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Abstract—Existing studies have shown that neuronal 
functional networks (NFNs) exhibit small-world properties. 
However, the issue of whether NFNs have any other complex 
network topology properties remains unresolved. In this paper, 
we introduced a new hierarchical clustering-based method that 
can clearly indicate the hierarchical modular organization of 
NFNs. Based on the modularity function Q proposed by 
Newman, we can divide the NFNs into suitable sub-modules. We 
proposed a new measure function to calculate the correlations 
between pairs of spike trains without requiring binning of the 
spike trains through small time windows. This method can be 
used to analyze the level of synchronization between spike trains 
and functional connectivity relationships between neurons. We 
analyzed NFNs constructed from multi-electrode recordings in 
rat brain cerebral cortexes in vivo. These rats had been trained to 
perform different working memory cognitive tasks. The results 
show that NFNs exhibit a clear hierarchical modular 
organization in rat brains. These results provided evidence 
confirming that the brain networks are complex. This can also be 
used as a means of studying the relationship between neuronal 
functional organization and cognitive behavioral tasks. 
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I.  INTRODUCTION  
The brain has highly complex internal neuronal connections 

[1]. Over the past several years, complex network analysis has 
been applied to the brain. The study of brain functional 
networks has involved fMRI data, EEG, and multiple-electrode 
recordings at the micro-scale. The network nodes in brain 
functional networks can be individual voxels or anatomically 
defined ROIs, time series of multivariate EEG, and neurons 
using multiple-electrodes [2-4]. The edges are defined as the 
connections between the nodes, including structural 
connectivity, functional connectivity, and effective 
connectivity [5]. 

Understanding the processes within the brain that are 
involved in decision-making with respect to different tasks and 
conditions is an important part of neuroscience. The brain 
usually makes decisions based on the evaluation of the activity 
of large populations [6]. With the development of multiple-
electrode recording techniques, signals from dozens of neurons 
can be recorded simultaneously [7]. Studying the inherent 

connectional structures between neurons is a key element in 
understanding the functions of the brain at the micro level. 

Most of the studies of brain functional networks have been 
conducted in image datasets based on the human brain, 
including the resting-state or the task-related fMRI data. 
Complex network analysis based on graph theory has become 
the preferred method of analyzing these network topological 
characteristics. Small-world properties have been found in 
brain networks, indicating that the brain has the ability to 
transfer information rapidly under optimal conditions. The 
analysis of the topological properties of brain functional 
networks provides an effective means of understanding the 
development of human brain organization and disease 
diagnosis [8-9]. 

Hierarchical modular organization also is an important 
network topological property. Unlike community structures, 
hierarchical networks are composed of different layers, a 
network consisting of multiple sub-networks and sub-networks 
consisting of smaller sub-sub-networks. The study of 
community structures originated in the social network and a 
number of new methods have been applied to social networks 
[10]. In fMRI functional networks, methods of detecting 
community structures can be used to assess the functional 
modules of the brain. Methods based on selecting the 
maximum modular function values have been applied to 
studies of human brain fMRI networks and to animal models 
[11-13]. 

To date, non-human brain functional networks remain 
largely unexplored on the micro-scale, especially in animal 
models. These animals perform working memory cognitive 
tasks. In this study, we recorded the simultaneous activity of 
neurons in the anterior cingulate cortexes (ACC) and prefrontal 
cortexes (PFC) of several rats using multi-electrode recording. 
The rats performed two working memory tasks. Neuronal 
functional networks (NFNs) were constructed based on the 
calculation of correlations between pairs of neurons. Several 
studies have shown that NFNs exhibit small-world properties 
[14-15]. However there is still a dearth of studies of the 
modular structure of NFNs. In this paper, we introduced a new 
hierarchical clustering-based method to identify hierarchical 
modular organization of NFNs. The method does not require 
any prior knowledge of the level of hierarchy of the data set or 
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the number of modules. This method clearly indicated the 
hierarchical modular organization of different NFNs. 

