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Abstract—In this paper, we proposed a generative graphical
model for unsupervised robust feature selection. The model as-
sumes that the data are independent and identically sampled from
a finite mixture of Student-t distribution for dealing with outliers.
The Student t-distribution works as the building block for robust
clustering and outlier detection. Random variables that represent
the features’ saliency are included in the model for feature selec-
tion. As a result, the model is expected to simultaneously realise
unsupervised clustering, feature selection and outlier detection.
The inference is carried out by a tree-structured variational Bayes
(VB) algorithm. The feature selection capability is realised by
estimating the feature saliencies associated with the features.
The adoption of full Bayesian treatment in the model realises
automatic model selection. Experimental studies showed that
the developed algorithm compares favourably against existing
unsupervised Bayesian feature selection algorithm in terms of
commonly-used internal and external cluster validity indices on
controlled experimental settings and benchmark data sets. The
controlled experimental study also showed that the developed
algorithm is capable of exposing the outliers and finding the
optimal number of components (model selection) accurately.

I. INTRODUCTION

Competitive performances of clustering algorithms cannot
be expected on high-dimensional datasets due to the curse
of dimensionality problem. A subset of features, if properly
selected, could improve the clustering performance [1].

Existing learning algorithms for feature selection in the liter-
ature were proposed to tackle data sets with labels (supervised
feature selection) and without labels (unsupervised feature
selection) [1]. In the paper, we focus on unsupervised feature
selection. As discussed in [1], feature selection is to select a
subset of most informative features (or attributes, variables)
rather than selecting a combination of features, such as PCA,
ICA, and so on.

Mathematically, the feature selection problem can be formu-
lated as follows: given a set Y of features of size D = |Y |,
denote Xd the set of all possible variables. The unsupervised
feature selection is to select an optimal subset of features in
terms of a criterion function J(x):

xopt = arg max
x⊂Xd

J(x)

Basically, the feature selection methods can be classified into
three categories, namely filter, wrapper and hybrid methods
with different criterion function. Interested readers please refer
to [2] for a detailed survey on feature selection.

Various feature selection methods for unsupervised learning
have been developed. These methods can be categorised into
several groups1. In [3], consistency based feature selection
methods were evaluated. Methods based on information en-
tropy and correlation have also been developed such as in [4],
[5], [6], [7], [8], [9]. Local learning-based feature selection
methods have been extensively studies, especially recently.
For examples, in [10], [11], [12], [13], nonnegative matrix
factorisation is used, where the loading matrix is penalised
by L2 or L1 norms. Moreover, L2 and L1 norms have been
widely applied in various feature selection methods, such as in
[14], [15], [16], [17]. In [18], [19], [20], [21], spectral analysis
is applied. These algorithms have shown their capability in
feature selection. But those mentioned algorithms are not able
to select the optimal number of clusters in a principled way.

Alternatively, the probability model based feature selection
methods have been developed in [22], [23], [24], [25], which
are based on a finite mixture of Gaussians. These methods can
simultaneously realise the feature selection and clustering. As
well known, the mixture of Gaussians are not able to deal with
outliers properly. Outliers or scattered objects exist elsewhere
in real datasets. The outliers, if not appropriately tackled,
should seriously deteriorate the performances of learning al-
gorithms, such as the case in the finite mixture. Moreover,
the outliers could also make the optimal selection of subset
features get much more difficult. It is thus indispensable to
propose a principled approach to realise the selection of the
most informative features, whilst eliminating the effects of
outliers and improving the clustering performance.

In this paper, we propose a hierarchical latent variable
model so that all the problems mentioned above can be
dealt simultaneously. That is, a finite mixture of Student t-
distributions is the backbone of the model, and the features
are associated with variables that represent the importance of
the features. The Student t-distribution has a heavy tail so that
the outliers can be properly accounted. The feature saliencies
are able to select the most informative features. A Bayesian
variational framework is presented for training the model
that maximise a lower bound of the marginal likelihood. To
increase the efficiency of the maximisation, a tree-structured
factorisation of the latent variables is proposed.

In the rest of the paper, Section II presented the proposed

1This does not intent to a comprehensive review.
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latent variable. The inference was presented in Section III,
in which the tree-structured variational Bayes algorithm is
described. The experimental study was presented in Section
V. The interpretation of the model was described in Section
IV. In the study, controlled experiments were firstly conducted
to justify the outperformance of the developed model over
the model using Gaussian distributions. Then the developed
algorithm was compared with a full-factorised VB algorithm to
justify the outperformances of the tree-structured factorisation.
Section VI concludes the paper.

