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Deep Neural Networks for Mandarin Tone Recognition

Mingming Chen, Zhanlei Yang and Wenju Liu

Abstract— This paper investigates the application of deep
models including deep maxout networks(DMNs) to Mandarin
tone recognition. Our focus is on the capacity of extracting
high-level robust features and fusing different kinds of serially-
concatenated features of deep models. Furthermore, Maxout
networks have been proposed to integrate dropout naturally
and achieve state-of-the-art results. Therefore, we investigate
the advantage of DMNs when the training data is limited and
imbalanced. Our experiments on the ASCCD corpus show that
comparing with shallow models such as one-hidden layer multi-
perception (MLP) and support vector machine(SVM), deep
models improve Mandarin tone recognition significantly. Among
the deep models, DMNs can get better performance comparing
with other deep neural networks based on sigmoid units or
rectified linear units(ReLU).

I. INTRODUCTION

EEP Neural Networks(DNN5s) have achieved great suc-

cess in speech recognition tasks in recent years[1].
Deep neural networks have several advantages for getting
much better performance: firstly, they can extract high-level
features which are robust to the variations of raw input fea-
tures through multiple non-linear hidden layers[2]; secondly,
they can fuse multiple serially-concatenated features more
efficiently; finally, they can be prevented from overfitting
using dropout as well as other techniques. Furthermore, high-
level features can vary with different kinds of non-linearity
function even with the same network architecture. Following
the recent success of DNNs based on sigmoid units, several
kinds of activation functions have been used in deep neural
networks. Rectified Linear Unit(ReLU) [14] has become
popular recently which is a simple activation function y
= max(0,x). Alongside with new kinds of non-linearities,
dropout training has been proposed to prevent overfitting in
training deep neural networks because wide and deep neural
networks are vulnerable to overfitting. Combining ReLU
and dropout training, significant gain has been achieved in
[3]. More recently, the maxout non-linearity which can be
regarded as a generalization of ReLU was proposed. It is a
function y = max;x; that takes the maximum over groups
of inputs which are put in groups of 3. Maxout networks,
combined with dropout training, have given state-of-the-art
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performace in various computer vision tasks[4], and have
achieved improvements in speech recognition task[5].

Mandarin Chinese (or Standard Chinese) is a well-known
tonal language in which every syllable is assigned a tone,
and the tones play an important lexical role. There are four
basic lexical tones (referred to as Tone 1, 2, 3, 4, respectively)
plus a neutral tone in Mandarin. In Mandarin, a syllable with
different tones corresponds to different words. For example,
the syllable ma can represent different words. ma, ma, ma,
ma refer to the syllable with tone 1, 2, 3, 4 correspondingly.
They correspond to different chinese characters meaning
mother, hemp, horse and scold . As a result, tone recognition
plays an very important role in mandarin speech recogni-
tion. Tone recognition can be improve the performance of
Mandarin speech recognition tasks either by rescoring on
the word lattice [6], or by directly including the prosodic
features in acoustic model [7]. It has been reported for long
that the four lexical tones are characterized by perceptually
distinctive pitch patterns, while the neutral tone, according to
[8], does not have any specific pitch patterns, and is highly
dependent on a shorter duration and a lower energy. In recent
studies [9], [10] , it is known that Mandarin tone recognition
task is difficult because the prosodic pattern realizations of
different tones varies under various conditions such as the
co-articulation effect from context syllables[11]. Machine
learning approaches have been adopted to classify tones un-
der different tone pattern realizations[6], [12]. Traditionally,
only shallow models such as SVM are utilized for tone task
which cannot extract features robust to variations of tone
under different conditions.

In this work, we investigate the application of deep neual
networks including deep maxout networks(DMNs) to Man-
darin tone recognition. The difficulty of tone recognition
is the prosodic pattern realizations of different tones varies
under various conditions such as the co-articulation effect
from context syllables[11]. Deep neural networks are good at
modeling the variations of input features because the hidden
layers of deep models can be seen as feature extractors whose
output features are robust to variations of input features. Our
experiments on ASCCD corpus show that DNN based on
sigmoid, ReLU and maxout units produce 2.16%, 2.30%,
3.37% absolute improvement correspondingly over state-of-
the-art shallow model—SVM.