II. MATERIALS AND METHODS 

A. Behavioral tasks and electrophysiological  recordings 
We recorded the activities of populations of neurons from 

four adult male rats in vivo using multi-electrode recording. All 
experiments were performed in accordance with animal 
protocols approved by the United States National Institutes of 
Health (NIH). The rats were trained to perform two different 
working memory cognitive tasks (two rats for the first task and 
two for the second task). The first task was a do more and get 
more task (DM-GM). The rats were deprived of drinking water 
for some time. The longer the rats stayed in the top of the 
rectangular box, the more water they were given to drink when 
they returned to the bottom of the box. The rats were exposed 
to this apparatus until they understood how to pay more to get 
more reward. The second task was a Y-maze. The rats were 
trained to move from a waiting area to the left or right arm 
alternately of a Y-type box. When they moved to the correct 
arm, the rat received water for a reward. 

After several days of training, the 16-channel multi-
electrode arrays were inserted into the different brain cortexes 
(ACC for DM-GM task and PFC for Y-maze task). The spike 
activities of populations of neurons and local field potential 
(LFP) were recorded. The spikes of a single neuron were sorted 
using an off line sorter (Plexon, Denton, TX, U.S.). More than 
one neuron was recorded per electrode. For each neuron, the 
spikes were sorted into spike trains of a single neuron. 
Multiple-neuronal spike trains were then analyzed per-trial. 

All experimental and recording processes were 
controlled by computer and monitored by a high-speed video 
recording system. 

B. Construction of NFNs 
As in other methods of analyzing the functional networks 

of the brain, calculating the correlations between pairs of 
neurons is the first step in analyzing neuronal connectivity 
relationships. The Pearson correlation coefficient is commonly 
used to measure the similarity between two spike trains of 
neurons, but this method requires binning the spike trains into 
non-overlapping, short time windows (1 if spikes are present, 0 
otherwise) [16-17]. The choice of the size of the time window 
is very arbitrary and has a direct impact on the results. Several 
other binless spike train measures have been proposed recently 
[18]. Neural coding is a neuroscience-related field concerned 
with characterizing the relationship between the stimulus and 
the neuronal responses. Rate coding and temporal coding are 
all related to inter-spike intervals (ISI) of neurons. ISI is one of 
the ways in which neural coding can be studied [19]. Thomas 
Kreuz proposed the ISI-distance to measure spike train 
synchrony [20]. In this paper, we proposed a multi-step interval 
ISI-distance and a new approach that extracts information from 
the different spike intervals and calculate the correlations 
between pair wise neurons. 

The p-step interval ISI-distance of qth neuron is defined as 
follows: 
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Specifically, the element xqi denotes the time of ith spike 
of the qth neuron, and t(q) is the number of spikes in qth 
neuronal spike trains. According to Eq. 1, we obtain the 1-step 
interval ISI-distance of qth neuron as follows:  
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Different higher-step interval ISI-distances are calculated in 
a similar manner. 

Then n neuronal spike trains were converted to a new 
multi-dimensional matrix V through the conversion of multi-
step interval ISI-distance. 
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(3)  

The new matrix V represents the original multi-neuronal 
spike train and the line of matrix V represents a single neuronal 
spike train. As in principal component analysis (PCA), this 
method produced a dimensionality reduction among the spike 
trains. Unlike in PCA, the number of spikes in each neuronal 
spike trains can differ. 

The correlation coefficient between two neurons is given by 
the functional distance of two neuronal spike trains. Based on 
the matrix V, the correlation coefficient can be defined using a 
Gaussian kernel. This technique has been widely used in graph 
analysis methods. 
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distance between two vectors. σ is a scale parameter that 
controls the decay of the Gaussian kernel. Matrix S is called 
correlation matrix. The value of sij is between 0 and 1. The 
closer the value of s is to its maximum, 1, the stronger the 
synchrony.  

The advantages of this method are that it does not need to 
bin the spike trains into short time windows and that it is easy 
to implement. 
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Fig. 1. Original method overview. (A) Raster plot of a surrogate data set of 
neuronal spike trains composed of 30 neurons. Each row represents a neuron. 
Every ten neurons form a community, and there is a high level 
synchronization between neurons in the same community. (B) Four multi-step 
interval ISI-distances were calculated from ten neuronal spike trains. (C) As 
shown, the correlation matrixes between 30 neurons exhibited even more 
obvious hierarchy. 