II. MODEL

Based on the definition of irrelevance of features as seen
in [23], the `-th feature is irrelevant if the `-th feature comes
from a common distribution. Here, we use a random binary
variable vector Φ = (φ1, · · · , φd) to denote the relevance of
the features, i.e. φ` = 1 if the `-th feature is relevant, and 0
otherwise. Thinking of a mixture of Student t-distribution and
taking the features’ relevance / irrelevance into consideration,
we have the following model:

p(y|Φ) =

K∑
k=1

πk

{
d∏
`=1

[
St(y`|θk`)

]φ`
[
St(y`|θ0`)

]1−φ`

}

=
K∑
k=1

πk

{
d∏
`=1

φ`St(y`|θk`) + (1− φ`)St(y`|θ0`)

}
where St is the Student t-distribution. From the above equa-
tion, it can be seen that if some features with φ` = 0, they are
assumed to follow a distribution which is independent of the
class assignment, i.e. a common distribution.

Note that the Student t-distribution can be written as a con-
volution of a Gaussian and a gamma distribution as follows:

St(y|θ) =

∫
N (y|µ, σu)G

(
u|ν

2
,
ν

2

)
du

where σ is the precision and θ = (µ, σ, ν) is the parameters,
and G(x|a, b) = baxa−1 exp(−bx)/Γ(a).

In our model, considering the hierarchical representation
of the Student t-distribution, we introduce latent variables
un = (un1, · · · , und) and Φn = (φn1, · · · , φnd), where each
un` and Φn` correspond to each data and feature. Moreover,
if we let zn is the discrete latent variable to specify which
cluster that the n-th data belongs to, the model can be written
hierarchically as follows:

p(yn|Φn,un, zn = j) =
d∏
`=1

p(yn`|φn`, un`, zn = j)

p(un|Φn, zn = j) =
d∏
`=1

p(un`|φn`, zn = j)

where for the right hand side probabilities, we have the
following probabilities:

p(yn`|φn`, un`, zn = j) =

{
N (yn`|µj`, σj`un`) : φn` = 1
N (yn`|χ`, τ`un`) : φn` = 0

and

p(un`|φn`, zn = j) =

{
G
(
un`|νj`2 ,

νj`
2

)
: φn` = 1

G
(
un`|γ`2 ,

γ`
2

)
: φn` = 0

Integrating over un given zn = j and Φn, we can derive
the integration as shown in Fig. 1.

Integrating p(yn|zn = j,Φn) over zn, we recover
p(yn|Φn). Given Bernoulli prior probability over Φn as

p(Φn|β) =
d∏
`=1

β`
φn`(1− β`)1−φn`

and integration Φn, we obtain the following likelihood func-
tion

p(yn|β) =
J∑
j=1

πj

{
d∏
`=1

β`St(y`|θk`) + (1− β`)St(y`|θ0`)

}
Here β` is called feature saliency in [23].

To realise model selection, i.e. selecting the optimal number
of components, we apply the full Bayesian treatment. In [22],
the authors developed a semi-Bayesian treatment to the method
developed The obvious disadvantage of the method in [22] is
its capability to deal with outliers. Moreover, it is also sceptical
to use a semi-Bayesian for the purpose of model selection.

In the proposed model, bear in mind that the probabil-
ity distributions p(y|zn,Φ,Θ) (Θ = {µ, σ, χ, τ, π, β}) and
p(un|zn,Φn) (v = {νj , ν0}) are fully factorized. In the se-
quel, we denote the latent variables as hn = {un, zn,Φn, 1 ≤
n ≤ N}. According to the model, the complete likelihood of
a data yn can be written as follows:

LC = p(yn,un, zn,Φn)p(Θ) (1)

where

p(yn,hn) = p(yn|un, zn,Φn)p(un|zn,Φn)p(zn)p(Φn)

p(Θ) = p(µ)p(σ)p(β)p(π)p(χ)p(τ)

Note that we assume the same hyper-parameters of the prior
distributions corresponding to the parameters θ, θ0. We do not
assume any priors for ν and ν0 since there are no conjugate
priors.

In the following, we use n, `, j to denote the indices of
training data point, the features and the mixing components.
We also omit the typeset of parameters in the formula.

