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Abstract—The Hopfield neural network (HNN) is adopted for 

velocity picking in the time-velocity semblance image of seismic 
data. A Lyapunov function in the HNN is set up from the velocity 
picking problem. We use the gradient descent method to decrease the 
Lyapunov function and derive the equation of motion. According to 
the equation of motion, each neuron is updated until no change. The 
converged network state represents the best polyline in velocity 
picking. We have experiments on simulated and real seismic data. 
The picking results are good and close to the human picking results. 

Keywords—Hopfield neural network; seismic velocity picking; 
semblance image; Lyapunov function; equation of motion 

I.  INTRODUCTION 
 Velocity analysis is very important in reflection seismic 
data processing. Velocity picking was to pick a series of peaks 
in the seismic time-velocity semblance image (stacking 
energy). Conventional it was done by geophysical experts and 
took much time. Some automatic methods had been done on 
seismic velocity picking [1]-[6]. In 1974, Beitzel and Davis [1] 
used the minimum spanning tree method to do the velocity 
picking. This method had to manually choose a skeleton as the 
final solution from results. In 1992, Schmidt and Hadsell [2] 
applied the multilayer perceptron (MLP) in velocity picking. 
They trained two MLP models. Then, they must use another 
MLP model that was trained by the human picked polyline to 
validate the polylines. In 1994, Fish and Kasuma [3] also used 
multilayer perceptron in velocity picking. They used the human 
picked peaks and the eight neighbors in a semblance image to 
form training patterns. The MLP was trained until it could 
approximate the expert picking result. The drawback of the 
MLP was that the human picking result was needed as the 
reference to validate the candidate picks. The methods in [1]-
[3] needed the human involvement. In 2002, Beveridge et al. 
[4] took velocity picking as a problem of choosing the best 
polyline from semblance peaks. They defined an energy 
function that included inverse energy of picked points and a 
constraint on average turning angle. They used the steepest 
descent method to find the polyline. However, the constraint of 
the interval velocity was not taken into consideration, and that 
might result in an ineligible solution. In 2012 and 2013, Huang 
et al. [5], [6] used the simulated annealing and genetic 
algorithm for seismic velocity picking, but the computations 

were in random process and the iteration steps were complex 
and not efficient. 

In 1982, Hopfield proposed a recurrent model [7]-[9]. It 
could solve the combinatorial optimization problems like 
traveling salesman problem [9] and n-queens problem [10]. On 
seismic application, it was ever applied on seismic horizon 
picking [11]. 

Here we transfer the seismic velocity picking on a 
semblance image to a combinatorial optimization problem. The 
Hopfield neural network (HNN) can get the best velocity 
picking result. The picking result is applied to do the normal 
move-out (NMO) correction and trace stacking. 

II. SEISMIC DATA ACQUISITION AND VELOCITY PICKING 

A. Seismic Data Acquisition and Semblance Image 
We apply the HNN method on real seismic data at Nankai. 

We describe its seismic data acquisition [12]-[14]. Nankai is 
near the coast of Japan over the Nankai trough where the 
Philippine plate is a subduction beneath Eurasia. The data 
were collected by the University of Texas, the University of 
Tulsa, and the University of Tokyo [15]. They used end-on 
spread to acquire the marine seismic data. Fig. 1 shows the 
shot and end-on spread to get a one-shot seismogram. In each 
shot, the spacing of each receiver is also 33.33 m. Then, we 
move the shot point and receivers at the same time and get the 
other seismogram. The spacing of each shot, as well as the 
spacing of each receiver, is 33.33 m. Fig. 2 shows the 
seismogram of shot 1750 of Nankai data. It has 69 traces and 
2,750 samples per trace with sampling interval 0.004 seconds 
and total 11 seconds. 

 
 
Fig. 1. Shot and receivers at one-shot seismogram. 
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Fig. 2. Seismogram of shot 1750 of Nankai data. 

 
We collect those traces with the same reflection point to 

become a common depth point (CDP) gather, also called 
common mid-point (CMP) gather as shown in Fig. 3 and 4 [12], 
[13]. Fig. 5 shows the CMP 933 gather of Nankai data. In order 
to find the correct velocities for NMO correction, we have to 
construct the semblance image of the CMP gather and perform 
velocity picking. In the generation of semblance image from 
CMP gather, each pixel in a seismic semblance image is the 
energy of all corrected traces in the CMP gather at the certain 
time and certain velocity. The range of stacking velocity is 
from 1000 m/s to 7000 m/s and the velocity sampling interval 
is 25 m/s. Fig. 6 shows the semblance image of CMP 933. We 
do the velocity picking on the it. The result of velocity picking 
on Fig. 6 is used to find the correct time-velocity points and 
polyline for the NMO correction and trace stacking. Fig. 7 
shows the NMO correction on traces of CMP gather. The 
purpose of NMO correction is to correct the offset difference of 
the reflection signal to vertical reflection. Stacking those 
corrected traces to become one trace can enhance signal to 
noise ratio. 

