proposed IRSFCMAC model. 

αα

αα

α

<

=

∏=

≤≤

max

1max

)3(

max jNj

ij
i

j

L

u

m
ijw
σ
ijw

m
ijw
σ
ijw

Fig. 2.  Flowchart of the structure and parameter learning for the proposed 
IRSFCMAC model 
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B. Parameter learning phase 
The network enters the parameter learning phase to 

adjust the free parameters of the network optimally based on 
the training data. There are five parameters need to be 
tuned, i.e., 

ijm , 
ijσ , m

jw , σ
jw , and q

jkR . The total number of 
these free parameters for the multi-input single-output 
IRSFCMAC model is 2NL(ND+1), where ND and NL 
respectively denote the amounts of inputs and hypercube 
cells. Since the learning process generally involves 
determining the minimum of a given cost function, the 
gradient of the cost function is firstly computed and the 
parameters are correspondingly adjusted with negative 
gradient. The backpropagation algorithm is adopted for this 
supervised learning method to modify these parameters. 
When the single-output case is considered for clarity, the 
goal to minimize the cost function E is defined as, 

2)]()([
2
1)( tytytE d −=         (9) 

where )(tyd  denotes the desired output and )(ty  the model 
output for each discrete time t. When the backpropagation 
learning algorithm is applied, the weighted vector of the 
proposed IRSFCMAC model is regulated such that the error 
defined in refer to (9) can be less than the desired threshold 
value after a given number of training cycles. The well-
known backpropagation learning algorithm may be written 
briefly as follows, i.e., 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂−+=Δ+=+

)(
)()()()()1(
tW
tEtWtWtWtW η      (10) 

where η  and W  represent the learning rate and the free 
parameters of the proposed model, individually. Then, the 
gradient of error function )(⋅E  in refer to (9) with respect to 
an arbitrary weight vector W is calculated by 

W
tyte

W
tE

∂
∂=

∂
∂ )()()(   (11) 

By the chain rule yield the error term recursive applications 
for each layer and the parameter in the corresponding layers 
are adjusted. Therefore, we used the gradient concept of the 
backpropagation algorithm to tune the antecedent and 
consequent parameters of the IRSFCMAC model. The 
gradient descent algorithm is performed once for each piece 
of incoming datum. 

By using a gradient descent algorithm for the updated 
recurrent weights, we have 

)()()1( ttt q
kj

q
kj

q
kj λλλ Δ+=+             (12) 

and 
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⋅
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where η , between 0 and 1, is the learning rate of the 
recurrent λ  for the fuzzy weight functions, and e denotes 
the error between the desired output and actual output, i.e., e 
= yd - y. 

The fuzzy weight parameter m
jw  and σ

jw  cells are updated 
according to the following equations, i.e.,  

)()()1( twtwtw m
j

m
j

m
j Δ+=+             (14) 

and 

)()()1( twtwtw jjj
σσσ Δ+=+             (15) 

where j denotes the jth fuzzy weight cell for j=1,2,…,NL, 
m
jw  denotes the mean of the fuzzy weights and σ

jw  the 
variance of the fuzzy weights. The elements of the fuzzy 
weights are updated by the following amounts, i.e.,  

∑ =

⋅⋅−=

∂
∂⋅

∂
∂⋅−=Δ

NL

j jj
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j
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and 
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where η  is the learning rate of the mean and the variance 
for the fuzzy weight functions between 0 and 1. 

The antecedent part of parameters ijm  and ijσ  are computed 
via the following equations, i.e., 

)()()1( tmtmtm ijijij Δ+=+            (18) 
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and 

)()()1( ttt ijijij σσσ Δ+=+            (19) 

where i represents the ith input dimension for i=1,2,…,n, 
ijm  the mean of the receptive field functions and ijσ  is the 

variance of the receptive field functions. The parameters of 
the receptive field functions are calculated by 

2
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and 
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where η  is the learning rate of the mean and the variance 
for the receptive field functions, individually. It is worthy to 
mention that all the above stated formulas belong to the case 
of a multi-input single-output system. If one wants to 
perform multi-input multi-output system the cost function E 
should be rewritten as 

∑
=

−=
k

k
k

d
k tyty

k
E

1

2))()((
2
1         (22) 

where k is the number of output for k=1,2,…,k and then the 
tasks are to update those free parameters, such as 

σσ j
m
jijij wwm  , , ,  and q

kjλ . 