Fig. 2 shows the proposed graphical model.
The prior probabilities for the latent variables are defined

as follows:

p(yn|zn,un,Φn) =
K∏
j=1

[
d∏
`=1

p(yn`|φn`, un`, j)

]1zn=j

p(un|zn,Φn) =
K∏
j=1

[
d∏
`=1

p(un`|φn`, j)

]1zn=j

and p(zn|π) =
∏K
j=1 π

1zn=j

k where 1zn=j is the Kronecker
delta.
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p(yn|j,Φn) =

∫ ∏
`

[
N (yn`|µj`, σj`un`)G

(
un`|

νj`
2
,
νj`
2

)]φn`
[
N (yn`|χ`, τ`un`)G

(
un`|

γ`
2
,
γ`
2

)]1−φn`

dun`

=
∏
`

∫ {
φn`

[
N (yn`|µj`, σj`un`)G

(
un`|

νj`
2
,
νj`
2

)]
+ (1− φn`)

[
N (yn`|χ`, τ`un`)G

(
un`|

γ`
2
,
γ`
2

)]}
du

=
∏
`

{
d∏
`=1

φn`St(y`|θk`) + (1− φn`)St(y`|θ0`)

}

Fig. 1. The integration of the hierarchical probability model.
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Fig. 2. The hierarchical graphical model.

The prior probabilities associated with the parameters are
as follows:

p(β) =
d∏
`=1

Be(β`|κ1, κ2)

p(σ) =
∏
j

∏
`

p(σj`) =
∏
j

∏
`

G(σj`|
η0

2
,
ω0

2
)

p(µ) =
∏
j

∏
`

p(µj`) =
∏
j

∏
`

N (µj`|m0, λ0)

p(χ) =
∏
`

p(χ`) =
∏
`

N (χ`|m0, λ0)

p(τ) =
∏
`

p(τ`) =
∏
`

G(τ`|
η0

2
,
ω0

2
)

p(π) = Dir(π|α0) (2)

where Be(x|a, b) represents the Beta density function
Be(x|a, b) = xa−1(1 − x)b−1/B(a, b) where B(a, b) is
the beta function, G(x|a, b) is the gamma distribution, and

Dir(π|α0) = CD
K∏
k=1

π
α0

k−1
k where

CD = Γ

(
K∑
k=1

α0
k

)
/
K∏
k=1

Γ
(
α0
k

)
III. INFERENCE

In this section, we derive the VB algorithm to train the
model. The auxiliary posterior distributions are factorised as a
tree-like structure. Tree-like structural factorisation in VB has

been shown to be superior over the full factorisation scheme
[26], [27]. Its form is of the following:

q(zn,un,Φn, π, β, {µj , σj}, {χ`, τ`}) =

q(un|zn,Φn)q(zn)q(Φn|zn)q(π)q(β)

q ({µj , σj}) q ({χ`, τ`})

Or specifically, due to the conjugate priors we used, it can be
seen that

q(zn = j,un,Φn, π, β, {µj , σj}, {χ`, τ`}) =

q(un|j,Φ)q(zn = j)q(Φn|j)q(π)q(β)

q ({µj , σj}) q ({χ`, τ`})

=
[ d∏
`=1

q(un`|j, φn`)q(φn`|j)
]
q(zn = j)q(π)

d∏
`=1

q(β`) ·

[K,d∏
j,`

q(µj`)q(σj`)
][ d∏

`=1

q(χ`)q(τ`)
]

The free energy function F can then be written in Fig. 3.
We need to highlight the following expectations, that is:〈

log p(φn`|β`)
〉
j

= q(φn` = 1|j)〈log β`〉+

q(φn` = 0|j)〈log(1− β`)〉

and〈
log q(φn`|j)

〉
j

= q(φn` = 1|j)〈log q(φn` = 1|j)〉+

q(φn` = 0|j)〈log q(φn` = 0|j)〉

A. Auxiliary posteriors of the latent variables: the VB-E step
1) q(un|zn,Φn): First of all, the free energy associated

with the auxiliary posterior q(un|zn,Φn) can be read as
follows:

F =
〈

log [p(yn, hn)]− log q(un|zn,Φn)
〉
q

According to the KKT condition, and using the Lagrange
multiplier, we obtain:

q(un|zn,Φn) ∝ e

〈
log[p(yn|un,zn,Φn)p(un|zn,Φn)]