Figure.1 shows the process of calculating a surrogate 
neuronal data set. The resulting matrix S is a weighted matrix. 
In fMRI functional networks, the weighted matrix must 
usually be converted into a binary matrix by a threshold. 
However, choosing the threshold is very difficult. Schwarz 
retained the strongest 2% of the all edges in the fully weighted 
networks, but this technique is very subjective. In this paper, 
we directly analyze the network in the weighted matrix. 

C. Hierarchical clustering 
To identify the hierarchical modular organization between 

neurons, we used a hierarchical clustering algorithm to 
determine the hierarchy of NFNs. Using the linkage and 
dendrogram functions in Matlab toolbox (Matlab 2009), the 
distance between nodes used in linkage function was found to 
be dij=1-sij. The smaller the distance dij between two nodes, 
the more likely that those two nodes would be placed in the 
same group. This hierarchical clustering algorithm has been 
widely used in analysis of fMRI functional networks [21-22]. 

Each level of the hierarchy obtained by dendrogram 
function was taken to represent a special kind of community 
structure. To assess the best division of the hierarchical 
organization and partition the NFNs into subgroups, we used a 
widely used modularity function Q, which was proposed by 
Newman [23]. The modularity Q for a given partition of a 
weighted network is defined as follows: 
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where l is the total weight of all connections in the network, 
wij = sij, and ki and kj are the degrees of each node. δij 

is the 
Kronecker delta symbol and 

,
1

i j
δ = , if nodes i and j are in the 

same community and 0 otherwise. 

Given a partition of the network, modularity Q measures an 
actual partition relative to a randomly connected network. If a 
NFN is not a random network, then NFN can be partitioned 
into different community structures by maximizing the value of 

Q. The process involves two steps; the first step is to obtain the 
results of a division using the cluster function in the Matlab 
toolbox. The second step is to calculate the corresponding Q 
value. We increased the number of communities to implement 
the above process until the maximum value of Q appeared and 
the corresponding divides were observed. 

D. Parameter selection 
       The method proposed in this paper attempts to reduce the 
number of parameters, but it is also controlled by two 
parameters, the number of multi-step interval ISI-distances, p, 
and the Gaussian kernel function parameter, σ. The selection 
of values for p and σ may affect the results of the experiments. 
To analyze these two parameters, we proposed the evaluation 
coefficient ω.  
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sij is the correlation coefficient between two neuronal 
spike trains, δij is the Kronecker delta function and δij = 1

 
if 

nodes i and j are in the same community and 0 otherwise. The 
coefficient ω represents the proportion of sum of similarity in 
the communities and sum of similarity outside the 
communities. The value of ω is between 0 and 1. The smaller 
the value of ω, the more obvious the community structure and 
the better the experimental results. 

III. RESULTS 

A. Surrogate data 
There is no ground truth for real multi-electrode 

recording data sets and we cannot know the hierarchy of 
NFNs in advance. To illustrate the performance of the 
proposed method, we first obtained the experimental results of 
the surrogate data shown in Fig. 1. Two parameters were set 
the p = 4 and σ = 4. 

 
Fig. 2. (A) Hierarchical tree of surrogate data set in Fig. 1. (B) Modularity�
Q.�The�dashed�line�denotes�the�maximum�value�of�Q.�
�
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Fig. 3. The results of spike trains from Y-maze cognitive task. (A) Raster plot of neuronal spike trains of 20 neurons. (B) Correlation matrix. (C) Modularity Q.�
The�dashed�line�denotes�the�maximum�value�of�Q. (D) hierarchical tree. (E) Correlation matrix corresponding to three communities.  

 
Fig. 4. Results of spike trains from DM-GM cognitive task. (A) Raster plot of neuronal spike trains of 22 neurons. (B) Correlation matrix (C) Hierarchical tree. 
(D) Modularity Q.  

