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Abstract— This paper investigates the application of deep
models including deep maxout networks(DMNs) to Mandarin
tone recognition. Our focus is on the capacity of extracting
high-level robust features and fusing different kinds of serially-
concatenated features of deep models. Furthermore, Maxout
networks have been proposed to integrate dropout naturally
and achieve state-of-the-art results. Therefore, we investigate
the advantage of DMNs when the training data is limited and
imbalanced. Our experiments on the ASCCD corpus show that
comparing with shallow models such as one-hidden layer multi-
perception (MLP) and support vector machine(SVM), deep
models improve Mandarin tone recognition significantly. Among
the deep models, DMNs can get better performance comparing
with other deep neural networks based on sigmoid units or
rectified linear units(ReLU).

I. INTRODUCTION

DEEP Neural Networks(DNNs) have achieved great suc-

cess in speech recognition tasks in recent years[1].

Deep neural networks have several advantages for getting

much better performance: firstly, they can extract high-level

features which are robust to the variations of raw input fea-

tures through multiple non-linear hidden layers[2]; secondly,

they can fuse multiple serially-concatenated features more

efficiently; finally, they can be prevented from overfitting

using dropout as well as other techniques. Furthermore, high-

level features can vary with different kinds of non-linearity

function even with the same network architecture. Following

the recent success of DNNs based on sigmoid units, several

kinds of activation functions have been used in deep neural

networks. Rectified Linear Unit(ReLU) [14] has become

popular recently which is a simple activation function y

= max(0,x). Alongside with new kinds of non-linearities,

dropout training has been proposed to prevent overfitting in

training deep neural networks because wide and deep neural

networks are vulnerable to overfitting. Combining ReLU

and dropout training, significant gain has been achieved in

[3]. More recently, the maxout non-linearity which can be

regarded as a generalization of ReLU was proposed. It is a

function y = maxixi that takes the maximum over groups

of inputs which are put in groups of 3. Maxout networks,

combined with dropout training, have given state-of-the-art
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performace in various computer vision tasks[4], and have

achieved improvements in speech recognition task[5].

Mandarin Chinese (or Standard Chinese) is a well-known

tonal language in which every syllable is assigned a tone,

and the tones play an important lexical role. There are four

basic lexical tones (referred to as Tone 1, 2, 3, 4, respectively)

plus a neutral tone in Mandarin. In Mandarin, a syllable with

different tones corresponds to different words. For example,

the syllable ma can represent different words. mā, má, mǎ,

mà refer to the syllable with tone 1, 2, 3, 4 correspondingly.

They correspond to different chinese characters meaning

mother, hemp, horse and scold . As a result, tone recognition

plays an very important role in mandarin speech recogni-

tion. Tone recognition can be improve the performance of

Mandarin speech recognition tasks either by rescoring on

the word lattice [6], or by directly including the prosodic

features in acoustic model [7]. It has been reported for long

that the four lexical tones are characterized by perceptually

distinctive pitch patterns, while the neutral tone, according to

[8], does not have any specific pitch patterns, and is highly

dependent on a shorter duration and a lower energy. In recent

studies [9], [10] , it is known that Mandarin tone recognition

task is difficult because the prosodic pattern realizations of

different tones varies under various conditions such as the

co-articulation effect from context syllables[11]. Machine

learning approaches have been adopted to classify tones un-

der different tone pattern realizations[6], [12]. Traditionally,

only shallow models such as SVM are utilized for tone task

which cannot extract features robust to variations of tone

under different conditions.

In this work, we investigate the application of deep neual

networks including deep maxout networks(DMNs) to Man-

darin tone recognition. The difficulty of tone recognition

is the prosodic pattern realizations of different tones varies

under various conditions such as the co-articulation effect

from context syllables[11]. Deep neural networks are good at

modeling the variations of input features because the hidden

layers of deep models can be seen as feature extractors whose

output features are robust to variations of input features. Our

experiments on ASCCD corpus show that DNN based on

sigmoid, ReLU and maxout units produce 2.16%, 2.30%,

3.37% absolute improvement correspondingly over state-of-

the-art shallow model—SVM.

The rest of this paper is organized as follows. The prosody

labelled corpus used in this paper are described in section

2. Section 3 introduces the acoustic features used in tone

recognition in detail. In section 4, deep neural networks with

different non-linear units are presented. The experimental

results and the analysis of results will be reported in section

5. The conclusion will be summarized in the final section.
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II. THE CORPUS

In this paper, we conduct our experiments on the Man-

darin prosodic annotation speech corpusASCCD. ASCCD

is designed for TTS and labeled with prosody. The text

of ASCCD contains 18 pieces of narration or argumentum.