The rest of this paper is organized as follows. The prosody
labelled corpus used in this paper are described in section
2. Section 3 introduces the acoustic features used in tone
recognition in detail. In section 4, deep neural networks with
different non-linear units are presented. The experimental
results and the analysis of results will be reported in section
5. The conclusion will be summarized in the final section.
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II. THE CORPUS

In this paper, we conduct our experiments on the Man-
darin prosodic annotation speech corpusASCCD. ASCCD
is designed for TTS and labeled with prosody. The text
of ASCCD contains 18 pieces of narration or argumentum.
There are 2 5 sections and 500 600 syllables in each piece.
The corpus includes 10 speakers, five male and five female
who are M001, M002, M003, M004, M005, F001, F002,
F003, F004, FOOS5 separately. The tones were labeled as
0,1,2,3,4 where O stands for neutral tone and label 1-4 stand
for tone 1-4 correspondingly. The speech was annotated
based on SAMPA-C system [13] to describe sound variation
phenomena. The corpus contains 782 utterances and 79679
words. Each word was labelled by a tone. Table I lists the
distribution of tones in the corpus.

TABLE I
THE DISTRIBUTION OF TONES IN ASCCD

Tone2
18046

Tone3
13060

Tone4
25625

Tonel
15012

neutral
7936

total
79679

From table I, we can conclude that the distribution of tones
in this corpus is imbalanced and the samples which can be
used in training set is somehow limited.

III. THE ACOUSTIC PROSODIC FEATURES

When extracting acoustic prosodic features for each syl-
lable ,we should consider the influences of its context. Most
Chinese words are monosyllabic or disyllabic, the previous
syllable has more influences than the following syllable on
tone[12]. Then we choose the two previous syllables and
one following syllable of current syllable as the contextual
window. For every syllable, we extract the following acoustic
prosodic features:

* Pitch-related features (16-dimensions): To extract pitch-
related features, we split log-FO pitch contour of each
syllable into three segments with equal length. We
extract the mean and slope of the linear approximation
of the pitch contour for the three segments. To use the
context syllable information, we use the same above
mean and slope of the last segment of the preceding
syllable, and the first segment of the following syllable.
We also use the first frame and last frame, pitch minimal
and maximal pitch of the whole syllable, and the last
voiced frame pitch of the preceding syllable, and the
first voiced frame pitch of following syllable.

* Duration-related features (4-dimensions): the duration
of current syllable(second), the normalized duration of
current syllable, the duration ratio between the current
syllable and the previous syllable, the duration ration
between the current syllable and the following syllable.
We use z-score method to normalize duration.

* Energy-related features (6-dimensions): the minimum,
maximum, mean, range(maximum minus minimum),
standard deviation and root mean squared(RMS) of log
energy for current syllable.

* dynamic features (26-dimensions): for the above three
kinds of features, we compute dynamic features in con-
textual window, which means that the current syllable
statistics is normalized by corresponding statistics in the
contextual window.

Finally, we extract 52 dimensions acoustic prosodic features
for each syllable.

IV. DEEP NEURAL NETWORKS

In this paper, we refer to deep neural networks as feed-
forward neural networks that contain many (at least two)
hidden layers of non-linear hidden units. According to dif-
ferent kinds of non-linear hidden units, DNNs can achieve
different performance tasks. Traditionally, sigmoid units are
utilized as non-linear units in DNNs. Recently, rectified linear
units(ReLLU) and maxout units have been proposed to replace
the sigmoid units used in DNNs. With the help of dropout
training, it has been reported that the new two kinds of DNNs
can achieve better performance on speech recognition and
object recognition tasks[4], [5], [15], [16].

A. Rectified non-linearities

Rectified linear unit is a half-rectification non-linearity
which is linear for positive values and zero otherwise[14].
It can bring several advantages for DNN. First, it is not
necessary to do unsupervised pretraining when we train the
DNNs based on recitifed linear units. Second, DNN based
on ReLU can converge faster than those based on a regular
sigmoid unit with the same topology. Third, DNN based on
ReLU is piece-wise linear and become a linear convex system
if we consider the units that are non-zero. Therefore they
are simple to optimize even using the first-order optimizers.
Fourth, DNN based on ReLU generalizes better than its
sigmoid couterpart because the internal representation pro-
duced by them are much more regularized. Rectified linear
units often output exact zero instead of small positive values
when the input is not aligned with the internal weights. We
can interpret improved generalization as the effect of the
increased sparsity of the internal representation.

B. Maxout non-linearities

Maxout is a kind of neural network activation function
proposed in [4]. In this paper, deep maxout networks are
referred to feed-forward neural networks who have more
than two hidden layers in which maxout is used as activation
functions.

Given an input x € R? which has d dimensions, a maxout
hidden layer implements the function

hi(x) = MaT g1,k %ij

where z;; = xTW.ijerij, and W € R¥Xmxk and p € R™*F
are learned parameters[4]. When training with dropout, the
elementwise multiplication is performed with the dropout
mask immediately prior to the multiplication by the weights
in all cases—the inputs are not dropped to the max operator.
See Fig.1 for how maxout unit works.
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Fig. 1. The maxout unit. X can be input layer or hidden layers, z can be
seen as the “hidden hidden layer” whose unit is the weighted sum of the
input X, y get the max value of z.