〉
∝

d∏
`=1

exp
〈

log [p(yn`|un`, zn, φn`)p(un`|zn, φn`)]
〉
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F =
∑
n,j

q(zn = j)

{∑
`

〈
log p(yn`|un`, φn`)p(un`|φn`)

〉
j

}
+
∑
n,j

q(zn = j)

{∑
`

〈
log p(φn`|β`)

〉
j

}
+

∑
n,j

q(zn = j)
〈

log p(zn = j)− log q(zn = j)
〉

+
∑
j

〈
log p(µj) + log p(σj)− log q(µj)− log q(σj)

〉
+〈

log p(χ) + log p(τ)− log q(χ)− log q(τ)
〉

+
〈

log p(π)− log q(π)
〉

+
〈

log p(β)− log q(β)
〉
−∑

n,j

q(zn = j)

{∑
`

〈
log q(un`|j, φn`)

〉
j

}
−
∑
n,j

q(zn = j)

{∑
`

〈
log q(φn`|j)

〉
j

}

Fig. 3. The free energy of the proposed model.

This shows that q(un|zn,Φn) =
∏d
`=1 q(un`|zn, φn`).

Through mathematical manipulation, we can obtain:

q(un`|zn = j, φn` = 1) = G(un`|ājn`, b̄jn`)
q(un`|zn = j, φn` = 0) = G(un`|s̄n`, t̄n`)

where

ājn` =
νj` + 1

2
; s̄n` =

γ` + 1

2

b̄jn` =
νj` + 〈(yn` − µj`)2σj`〉

2

t̄n` =
γ` + 〈(yn` − χ`)2τ`〉

2

or concisely, we see that

q(un`|zn = j, φn) = G(un`|ājn`, b̄jn`)φn`G(un`|s̄n`, t̄n`)1−φn`

(3)
Note that in case φn` = 0, the auxiliary distribution of un` is
independent of zn.

Note that 〈(yn`−µj`)2〉 = (yn`−〈µj`〉)2 + σ̄j` and 〈(yn`−
χ`)

2〉 = (yn`−〈χ`〉)2 + ψ̄` where σ̄j` and ψ̄` are the standard
deviations of the posterior q(µj`) and q(χ`), respectively.

In the sequel, we denote the expectation of q(un`|φn` =
1, zn = j) as 〈un`〉1j and the expectation of q(un`|φn` =
0, zn = j) as 〈un`〉0j .

2) q(Φn|zn = j): If we let

A =
[
〈logN (yn`|µj`, un`σj`)〉+ 〈log G(un`|

νj`
2
,
νj`
2

)〉
]
+

〈log β`〉 − 〈log q(un`|j, φn` = 1)〉 (4)

and

B =
[
〈logN (yn`|χ`, un`τ`)〉+ 〈log G(un`|

γ`
2
,
γ`
2

)〉
]
+

〈log(1− β`)〉 − 〈log q(un`|j, φn` = 0)〉 (5)

then q(φn` = 1|j) can be written as:

q(φn` = 1|j) =
exp{A}

exp{A}+ exp{B}
and q(φn` = 0|j) is

q(φn` = 0|j) =
exp{B}

exp{A}+ exp{B}

In the sequel, we use 〈φn`〉0j and 〈φn`〉1j to denote q(φn` =
0|j) and q(φn` = 1|j), respectively.

3) q(zn): If we define the quantity,

Rn,j =
〈

log
[
p(yn|zn = j,un,Φn)

]〉
+〈

log p(un|zn = j,Φn)
〉

+〈
log p(zn = j|π)

〉
+∑

`

[
〈φn`〉1j 〈log β`〉+ 〈φn`〉0j 〈log(1− β`)〉

]
−〈

log
[
q(un|zn = j,Φn)

]〉
−〈

log
[
q(Φn|zn = j)

]〉
(6)

Then the responsibility q(zn = j) can be calculated as follows:

q(zn = j) =
exp{Rn,j}∑
k exp{Rn,k}

In the sequel, we use 〈zn〉j to denote q(zn = j).

B. Auxiliary posteriors of the parameters: the VB-M step

On the other hand, for the parameters, the posteriors are as
follows.