 

 
 
Fig. 3. Stack chart of selected traces of a CMP gather from seismograms. 
 

 
 
Fig. 4. Shots and receivers geometry on a CMP gather. 

 
 
Fig. 5. CMP 933 gather of Nankai data. 
 

 
 
Fig. 6. Semblance image of CMP 933 
 

 
 
Fig. 7. NMO correction on traces of CMP gather. 
 

B. Seismic Velocity Picking 
The energy of each pixel in a seismic semblance image is a 

normalized coherence measure of the traces between 0 and 1 
[12]-[14]. Velocity picking is to pick several peak points and 
get the best time-velocity polyline. The example is shown 
below. Fig. 8 illustrates eight peaks in the semblance image. 
The local peaks in time-velocity seismic semblance image are 
ordered in a sequence with time first, then velocity. Eight 
peaks are ordered in A, B, …, and H. The point with earlier 
time links to the point with later time, and they become a 
polyline. There are many possibilities in polylines. For 
example, in Fig. 8, A→C→D→G→H is a possible solution 
for velocity picking. The value of picked point is 1, otherwise 
0. The state is [1 0 1 1 0 0 1 1]. We connect the picked point 
with value 1 as the picking result. Usually the velocity in 
deeper layer is increased. 

Common depth reflection point 

Midpoint 1 
Receivers Shot

2 3 1 2 3 

Receiver 

Shot 
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A B C D E F G H 

1 0 1 1 0 0 1 1 

Polyline: A->C->D->G->H 

 

Fig. 8. Example of seismic velocity picking. 
 

III. SEISMIC VELOCITY PICKING BY THE HOPFIELD MODEL 
The discrete HNN is shown in Fig. 9. Every neuron receives 

the inputs from other neurons, then after activation function it 
sends the output to other neurons. Once the initial state of the 
network is set, each neuron is updated according to the 
equation of motion. The procedure is repeated until the 
network has no change and converges to a steady state. In this 
application each peak point is represented by one neuron. The 
neuron state is 1 or 0. 1 represents that the peak point is 
selected in a polyline. 

 
Fig. 10 shows the proposed steps of velocity picking by the 

HNN. At first, we get the local peak points on seismic time-
velocity semblance image by peak detection. Then, we choose 
several points with higher semblance values as candidate peak 
points. Next, we set up a Lyapunov function from the velocity 
picking problem. In order to decrease the Lyapunov function, 
the equation of motion is derived that the function can reach 
the minimum. According to the equation of motion, each 
neuron is updated until no change. The converged network 
state forms the best polyline that represents the best velocity 
picking result. 
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Fig. 9. Discrete Hopfield neural network. 

Input a time-velocity semblance 

Preprocessing: get candidate peaks 

Find the best t-v pairs by HNN 

Trace stacking 

Start 

Stop 

Define Liapunov function of HNN

Normal move-out correction 

Derive the equation of motion 

 
Fig. 10. Steps of velocity picking by Hopfield neural network. 

A. Preprocessing 
For a semblance image, we use a 5-by-5 window to get the 

peak points. The semblance value of a point is compared with 
its neighbors. The point is a peak point if it has the largest 
semblance value. We move the window from left to right and 
top to bottom to find the peak points. Then, we choose the top 
Q points with higher semblance values as the candidate points. 
The candidate points are arranged with time first, then velocity. 
So there are Q neurons in the HNN. And K points are selected 
from the Q candidate points as the result of velocity picking. 
We use a vector x = [x1, x2, …, xQ]T to represent a state of HNN 
where xi is 1 if the ith point is picked and 0 otherwise. The 
points with value 1 are linked as a best polyline. 

B. Lyapunov Function and Equation of Motion 
The Lyapunov function of x is set up as follows. 

 
 )()()()()(' xxxxx vsvsvivinptsnptspp EEEEE αααα +++−=  (1) 
 
where pα , nptsα , viα , and vsα  are the positive parameters. 
 
    The first term in the Lyapunov function is the total 
semblance value of the picked points. 

)(xpE =∑
=

Q

i
ii xpx

1

)(  

where p(xi) is the semblance value of the ith peak point. 
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    The second term is the constraint on total number of K 
picked points.  