In dropout training, the input X(excluing the input layer)
is element-wise multiplied by dropout mask. The input of
max operator is not dropped.

V. EXPERIMENTS

In this part, we apply different classifiers(shallow and deep
models) on ASCCD corpus to evaluate their performance on
the task of tone recognition. Firstly, we evaluate the perfor-
mance of two kinds of state-of-the-art shallow models—one-
hidden-layer mlp and SVM on this task. Secondly, we use
DNNs based on sigmoid units, DNNs based on ReLU units
and DMNs to recognise tones.

A. Experiments setup

As stated in Section II, there are 10 speakers in the corpus.
Each speaker read about 77 sections. For every speaker, we
randomly select 50 sections as the training set, 10 sections
as the developing set to tune the model parameter and the
remaining sections as the testing set. The ratio between the
size of training, developing and testing set at the sentence
level is roughly 5:1:2. The training, developing and training
set has 50237, 9820 and 16628 syllables correspondingly.
The distribution of tones in the training, developing and
testing set is listed in Table II.

TABLE I
THE DISTRIBUTION OF TONES IN THE TRAINING, DEVELOPING AND
TESTING SET

tone label total n 1 2 3 4

training set 53241 | 5312 | 10045 | 12055 | 8853 | 16976
developing set | 9820 984 1890 2714 1532 | 3211

testing set 16628 | 1620 | 3077 3817 | 2675 | 5439

B. Experiments Results and analysis

1) The shallow models: We first use two state-of-the-art
shallow models—one-hidden-layer MLP and SVM to do tone
recognition. For MLP, all the weights in the model is initised
by an guassian distribution N (0,0.1) and the biases is set to
zero. The dimension of the input layer is the same as that of
the feature vector and the output layer has 5 units which are

Tone accuracy

100 50 200 w0 @50 500

250 300
Number of nodes in hidden layers

Fig. 2. Tone classification results vary according to the number of the
nodes in hidden layer in one-hidden-layer MLP

correspond to the five different tones. For the hidden layer,
we try different number of hidden units. Figure 2 shows the
results of tone recognition with different number of hidden
units.

From this figure, we can see when the number of hidden
units increased from 50 to 250, the recognition performance
gets better. This is because the capacity of MLP is limited
when the dimension of hidden layer is small and the model
can not efficiently model the training data. We get the
best results—74.19% when the number of hidden nodes is
250. When the dimension of hidden layer is larger than
250, the accuracy of tone recognition gets worse slowly as
the dimension increases. It can be explained as when the
dimension of hidden layer is larger than 250, the capacity of
MLP is enough for the training data. When the dimension
increases further, the training data is not enough for the
model and the model is underfitting.

We then use support vector machine (SVM) to recognise
the tones. We use the LIBSVM [17] to train RBF kernel
SVMs. After grid search for the parameter C and gamma,
we get the best results when C is set to 32 and gamma
is set to 0.125. The best model produces the recognition
accuracy 74.75% which is slightly better than best result of
one-hidden-layer MLP.

2) The deep models: In this section, we compare the
performance of different deep neural networks on tone
recognition tasks. We apply deep neural networks based
on sigmoid units, rectified linear units and maxout units to
recognize tones in Mandarin. To analysis the influence of
different non-linear activation units, we use the same network
architecture for all the deep models. For all deep models, the
dimension of the input layer is the same as the dimension of
input feature vector, the hidden layers have the same number
of hidden units and the output layer has five output units.
Considering the dimension of the input layers, the count of
the training data and the performance of one-hidden-layer
MLP, we vary the number of hidden layers from 2 to 4 and
the dimension of hidden layers from 100 to 300 to get the
best network architecture for this tasks.

For deep neural networks based on sigmoid units, we first
pretrain Deep Belief Networks with different non-linear units
[1,2] and use GPU to accelerate SGD. Since the inputs are
real-valued, the first layer is pretrained as a Gaussian RBM.
The weights of the first layer are sampled from a Gaussian
Distribution N (0,0.01) and the visual biases are initialized
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to zero. The pretraining is done using SGD. The SGD uses
minibatches of 128 frames. We use momentum to speed up
learning. Momentum starts at 0.5 and increases linearly to
0.9 over 20 epochs. A learning rate of 0.01 on the average
gradient is used and an L2 weight decay of 0.0002 is used.
The model is trained for 80 epochs.