1) q(π):
q(π) = D(π|α̂)

where α̂j =
∑N
n q(zn = j) + α0 and α̂0 =

∑
j α̂j and

log πj = Ψ(α̂j)−Ψ(α̂0)

2) q(β): For q(β) =
∏
` q(β`), we have:

q(β`) = Be(β`|κ̄1`, κ̄2`)

where

κ̄1` = κ1 +
∑
n,j

q(φn` = 1|j)〈zn〉j

κ̄2` = κ2 +
∑
n,j

q(φn` = 0|j)〈zn〉j

The expectation 〈log β`〉 and 〈log(1 − β`)〉 as used in the
calculation of q(Φn|j) can be obtained as:
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〈log β`〉 = ψ(κ̄1`)− ψ(κ̄1` + κ̄2`)

〈log(1− β`)〉 = ψ(κ̄2`)− ψ(κ̄1` + κ̄2`)

3) q(σj): For q(σj`), we have:

q(σj`) = G(σj`|η̄j`, ω̄j`)
where

η̄j` =
η0 +

∑
n〈zn〉j〈φn`〉1j

2

ω̄j` =
ω0 +

∑
n〈zn〉j〈φn`〉1j 〈(yn` − µj`)2〉〈un`〉1j

2
4) q(τ): For q(τ`), we have:

q(τ`) = G(τ`|ψ̄`, ξ̄`)
where

ψ̄` =
η0 +

∑
n,j〈zn〉j〈φn`〉0j

2

ξ̄` =
ω0 +

∑
n,j〈zn〉j〈φn`〉0j 〈(yn` − χ`)2〉〈un`〉0j

2
5) q(µj): For q(µj`), we have:

q(µj`) = N (µj`|µ̄j`, σ̄j`)
where

σ̄j` = 〈σj`〉
∑
n

〈zn〉j〈φn`〉1j 〈un`〉1j + λ0

µ̄j` = σ̄−1
j`

(
〈σj`〉

∑
n

〈zn〉j〈φn`〉1j 〈un`〉1jyn` + λ0µ0

)
6) q(χ`): For q(χ`), we have:

q(χ`) = N (µ`|µ̄`.σ̄`)
where

σ̄` = 〈τ`〉
∑
n,j

q(zn = j)〈φn`〉0j 〈un`〉0j + λ0

µ̄` = σ̄−1
`

〈τ`〉∑
n,j

q(zn = j)〈φn`〉0j 〈un`〉0jyn` + λ0µ0


C. The optimization of the degree of freedom parameters

The degree of freedom νj`, 1 ≤ j ≤ d, γ`, 1 ≤ ` ≤ K
can be obtained by solving the following non-linear Eqs.
(7) and (8), respectively. In the equations, 〈log un`〉0j and
〈log un`〉1j denote the expectations of log q(un`|φn` = 0, j)
and log q(un`|φn` = 1, j), respectively.

∑
n

〈zn〉j〈φn`〉1j
[
1 + log

νj`
2

+ 〈log un`〉1j

− 〈un`〉1j − ψ(
νj`
2

)
]

= 0 (7)

∑
n,j

〈zn〉j〈φn`〉0j
[
〈log un` − un`〉0j+

1 + log
γ`
2
− ψ(

γ`
2

)
]

= 0 (8)

D. The log-likelihood bound

The optimisation process of the variational Bayes can be
monitored by the log-likelihood bound as shown in Fig. 3.
Due to the length limit of the paper, we omit the evaluation.

IV. INTERPRETING THE MODEL

A. The outlier detection

Due to the application of Student t-distribution, the devel-
oped algorithm is supposed to deal with outliers. To detect
outliers, the expectation of the un is applied as the outlier
criterion. Note that

q(un) =
∑
j

q(zn = j)

∫
q(un|zn = j,Φn)q(Φn|zn = j)dΦn

The expectation of q(un) can then be calculated as

〈un〉 =
∑
j

〈znj〉
∑
`

[
〈φn`〉1j

ājn`
b̄jn`

+ 〈φn`〉0j
s̄n`
t̄n`

]

The smaller the value of 〈un〉 of the data yn, the higher
chance that the data point is an outlier.

B. Selecting proper partition

An important issue is to decide the number of clusters. In
the Bayesian framework, the optimal number of clusters can
be obtained automatically. Given a large number K, during the
optimisation process, some clusters that do not have enough
supportive data points will be pruned.

C. The Feature Saliencies

The saliencies of each feature can be measured by the
expectation of the variable β, which can be obtained as
follows:

〈β`〉 =
κ̄1`

κ̄1` + κ̄2`

The higher the value, the more importance of feature.