( )2)()( KsumEnpts −= xx  

where K is the predefined number of picked points and K ≤ Q.  
 

The third and fourth terms are: 
)(xviE = ),(),(

,
ji

i ijj
jijivi xxcsvixxppbxx∑∑

>

α  

)(xvsE = ),(),(
,
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i ijj
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>

α  

 
We consider the constraints on interval velocity (vin-1,n) and 

velocity slope (vsn-1,n) to remove the ineligible polyline as in 
[1]. )(xviE  is to calculate the total violation times of x on the 
interval velocity constraint, and )(xvsE  is to calculate the total 
violation times of x on the velocity slope constraint. 

),( ji xxppb  is defined to check whether there is no any picked 

point between xi and xj. ),( ji xxppb =1 when
 
there is no any 

picked point between xi and xj. Otherwise, ),( ji xxppb =0. 
 
The interval velocity, which is related to Dix’s equation, is 

used to restrict the calculated interval velocity [13], [14]. Also 
we define the slope of stacking velocity. They are defined as 
 ( ) ( )1

2
11

2
,1 / −−−− −−= nnnnnnnn ttvtvtvi  (2) 

 )/()( 11,1 −−− −−= nnnnnn ttvvvs   (3) 
where tn-1 and tn are the two-way vertical travel time of layer 
n-1 and n respectively, and vn-1 and vn are the stacking velocity 
of layer n-1 and n respectively. Penalties of constrains for 
interval velocity (csvi) and velocity slope (csvs) are 

 ( )
⎩
⎨
⎧ ≤≤

= −
− otherwise                  ,1

,0 max,1min
,1

VIviVI
vicsvi nn

nn
 (4) 

 ( )
⎩
⎨
⎧ ≤≤

= −
− otherwise                    ,1

,0 max,1min
,1

VSvsVS
vscsvs nn

nn
 (5) 

where VImin, VImax, VSmin, and VSmax are the predefined values 
for constraints. 
 
 We can set the values of αp, αnpts, αvi, and αvs to be 1 that 
each term of energy has equal weight. Therefore, if two picked 
points possess the largest semblance value, their total 
semblance value is 1+1=2. However, if they also violate the 
two constraints, interval velocity and velocity slope, the total 
penalty of violation times is also 1+1=2. Therefore, the sum of 
semblance values, Ep(x), counteracts the penalty of total 
violation times of the two constraints, Evi(x) and Evs(x). i.e., 

)(' xE  = 0. From the equal weights, we can explain that the first 
term and sum of the third and fourth violation terms are equally 
important. 
 
 We remove 2K  from (1).  
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We calculate the energy difference EΔ  caused by 

disturbing the neuron nx  from )(txn  to )1( +txn , where 

ix = nx  and jx = nx , and i and j are from 1 to Q. The value of 
each neuron is 1 or 0. We can derive 

 
)()( xx EEE new −=Δ ( ))(txgx nnΔ−=  

 
where 

( ) ∑∑
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nj
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nj jxix αα +∑

<
∑
>

+  

 ))12())(( −++ Ktxp nptsnp αα  (6) 
 

In order to decrease E, 0≤ΔE , we can get 

 xn(t+1)=fh(g(xn(t))) (7) 

where fh () is a hard-limiter function, i.e., 

     
⎩
⎨
⎧

<
>

==+
0))(( if  ,0
0))(( if  ,1

)1(
txg
txg

ftx
n

n
hn

 

Equation (7) becomes the equation of motion to change 
neuron value. The disturbance of a neuron is the gradient 
descent method. Because of 0≤ΔE , the E can reach the 
minimum. 

 
Using the equation of motion, the algorithm of the HNN for 

seismic velocity picking is as follows. 
 

Algorithm 1: The HNN for seismic velocity picking. 
 
Input: Q candidate peak points and their values from a seismic 

velocity semblance image. Set x = [x1, x2, ..., xQ]T. 
Each xi represents one neuron state and also a 
corresponding peak point. The value of xi is 0 or 1. Set 
K as the number of picked points from Q points. 

Output: Vector x = [x1, x2, …, xQ]T corresponding to the lowest 
Lyapunov function value as the optimal picking result. 

 
Step 1: Initialization. 

Set up a random initial state of network x = [x1, x2, ..., 
xQ]T with network size Q. Each neuron xn is an element 
of vector x and has a state value either 0 or 1. 
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Step 2: Update neurons. 
1. Calculate g(xn(t)) in (6), where xn(t) is the neuron 

state value at time t. 
2. Use the equation of motion in (7), 

)))((()1( txgftx nhn =+  to update the next state value 

of neuron )1( +txn , where n = 1, 2, …, Q. 
Step 3: Repeat step and check termination 

Go to Step 2 to update each neuron until the network is 
stable, i.e., the neurons have no change. The final state 
of network is the solution of velocity picking. 