IV. EXPERIMENTAL RESULTS 
In order to demonstrate the classification performance of 

the proposed IRSFCMAC model, two well-known 
benchmarked classification problems, i.e., Breast Cancer and 
Thyroid, are chosen in this paper. All of the two datasets are 
from the (UCI) machine learning repository, University of 
California, Irvine. In addition, the Thyroid classification is 
low-dimensional problem, while the Breast Cancer problem 
is high-dimensional one. 

A. Classification of Thyroid data 
The 215-pattern Thyroid data set is a three-class problem 

(i.e., normal, hyper and hypo) with 150, 35 and 30 instances, 
respectively.  

Each pattern contains five features, and they are T3-resin 
uptake test, total serum thyroxin, total serum 
triiodothyronine, Basal thyroid-stimulating hormone (TSH) 
and Maximal absolute difference of TSH value, where Total 
serum thyroxin is measured by the isotopic displacement 
method, Total serum triiodothyronine and Basal TSH by 
radioimmuno assay, and Maximal absolute difference of 
TSH value after injection of 200 micro grams of thyrotropin-
releasing hormone as compared to the basal value. Since the 
data take half unevenly, we have taken randomly 107 
patterns from 215 patterns as training data and the rest 108 
for testing. In this classification, the hypercube of our 
proposed IRSFCMAC model is automatically produced, 
while the number of generations is set to 5000 times and 
initial parameters η  = 0.01, 610−=α , which is identical to 
the initial settings for the compared FCMAC model. In 
addition, the output y of the proposed IRSFCMAC here is 
defined by following classification rules, i.e., 

,      if             1.5
Thyroid ,        if     1.5 2.5

,          if              2.5

Normal y
Hyper y
Hypo y

≤⎧
⎪= < ≤⎨
⎪ >⎩

 (24) 

The 10-run averaged results for learning curves of the 
traditional FCMAC and IRSFCMAC are exhibited in Fig. 3. 

 
Fig. 3. 10-run averaged learning curves (the Thyroid data) 

Table I presents the RMSE compared results, with the best, 
mean, and worst of the 10 independent runs, while the 
detailed outcomes for these 10 runs are illustrated within 
Table II. Furthermore, from the testing results presented in 
Table III it can be showed that our proposed method granted 
averaged better testing accuracy than the FCMAC method. 

TABLE I. RMSE comparison in training (the Thyroid data). 

Models 
Items 

Mean 
RMSE 

Best   
RMSE 

Worst 
RMSE 

FCMAC 0.1228 0.1108 0.1367 
IRSFCMAC 0.0785 0.0709 0.0826 
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TABLE II. Numbers of hypercube cells and accuracy rates for 10 
independent runs (the Thyroid data). 

Models Experiments 
1 2 3 4 5 

Hypercube 
cell 

(FCMAC) 
8 10 8 8 8 

Hypercube 
cell 

(IRSFCMAC) 
6 5 4 6 5 

Accuracy (%) 
(FCMAC) 91.6667 87.9630 81.4815 86.1111 80.5556 

Accuracy (%) 
(IRSFCMAC) 94.4444 92.5926 94.4444 93.5185 91.6667 

Models Experiments 
6 7 8 9 10 

Hypercube 
cell 

(FCMAC) 
7 9 7 7 10 

Hypercube 
cell 

(IRSFCMAC) 
5 5 3 3 3 

Accuracy (%) 
(FCMAC) 75.0000 87.9630 87.9630 95.3704 95.2963 

Accuracy (%) 
(IRSFCMAC) 95.3704 93.5185 94.4444 95.3704 91.6667 

TABLE III. Accuracy comparison in testing (the Thyroid data). 