V. EXPERIMENTAL STUDY

In this section, we studied the developed algorithm in
controlled experiments. We generate synthetic data sets to
demonstrate the performance of the developed algorithm in
terms of feature selection, clustering performance and the
outlier detection rate. The developed algorithm was compared
with the semi-Bayesian feature selection algorithm [22], called
varFnMS. varFnMS is based on variational Bayes algorithm
and the associated model is similar to the hierarchical latent
variable model proposed in the paper. The difference is that a
finite mixture of Gaussian is adopted in the varFnMS model,
and a full-factorised variational Bayes is applied.

To demonstrate the developed algorithm, synthetic data are
generated similar to that in [23]. That is, a set of data points are
sampled from four well-separated bi-variate clusters. The cen-
tres and covariance matries are [0 3]T , [1 9]T , [6 4]T , [7 10]T

and I. Eight “noisy” features (sampled from N (0, 1) density)
are then appended to this data, resulting in a 10-dimensional
patterns. The synthetic data set consists of 800 data points
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Fig. 5. A typical run of the semi-Bayesian feature selection algorithm. The
plot shows the data on the first two coordinates.

from the four Gaussians, and a set of outliers are sampled
from the range [−10 30]10. To test the performance of the
algorithm on outlier detection, various percentages of outliers
are specified in the following experiments.

We run the proposed algorithm 10 times, each initialised
with K = 10. The K-means clustering algorithm is used
to initialise the mean of the posterior q(µj), and the feature
saliency variable is initialised to be 0.5. The hyper parameters
including κ1, κ2, λ0, α0 are set to be 10−5, and m0 is set to
be the mean of all data. The algorithm terminates when the
difference of log-likelihood bound is less than 10−7.

Fig. 4 shows a typical run of the developed algorithm, while
the estimation of the first two-dimension of the parameters is
shown at certain iterations. In the run, we initialise the number
of components to be 10. From the figure, we can see that
the developed algorithm estimates the parameters successfully.
Moreover, it can be seen that it automatically prunes some
unnecessary components. The last plot is the data shown for
the third and fourth variables, and the red circle demonstrates
the mean of the posterior q(µ0). Fig. 5 shows the results
obtained by the semi-Bayesian feature selection algorithm on
the variables Y1 and Y2. From the figure, it can be seen that
the algorithm is not able to find the true cluster centres.

The AUC (area under curve) values obtained through the
ROC analysis [28] is obtained to measure the performance of
the ability of outlier detection. The results are summarised in
Fig. 6. In Fig. 6, the AUC values obtained for the different
percentages of outliers are shown. From the figure, it can
observed that the developed algorithm can successfully find
the outliers. On the other hand, the semi-Bayesian algorithm
is not able to find outliers.

Fig. 7 shows the feature saliencies associated with the
features retrieved by the proposed algorithm and the semi-
Bayesian algorithm. From the figure, we can see that the
saliencies of the noisy variables (Y3 − Y8) obtained by the
proposed algorithm is closer to the ground true than that of
the semi-Bayesian algorithm.

Fig. 6. The AUC values obtained by the developed algorithm for different
percentages of outliers with standard deviations shown.

(a)

(b)
Fig. 7. The feature saliencies for the synthetic data with 5% percentage of
outliers by a) the proposed algorithm; b) the semi-Bayesian algorithm. The
standard deviations of the 10 runs were also shown in the plots.

VI. CONCLUSION

In this paper, we developed a hierarchical latent variable
model for dealing with unsupervised feature selection. The
model is also proposed to deal with outliers. The Bayesian
treatment of the model makes model selection possible. The
Bayesian variational framework was used for the inference. A
tree-structured factorisation of the latent variable models was
used in the variational framework. The developed algorithm
was compared in controlled experiments with the VB algo-
rithm developed for the semi-Bayesian mixture model [22].
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Fig. 4. A typical run of the developed algorithm on the example dataset, while the black circles represent q(µ1|k), and the red circles denote q(µ0). The
first plot shows the dataset on the first two dimensions, while the last plot shows the estimation of the third and fourth dimension.

The experiments have shown that the developed algorithm
outperformed the semi-Bayesian algorithm in terms of out-
lier detection, feature selection and the clustering. This also
showed that the proposed model is better than the correspond-
ing Bayesian mixture model.
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