 
On semblance image we do the velocity picking by the 

HNN. In order to evaluate the performance, we compare the 
picking polyline result by the HNN with that by human. By 
linear interpolation, we calculate the corresponding velocities 
of the two polylines at each time sample. Then, the average 
absolute difference of velocity (Vdiff) can be calculated as 

 ( ) ( )∑ −=
N

t
humanHNNdiff tVtV

N
V ||1

 (8) 

where N is the number of calculated time samples, VHNN (t) and 
Vhuman(t) are the velocity picked by the HNN and human. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Results on Simulated Data 
1) Simulation Data and Preprocessing:  
We use Seismic Un*x system [14] to generate a geological 

model with twenty layers. The model is shown in Fig. 11. It 
has a bright spot structure [12]. At the eleventh, twelfth, 
thirteenth, and fourteenth layers, they are shale, gas-sand, oil-
sand, and water-sand layers. Each layer has the interval 
velocity. We simulate the seismic data acquisition. There are 
40 shots. For each shot, there are 60 receivers for two-side 
split spread. The spacing of each shot is 50 m. The spacing of 
each receiver is 50 m. The shot location ranges from location 
2.5 km to 4.45 km. The receiver location ranges from location 
1.025 km to 5.925 km. There are 40 one-shot seismograms. 
The sampling interval is 0.004 seconds and total is 6 seconds. 

 
We rearrange traces of one-shot seismograms to CMP 

gathers. The full fold number is 30. There are 22 full-folded 
CMP gathers. We choose the CMP 70 gather for experiment 
because it is full-folded and located in the middle of the 
geologic model in Fig. 11. Fig. 12 shows the CMP gather 70. 
Then we generate the semblance images from the 22 CMP 
gathers. Fig. 13 shows the semblance image of CMP gather 
70. 

 
Before doing velocity picking, local peak detection is used 

to find the peak points in the semblance image. When doing 
local peak detection, we use a window size 5 by 5 to decide 
whether a point is a peak point or not. After peak detection we 
select top 50 points with higher semblance values as the 
candidate points in the experiment. In Fig. 13, the 50 selected 
candidate points are on it. 

 

Because there are 20 geological layers, we manually pick 
20 points to form a polyline on the semblance image of CMP 
gather 70. Therefore, the vector length Q is 50 and K is 20. 
The human picking result is shown in Fig. 14. But here we use 
the HNN to pick the points for comparison. 

 
 

 

 

Receiver location range 

Shot location range 

 
Fig. 11. Simulated 20 layer geological model. 
 

 
Fig. 12. CMP gather 70.  
 

 
Fig. 13. 50 candidate points (Q = 50) on semblance image of CMP gather 70. 
 

 
Fig. 14. Human picking result on semblance image of CMP gather 70. 

1150



 
2) Results of Simulation Experiments:  
We use the equation of motion in (7) to do velocity picking 

by the HNN. We set the total peaks Q = 50, the number of 
picked points K = 20, pα =1, nptsα =1, viα =1, and vsα =1, 
the ranges of interval velocity and velocity slope constraints: 
VImin=1000, VImax=7000, VSmin= -100, VSmax=1000 [12]-[14]. 
Within the ranges, the interval velocity and velocity slope 
have meaning. 

We do velocity picking on CMP gather 70 with 2000 
experiments. For each experiment, we calculate the Vdiff by (8). 
After 2000 experiments, we calculate the mean of Vdiff. Finally 
we use the best velocity picking result to do the NMO 
correction and stacking. 

We show the best result on CMP 70 in 2000 experiments. 
Fig. 15 shows the energy versus iteration of the best result. 
The network converges to a stable state after 453 iterations. 
Fig. 16 shows the best velocity picking result by the HNN. 
The black dots and line is the picking result by the HNN, and 
the red-cross symbols and line is picking result by human. Fig. 
17 (a) and (b) show the results of NMO correction, and the 
stacked trace on CMP gather 70 using the best velocity 
picking result. In Fig. 17(b), the stacked signal is enhanced. 

 

 
Fig. 15. Energy versus iteration of best result by HNN on CMP gather 70. 
 

 
Fig. 16. Best velocity picking by HNN with black line on CMP gather 70. 