There are 2 5 sections and 500 600 syllables in each piece.

The corpus includes 10 speakers, five male and five female

who are M001, M002, M003, M004, M005, F001, F002,

F003, F004, F005 separately. The tones were labeled as

0,1,2,3,4 where 0 stands for neutral tone and label 1-4 stand

for tone 1-4 correspondingly. The speech was annotated

based on SAMPA-C system [13] to describe sound variation

phenomena. The corpus contains 782 utterances and 79679

words. Each word was labelled by a tone. Table I lists the

distribution of tones in the corpus.

TABLE I

THE DISTRIBUTION OF TONES IN ASCCD

total neutral Tone1 Tone2 Tone3 Tone4

79679 7936 15012 18046 13060 25625

From table I, we can conclude that the distribution of tones

in this corpus is imbalanced and the samples which can be

used in training set is somehow limited.

III. THE ACOUSTIC PROSODIC FEATURES

When extracting acoustic prosodic features for each syl-

lable ,we should consider the influences of its context. Most

Chinese words are monosyllabic or disyllabic, the previous

syllable has more influences than the following syllable on

tone[12]. Then we choose the two previous syllables and

one following syllable of current syllable as the contextual

window. For every syllable, we extract the following acoustic

prosodic features:

* Pitch-related features (16-dimensions): To extract pitch-

related features, we split log-F0 pitch contour of each

syllable into three segments with equal length. We

extract the mean and slope of the linear approximation

of the pitch contour for the three segments. To use the

context syllable information, we use the same above

mean and slope of the last segment of the preceding

syllable, and the first segment of the following syllable.

We also use the first frame and last frame, pitch minimal

and maximal pitch of the whole syllable, and the last

voiced frame pitch of the preceding syllable, and the

first voiced frame pitch of following syllable.

* Duration-related features (4-dimensions): the duration

of current syllable(second), the normalized duration of

current syllable, the duration ratio between the current

syllable and the previous syllable, the duration ration

between the current syllable and the following syllable.

We use z-score method to normalize duration.

* Energy-related features (6-dimensions): the minimum,

maximum, mean, range(maximum minus minimum),

standard deviation and root mean squared(RMS) of log

energy for current syllable.

* dynamic features (26-dimensions): for the above three

kinds of features, we compute dynamic features in con-

textual window, which means that the current syllable

statistics is normalized by corresponding statistics in the

contextual window.

Finally, we extract 52 dimensions acoustic prosodic features

for each syllable.

IV. DEEP NEURAL NETWORKS

In this paper, we refer to deep neural networks as feed-

forward neural networks that contain many (at least two)

hidden layers of non-linear hidden units. According to dif-

ferent kinds of non-linear hidden units, DNNs can achieve

different performance tasks. Traditionally, sigmoid units are

utilized as non-linear units in DNNs. Recently, rectified linear

units(ReLU) and maxout units have been proposed to replace

the sigmoid units used in DNNs. With the help of dropout

training, it has been reported that the new two kinds of DNNs

can achieve better performance on speech recognition and

object recognition tasks[4], [5], [15], [16].

A. Rectified non-linearities

Rectified linear unit is a half-rectification non-linearity

which is linear for positive values and zero otherwise[14].

It can bring several advantages for DNN. First, it is not

necessary to do unsupervised pretraining when we train the

DNNs based on recitifed linear units. Second, DNN based

on ReLU can converge faster than those based on a regular

sigmoid unit with the same topology. Third, DNN based on

ReLU is piece-wise linear and become a linear convex system

if we consider the units that are non-zero. Therefore they

are simple to optimize even using the first-order optimizers.

Fourth, DNN based on ReLU generalizes better than its

sigmoid couterpart because the internal representation pro-

duced by them are much more regularized. Rectified linear

units often output exact zero instead of small positive values

when the input is not aligned with the internal weights. We

can interpret improved generalization as the effect of the

increased sparsity of the internal representation.

B. Maxout non-linearities

Maxout is a kind of neural network activation function

proposed in [4]. In this paper, deep maxout networks are

referred to feed-forward neural networks who have more

than two hidden layers in which maxout is used as activation

functions.

Given an input x ∈ R
d which has d dimensions, a maxout

hidden layer implements the function

hi(x) = maxj∈[1,k]zij

where zij = xTW
·ij+bij , and W ∈ R

d×m×k and b ∈ R
m×k

are learned parameters[4]. When training with dropout, the

elementwise multiplication is performed with the dropout

mask immediately prior to the multiplication by the weights

in all cases–the inputs are not dropped to the max operator.