Models Items 
Mean Best Worst 

FCMAC 87.1371% 95.3704% 75.0000% 
IRSFCMAC 93.7037% 95.3704% 91.6667% 

B. Classification of Breast Cancer data 
The second classification experiment is about the 699-

pattern Breast Cancer data set, consisting of nine features, 
i.e., Clump Thickness, Uniformity of Cell Size, Uniformity 
of Cell Shape, Marginal Adhesion, Single Epithelial Cell 
Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli and 
Mitoses. In other words, the Breast Cancer classification is 
one of the well-known multi-dimension problem and used 
here to verify whether the proposed model can be 
effectively applied. In this classification, the initial 
parameters η  = 0.01, 610−=α . In this paper, the partition 
of the training and testing data sets of the Breast Cancer data 
are 349 and 350, respectively.  The output y of the 
IRSFCMAC model is defined by the following 
classification rules, i.e., 

⎩
⎨
⎧ ≤

=
otherwiseifMalignant
yifBenign

            ,
5.0                  ,

CancerBreast     (25) 

Other settings of this application are identical to the second 
experiments, while the averaged learning curves are 
displayed as in Fig. 4. 

 
Fig. 4. 10-run averaged learning curves (the Breast Cancer data) 

Tables IV and V respectively show the conducted 10-run 
RMSE results, numbers of the hypercube cells and accuracy 
rates. According to these two tables our proposed method 
grants the better averaged testing accuracy than the FCMAC 
method, as same as Table VI exhibits. 

TABLE IV. RMSE comparison in training (the Breast Cancer data). 

Models 
Items 

Mean 
RMSE 

Best   
RMSE 

Worst 
RMSE 

FCMAC 0.1215 0.1128 0.1372 
IRSFCMAC 0.0902 0.0826 0.0965 

TABLE V. Numbers of hypercube cells and accuracy rates for 10 
independent runs (the Breast Cancer data). 

Models Experiments 
1 2 3 4 5 

Hypercube 
cell 

(FCMAC)
7 6 8 6 7 

Hypercube 
cell 

(IRSFCMAC)
4 4 5 4 3 

Accuracy (%) 
(FCMAC) 95.1429 97.1429 94.8571 96.2857 96.5714 

Accuracy (%) 
(IRSFCMAC) 96.2857 97.1429 95.7143 96.5714 96.8571 

Models Experiments 
6 7 8 9 10 

Hypercube 
cell 

(FCMAC)
6 6 5 5 6 

Hypercube 
cell 

(IRSFCMAC)
3 3 4 3 4 

Accuracy (%) 
(FCMAC) 96.2857 93.7143 94.8571 95.4286 96.0000 

Accuracy (%) 
(IRSFCMAC) 96.2857 94.0000 94.8571 95.4286 96.8571 

TABLE VI. Accuracy comparison in testing (the Breast Cancer data). 

Models Items 
Mean Best Worst 

FCMAC 95.6016% 97.1429% 93.7143% 
IRSFCMAC 96.0000% 97.1429% 94.0000% 
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V. CONCLUSIONS 
In this paper, we propose a novel interactively recurrent 

self-constructing Fuzzy CMAC (IRSFCMAC) model. The 
proposed approach applies a non-constant differentiable 
Gaussian basis function to model the hypercube structure 
and the corresponding fuzzy weights, which interactively 
construct the consequent part and through the structure 
strategy to strengthen the search abilities for both the local 
and global solutions. An on-line learning algorithm for 
consisting of structure and parameter learning schemes is 
presented as well. The degree measure is used to determine 
the proper input space partition size in the structure learning 
scheme and based on supervise gradient-descent method 
developed in parameter learning scheme. The simulated 
classification examples provide the positive evidence of the 
effectiveness of the proposed model. Experimental Results 
also indicated that the proposed IRSFCMAC model has a 
higher average recognition rate and lower memory 
requirement than the traditional FCMAC model. 
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