 
(a) 

 
(b) 

 
Fig. 17. NMO correction and stacking result of CMP gather 70 by HNN using 
best picking result. (a) NMO correction, (b) stacked trace. 
 

B. Experimental Results on Nankai Real Data 
The data acquisition and semblance image on Nankai real 

data are described in the previous section. We use the HNN 
method on the semblance images of 15 CMP gathers: CMP 
933, 958, 983, 1008, 1033, 1058, 1083, 1108, 1133, 1158, 
1183, 1208, 1233, 1258, and 1283. They have the high folding 
trace number at CMP gather that can enhance signal to noise 
ratio. Fig. 18 shows the CMP gather 1233. Fig. 19 shows its 
semblance image. 
 

On the semblance image of each CMP gather we have the 
number of human picked points [12], [15]. We use it as the 
number of picked points K. For example, for CMP gather 
1233, K=3. The number of selected peaks is Q=50. 
 

 
 
Fig. 18. CMP gather 1233. 

 

 
Fig.19. Semblance image of CMP gather 1233 and picking results by human 
and the HNN. 
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Because it is the marine seismic data it has constant velocity in 
water layer between 0 sec and 5.5 sec, there is no seismic event. We 
just perform velocity picking between 5.5 sec and 11 sec in the 
semblance image. We get the mean of Vdiff calculated from the 
velocity picking results on each CMP gather by the HNN and 
human. The smallest mean of Vdiff among the semblance image 
of 15 CMP gathers is CMP gather 1233. Q=50, K=3. We show 
the best experiment result in 2000 experiments on CMP gather 
1233. Fig. 20 shows the energy versus iteration of the best 
result. The network converges to a stable state after 94 
iterations. The best velocity picking result by the HNN is 
shown in Fig. 19 with the black dots and line. The velocity 
picking result by human is also shown in Fig. 19 with the red-
cross symbol and line. We can compare the picking results 
with human picking and the HNN by (8). The gather after 
NMO correction and the stacking result using the best velocity 
picking result on CMP gather 1233 are shown in Fig. 21 (a) 
and (b) respectively. In Fig. 21(b), the stacked signal is 
enhanced. 

 
Fig. 20. Energy versus iteration of best result by HNN on CMP gather 1233. 

 

 
(a) 

 

     
(b) 

Fig. 21. NMO correction and stacking result of CMP gather 1233 by HNN 
using best picking result. (a) NMO correction, (b) stacked trace. 

A. Comparison of Mean of CPU time 
We also use the simulated annealing (SA) and genetic 

algorithm (GA) on the semblance images of simulation data 
and real data with 2000 experiments respectively. The 
computer we used is ACER VERITON M670 with 6 GB 
RAM, and the programing language is Matlab 7.12.0 
(R2011a). Table I shows the mean of CPU time of finding the 
best polyline by three methods on CMP gather 70. Table II 
shows the mean of CPU time using three methods on CMP 
gather 1233 of real data. The HNN has the shortest CPU time. 
 

Table I. Mean of CPU time on CMP gather 70 by three methods. 
 SA GA HNN 

Mean of CPU time (sec) 1.76 3.46 0.07 

 
Table II. Mean of CPU time on CMP gather 1233 by three methods. 

 SA GA HNN 
Mean of CPU time (sec) 3.04 2.97 0.02 

 

V. CONCLUSIONS AND DISCUSSIONS 
The Hopfield neural network (HNN) is adopted for velocity 

picking in the time-velocity semblance image of seismic data. 
Each candidate peak on the semblance image is assigned to 
each neuron. The most important of the HNN is to set up a 
Lyapunov function from the velocity picking problem that 
includes the total semblance values of picked points, and 
constraints on the number of picked points, interval velocity, 
and velocity slope in a seismic time-velocity semblance 
image. We use the gradient descent method to decrease the 
Lyapunov function and derive the equation of motion. The 
Lyapunov function can reach the minimum. According to the 
equation of motion, each neuron is updated until no change. 
The converged network state represents the best polyline. We 
have experiments on simulated and real seismic data. The 
picking results are good and close to the human picking 
results. The best picking results are used for the normal move-
out (NMO) correction and stacking. The stacking results show 
that the signals are enhanced. This method can improve the 
seismic data processing and interpretation. 

 
In the comparison with two optimization methods: 

simulated annealing and genetic algorithm, the HNN has the 
shortest CPU time. 
 

To find the optimization in (1) of the Lyapunov function, 
the parameters can be varied and tested by the experiments as 
in [9]. The HNN gets stuck in local minima. We may use other 
methods for solving combinatorial optimization problem [16], 
[17] and make a comparison in the experiments. 
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