See Fig.1 for how maxout unit works.
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Fig. 1. The maxout unit. X can be input layer or hidden layers, z can be
seen as the ”hidden hidden layer” whose unit is the weighted sum of the
input X, y get the max value of z.

In dropout training, the input X(excluing the input layer)

is element-wise multiplied by dropout mask. The input of

max operator is not dropped.

V. EXPERIMENTS

In this part, we apply different classifiers(shallow and deep

models) on ASCCD corpus to evaluate their performance on

the task of tone recognition. Firstly, we evaluate the perfor-

mance of two kinds of state-of-the-art shallow models—one-

hidden-layer mlp and SVM on this task. Secondly, we use

DNNs based on sigmoid units, DNNs based on ReLU units

and DMNs to recognise tones.

A. Experiments setup

As stated in Section II, there are 10 speakers in the corpus.

Each speaker read about 77 sections. For every speaker, we

randomly select 50 sections as the training set, 10 sections

as the developing set to tune the model parameter and the

remaining sections as the testing set. The ratio between the

size of training, developing and testing set at the sentence

level is roughly 5:1:2. The training, developing and training

set has 50237, 9820 and 16628 syllables correspondingly.

The distribution of tones in the training, developing and

testing set is listed in Table II.

TABLE II

THE DISTRIBUTION OF TONES IN THE TRAINING, DEVELOPING AND

TESTING SET

tone label total n 1 2 3 4

training set 53241 5312 10045 12055 8853 16976

developing set 9820 984 1890 2714 1532 3211

testing set 16628 1620 3077 3817 2675 5439

B. Experiments Results and analysis

1) The shallow models: We first use two state-of-the-art

shallow models—one-hidden-layer MLP and SVM to do tone

recognition. For MLP, all the weights in the model is initised

by an guassian distribution N(0, 0.1) and the biases is set to

zero. The dimension of the input layer is the same as that of

the feature vector and the output layer has 5 units which are
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Fig. 2. Tone classification results vary according to the number of the
nodes in hidden layer in one-hidden-layer MLP

correspond to the five different tones. For the hidden layer,

we try different number of hidden units. Figure 2 shows the

results of tone recognition with different number of hidden

units.

From this figure, we can see when the number of hidden

units increased from 50 to 250, the recognition performance

gets better. This is because the capacity of MLP is limited

when the dimension of hidden layer is small and the model

can not efficiently model the training data. We get the

best results—74.19% when the number of hidden nodes is

250. When the dimension of hidden layer is larger than

250, the accuracy of tone recognition gets worse slowly as

the dimension increases. It can be explained as when the

dimension of hidden layer is larger than 250, the capacity of

MLP is enough for the training data. When the dimension

increases further, the training data is not enough for the

model and the model is underfitting.

We then use support vector machine (SVM) to recognise

the tones. We use the LIBSVM [17] to train RBF kernel

SVMs. After grid search for the parameter C and gamma,

we get the best results when C is set to 32 and gamma

is set to 0.125. The best model produces the recognition

accuracy 74.75% which is slightly better than best result of

one-hidden-layer MLP.

2) The deep models: In this section, we compare the

performance of different deep neural networks on tone

recognition tasks. We apply deep neural networks based

on sigmoid units, rectified linear units and maxout units to

recognize tones in Mandarin. To analysis the influence of

different non-linear activation units, we use the same network

architecture for all the deep models. For all deep models, the

dimension of the input layer is the same as the dimension of

input feature vector, the hidden layers have the same number

of hidden units and the output layer has five output units.

Considering the dimension of the input layers, the count of

the training data and the performance of one-hidden-layer

MLP, we vary the number of hidden layers from 2 to 4 and

the dimension of hidden layers from 100 to 300 to get the

best network architecture for this tasks.

For deep neural networks based on sigmoid units, we first

pretrain Deep Belief Networks with different non-linear units

[1,2] and use GPU to accelerate SGD. Since the inputs are

real-valued, the first layer is pretrained as a Gaussian RBM.

The weights of the first layer are sampled from a Gaussian

Distribution N (0,0.01) and the visual biases are initialized

1156



to zero. The pretraining is done using SGD. The SGD uses

minibatches of 128 frames. We use momentum to speed up

learning. Momentum starts at 0.5 and increases linearly to

0.9 over 20 epochs. A learning rate of 0.01 on the average

gradient is used and an L2 weight decay of 0.0002 is used.

The model is trained for 80 epochs.