All subsequent layers are trained as binary RBMs. A
learning rate of 0.08 is used. The visible bias of each unit
was initialized to log(p/(1-p)) where p is the mean activation
of that unit in the dataset. All other hyper-parameters are the
same as those used in the first layer. Each layer is pretrained
for 40 epochs. The pretrained DBN is used to initialize the
weights in the deep neural network.

For deep neural networks based on rectified linear units
and DMNs, the weights are sampled form Uniform distribu-
tion U(-0.1, 0.1) and the biases are set to zero. It has been
reported dropout training can improve the performance of
the deep models when the models are prune to overfitting.
Therefore, for all the three kinds of deep models we use
dropout training to get the final models. In our experiments,
we get the best tone accuracy for all the deep models when
the dropout rate is set to be 0.2.

We present the recognition performance of all the deep
models with different structures in Table III. We use DNN-
sigmoid, DNN-ReLU and DMN represent deep neural net-
works using sigmoid, rectified linear and maxout function as
their activation function. To compare with shallow models
conveniently, we also list the accuracy of MLP and SVM at
the bottom of the Table.

TABLE III
TONE ACCURACY OF DEEP MODELS USING DIFFERENT STRUCTURES
AND DIFFERENT NON-LINEAR UNITS. a X b IN THE COLUMN OF
CONFIGURATIONS MEANS A DEEP MODEL WITH a HIDDEN LAYERS AND
EVERY LAYER HAS b UNITS.

[ tone models [ configurations | developing set | testing set ]
%200 3.52 71.63
2x250 77.17 7457
- 3x150 79.01 76.91
DNN-sigmoid 3x200 78.95 76.74
4x100 78.03 75.97
4x150 77.65 75.24
7x200 7379 71.76
2x250 77.87 74.93
3x150 79.24 77.05
DNN-ReLU 3x200 79.03 76.91
4x100 78.42 76.19
4x150 77.62 75.17
7x200 TR 7207
2x250 78.09 75.69
3x150 80.18 78.21
DMN 3x200 79.95 78.02
4x100 77.87 75.88
4x150 77.42 75.37
[ MLP | 1x250 | 7603 | 7410 |
[ SVWM__ | - [ 7668 | 7475 |

From Table III, we can see all the deep models achieve
the best performance with three hidden layers which contains
150 hidden units in each layer. We can conclude that all the

deep models improve the performance of tone recognition
significantly comparing with the results in Table II. Among
the deep models, DMNs achieves the best performance. We
think there are two reasons for the deep models achiev-
ing better results. Firstly, they can extract a more robust
high-level feature through multiple non-linear hidden layers.
Secondly, the deep models can fuse the multiple serially-
concatenated features more efficiently than shallow models.
To prove the above two reasons, we analysis the influence
of pitch, duration and energy related features on Mandarin
tone recognition. Table IV shows the results.

TABLE IV
THE INFLUENCE OF PITCH, DURATION AND ENERGY RELATED FEATURE
ON MANDARIN TONE RECOGNITION

[ tone models | Mask related features | developing set | testing set |

Pitch 72.95 71.63

SVM Duration 74.13 73.01
Energy 73.76 72.64

no mask 76.68 74.75

Pitch 75.74 73.72

DMN Duration 77.79 75.91
Energy 77.36 75.53

no mask 80.18 78.21

From Table IV, we can find that: 1) for each kind of
features, deep models can achieve better performance which
can prove the first reason. 2) when fuse all three kinds
of features, deep models produce much better results than
shallow models which proves they can fuse the features than
the shallow model.

Among the deep models, DMNs achieve better results
than others. We think that it is because maxout units can
be interpreted as making a piecewise linear approximation
to an arbitrary convex function which is more powerful than
recitified linear units. Compared to the other two deep net-
works, deep maxout networks learn not just the relationship
between hidden units but also the activation function of each
hidden unit. Therefore, they can learn better representation
based on the input features and produce better performance
when the training data is limited and imbalanced.

VI. CONCLUSION AND DISCUSSION

In this paper, we apply deep neural networks with different
kinds of activation function to tone recognition for Mandarin
and compare these deep models with shallow models such as
one-hidden-layer MLP, SVM. Our experiment results show
that deep models improve the performance of tone recog-
nition significantly because they can fuse different kinds of
features more efficiently and extract more robust high-level
features through multiple non-linear hidden layers. Further-
more, deep maxout models achieve the best performance
among deep models because their advantage of preventing
over-fitting when the training data is limited and imbalanced.
In the future, we plan to use deep neural networks to
fuse spectral features(MFCC, PLP) and acoustic prosodic
features to improve the accuracy of Mandarin automatic
speech recognition.
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