 

We ran the hierarchical clustering based on the 
correlation matrix in Fig. 1C. Fig. 2A shows the hierarchical 
structure of 30 neurons. As shown in Fig. 2B, the maximum 
modularity value of Q was obtained when the number of 
communities equals 3, which is marked by a dashed line. The 
optimal number of communities in the surrogate data is three, 
which is consistent with the initial data set, as shown in Fig. 
1A.  

B. Spike train data 
We used the spike train method to the spike trains recorded 

using multi-electrode in vivo. Fig. 3 shows the experimental 
results of spike trains of the Y-maze task. The trial lasted 50 s 
and covered 20 neurons. The maximum value of Q appeared 
when the number of communities equals 3, indicating that the 
20 neurons can be divided into three groups. 

Fig. 4 shows the results of a set of spike trains for a DM-
GM task. The trial lasted 22 s and covered 22 neurons. As 
shown in Fig. 4D, the maximum modularity value of Q 
appeared when the number of communities equals 6, indicating 

that the 22 neurons can be divided into six groups. The neurons 
contained in each group are shown in Fig. 4C. Experimental 
results showed more obvious hierarchical module structures in 
neuronal functional connections recorded for different 
cognitive tasks. 

C. Parameter selection 
In the present experiment, we constructed a number of 

networks using the different values of parameters p and σ. 
Because we do not know the true division of the real spike 
trains. We can only evaluate the performance in the surrogate 
data set using different parameters. 

Fig. 5B shows that the value of σ does not affect the 
performance of the proposed method, usually setting σ=4 in the 
graph analysis method. However, the value of p was found to 
play an important role. As shown in Fig. 5A, when the value of 
p remained relatively small, the evaluation coefficient ω 
remained large. Therefore, the value of p was made as large as 
possible (p ≥ 4).  
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Fig. 5. (A) The number of identified communities and the value evaluation 
coefficient ω for different values of parameter p. (B) The number of 
identifying communities and the value evaluation coefficient ω for different 
values of parameter σ.  

IV. DISCUSSION AND CONCLUSION 
In this paper, we introduce a new method of hierarchical 

clustering analysis that can assess the hierarchical modular 
organization of NFNs. The results in different spike train data 
sets showed obvious modular organization in neuronal 
connectivity structures in rat brains. These structures were 
attributed to the performance of different cognitive tasks, 
indicating that the functional connections between neurons are 
not random. These results provide new evidence that the 
functional network of the brain are complex and have small-
world properties. 

Using the weighted network modularity Q proposed by 
Newman, the proposed method can be used to identify the 
optimal divisions of NFNs, which are regarded as community 
structures. Currently, the neural mechanism of community 
structure is still unknown. It is still not clear how these 
different community structures form in the rat brain. 

Finding the functional structures between neurons is a key 
element in neuroscience research [24]. Different hierarchical 
structures may be found using different types of analysis. Due 
to the lack of standard data sets for known structures, there is a 
dearth of studies evaluating these methods. In addition, the 
connections between the neurons are not static and can change 
dynamically over time through various synaptic plasticity 
principles. Analyzing the neuronal signal data superior to the 
fMRI data involves addressing its high time resolution. This 
renders the analysis of NFNs more difficult. 

This method also has limitations. Modularity function Q 
has a resolution limit problem and does not recognize smaller 
modules. Some evaluation functions have been proposed to 
overcome this problem. Lu proposed a partitioning criterion of 
community coefficient C to determine the optimal number of 
communities and solve the resolution limit problem [25]. In 
addition, hierarchical clustering does not recognize the 
overlapping nodes and modules. This will be the subject of our 
next study. 

In conclusion, this clustering-based method clearly 
identifies the organizational structures of NFNs and can 
partition the NFNs into different community structures in the 
study of rat brains according to modularity function Q, which 
performs different cognitive tasks. The method can   
potentially detect the spatial-temporal patterns in neuronal 
population coding, analyze neural circuits, and predict 
individual animal behavioral outcome. The connection 
structures between neurons may correspond to different types 
of animal behavior. We hope to use hierarchical structures in 
spike trains of different trials to predict the behavioral 
outcomes of single trials. 
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