All subsequent layers are trained as binary RBMs. A

learning rate of 0.08 is used. The visible bias of each unit

was initialized to log(p/(1-p)) where p is the mean activation

of that unit in the dataset. All other hyper-parameters are the

same as those used in the first layer. Each layer is pretrained

for 40 epochs. The pretrained DBN is used to initialize the

weights in the deep neural network.

For deep neural networks based on rectified linear units

and DMNs, the weights are sampled form Uniform distribu-

tion U(-0.1, 0.1) and the biases are set to zero. It has been

reported dropout training can improve the performance of

the deep models when the models are prune to overfitting.

Therefore, for all the three kinds of deep models we use

dropout training to get the final models. In our experiments,

we get the best tone accuracy for all the deep models when

the dropout rate is set to be 0.2.

We present the recognition performance of all the deep

models with different structures in Table III. We use DNN-

sigmoid, DNN-ReLU and DMN represent deep neural net-

works using sigmoid, rectified linear and maxout function as

their activation function. To compare with shallow models

conveniently, we also list the accuracy of MLP and SVM at

the bottom of the Table.

TABLE III

TONE ACCURACY OF DEEP MODELS USING DIFFERENT STRUCTURES

AND DIFFERENT NON-LINEAR UNITS. a× b IN THE COLUMN OF

CONFIGURATIONS MEANS A DEEP MODEL WITH a HIDDEN LAYERS AND

EVERY LAYER HAS b UNITS.

tone models configurations developing set testing set

DNN-sigmoid

2x200 73.52 71.63
2x250 77.17 74.57
3x150 79.01 76.91
3x200 78.95 76.74
4x100 78.03 75.97
4x150 77.65 75.24

DNN-ReLU

2x200 73.79 71.76
2x250 77.87 74.93
3x150 79.24 77.05
3x200 79.03 76.91
4x100 78.42 76.19
4x150 77.62 75.17

DMN

2x200 74.15 72.17
2x250 78.09 75.69
3x150 80.18 78.21
3x200 79.95 78.02
4x100 77.87 75.88
4x150 77.42 75.37

MLP 1x250 76.03 74.19

SVM - 76.68 74.75

From Table III, we can see all the deep models achieve

the best performance with three hidden layers which contains

150 hidden units in each layer. We can conclude that all the

deep models improve the performance of tone recognition

significantly comparing with the results in Table II. Among

the deep models, DMNs achieves the best performance. We

think there are two reasons for the deep models achiev-

ing better results. Firstly, they can extract a more robust

high-level feature through multiple non-linear hidden layers.

Secondly, the deep models can fuse the multiple serially-

concatenated features more efficiently than shallow models.

To prove the above two reasons, we analysis the influence

of pitch, duration and energy related features on Mandarin

tone recognition. Table IV shows the results.

TABLE IV

THE INFLUENCE OF PITCH, DURATION AND ENERGY RELATED FEATURE

ON MANDARIN TONE RECOGNITION

tone models Mask related features developing set testing set

SVM
Pitch 72.95 71.63

Duration 74.13 73.01
Energy 73.76 72.64

no mask 76.68 74.75

DMN
Pitch 75.74 73.72

Duration 77.79 75.91
Energy 77.36 75.53

no mask 80.18 78.21

From Table IV, we can find that: 1) for each kind of

features, deep models can achieve better performance which

can prove the first reason. 2) when fuse all three kinds

of features, deep models produce much better results than

shallow models which proves they can fuse the features than

the shallow model.

Among the deep models, DMNs achieve better results

than others. We think that it is because maxout units can

be interpreted as making a piecewise linear approximation

to an arbitrary convex function which is more powerful than

recitified linear units. Compared to the other two deep net-

works, deep maxout networks learn not just the relationship

between hidden units but also the activation function of each

hidden unit. Therefore, they can learn better representation

based on the input features and produce better performance

when the training data is limited and imbalanced.

VI. CONCLUSION AND DISCUSSION

In this paper, we apply deep neural networks with different

kinds of activation function to tone recognition for Mandarin

and compare these deep models with shallow models such as

one-hidden-layer MLP, SVM. Our experiment results show

that deep models improve the performance of tone recog-

nition significantly because they can fuse different kinds of

features more efficiently and extract more robust high-level

features through multiple non-linear hidden layers. Further-

more, deep maxout models achieve the best performance

among deep models because their advantage of preventing

over-fitting when the training data is limited and imbalanced.

In the future, we plan to use deep neural networks to

fuse spectral features(MFCC, PLP) and acoustic prosodic

features to improve the accuracy of Mandarin automatic

speech recognition.
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