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Abstract— Survival data is common in medical applications.
The challenge in applying predictive data-analytic methods to
survival data is in the treatment of censored observations, since
the survival times for these observations are unknown. This
paper presents formalization of the analysis of survival data
as a binary classification problem. For this binary classification
setting, we propose a strategy for encoding censored data,
leading to the SVM+/LUPI formulations. Further, we present
empirical comparison of the new method and the classical Cox
modeling approach for predictive modeling of survival data.
These comparisons suggest that for data sets with large amount
of censored data, the proposed method consistently yields better
predictive performance than classical statistical modeling.

I. INTRODUCTION

A
significant proportion of the medical data is a collection

of time-to-event observations. Classical examples are

the time from birth to cancer diagnosis, from disease onset

to death, and from entry to a study to relapse. All these

times are generally known as the survival time, even when

the endpoint is something different from death. Methods for

survival analysis developed in classical statistics have been

used to model such data. Survival analysis focuses on the time

elapsed from an initiating event to an event, or endpoint, of

interest [1]. The models of classical survival analysis describe

the occurrence of the event by means of survival curves and

hazard rates and analyze the dependence (of this event) on

covariates by means of regression [1]. One of the most popular

survival curve estimation is the Cox modeling approach based

on the proportional hazards model.

Most statistical methods aim to build a model that relates

explanatory variables and the occurrences of the event. The

field of machine learning is also targeting the same or similar

goals. Learning is the process of estimating an unknown

dependency between system’s inputs and its output, based on

a limited number of observations [2]. However, the machine

learning techniques have not been widely used for survival

analysis for two major reasons:

1) First, the survival time is not necessarily observed in all

samples. For example, patients might not experience the

occurrence of event (death or relapse) during the study,

or they were lost to follow-up. Hence, the survival time

is incomplete and only known “up-to-a-point.” This is

termed censoring in biostatistics, which is different from

the notion of “missing data” in machine learning.
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2) The second reason is methodological. Machine learning

techniques are usually developed and applied under

predictive setting, where the main goal is the prediction

accuracy for future (or test) samples. In contrast, classi-

cal statistical methods aim at estimating the true prob-

abilistic model of the available data. So the prediction

accuracy is just one of the several performance indices.

The methodological assumption is that if an estimated

model is “correct,” then it should yield good predictions.

Therefore, practitioners applying statistical methods of-

ten do not clearly differentiate between training (model

estimation) and prediction (test) stages.

There have been many attempts to apply machine learning

methods for modeling the survival data. Next we briefly

comment on several studies applying Support Vector Machine

(SVM) technology to survival data [3]–[5]. Most of these

efforts formalize the problem under the regression setting.

Specifically, the SVM regression was used to estimate a

model that predicts the survival time. However, formalization

using regression setting is intrinsically more difficult than

classification. Further, practitioners generally use the modeling

outputs as a reference and they are usually concerned with

the status of a patient at a given time, such as six-month after

surgery or two-year post-transplant.

Survival data sets represent a typical example of noisy

high-dimensional biomedical data that describes complex phe-

nomenon. Successful data-analytic modeling of such data

sets requires development and/or creative application of new

methodological approaches which represent an advance from

simpler application of existing statistical or machine learning

tools.

Most statistical and machine learning methods for modeling

high-dimensional data focus on improvements to existing in-

ductive methods (i.e., Linear discriminant analysis, multi-layer

perceptron neural networks, SVM) that try to incorporate a

priori knowledge about the good models (i.e., via specially de-

signed kernels for SVM methods). Similarly, statistical meth-

ods focus on selecting a small number of informative inputs

and their nonlinear combinations (selected by model building

via a sequential process of progressive model refinement [6]).

These approaches, however, are fundamentally constrained by

the inductive learning setting itself. In contrast, non-standard

learning methodologies focus on the most appropriate direct

formulation of the learning problem. It can be argued that most

recent advances in statistical learning (i.e., transduction, semi-

supervised learning, multi-task learning, etc.) reflect improved

understanding of the learning problem setting [2], [7], [8].
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This paper assumes a predictive setting, which is appropriate

for many applications, and aims to develop new data-analytic

methodology for predictive modeling of survival data. Under

this predictive setting, the survival time is known for training

data, but it is not available during the prediction (or testing)

stage. Thus, modifications are required for applying existing

machine learning approaches to survival data analysis. In this

paper, we propose using a special classification formulation

that addresses the issues of incomplete information in the

survival time. Instead of predicting the survival time, we try

to estimate a model that predicts a subject’s status at a time

point of interest.

This paper is organized as follows. Section II introduces

necessary backgrounds on machine learning (LUPI) and on

survival data analysis. Section III describes the proposed

LUPI-based approach for survival analysis. The computational

implementation of SVM+/LUPI is outlined in Section IV.

Empirical comparisons for several synthetic and real-life data

sets are presented in Section V and VI. Finally, the conclusions

and discussion are given in Section VII.

II. BACKGROUND

A. SVM+/LUPI

Learning Using Privileged Information (LUPI) [7], [9] is

a general methodology for utilizing additional (privileged)

information about training data (often available in our data-rich

world). This information cannot be utilized by most standard

supervised learning methods developed in statistics and ma-

chine learning, all of which assume standard inductive learning

setting. Effective utilization of this privileged information

during training often results in improved generalization [9].

Under the LUPI setting, the training data are a set of triplets

(xi,x
∗

i
, yi), i = 1, . . . , n (1)

where xi ∈ R
d, x∗

i
∈ R

k, and yi ∈ {−1,+1}. The (x, y)
is the ‘usual’ labeled training data and (x∗) denotes the

additional privileged information available only for training

data. This additional privileged information has two common

properties:

• it is available only for training samples, and not known

for test samples;

• it has an informative value for estimating a predictive

model ŷ = f(x).

These properties suggest another useful interpretation of the

privileged information: it can be viewed as additional feedback

from an expert teacher, provided during learning [7]. This

feedback, or privileged information, is provided in a new fea-

ture space x
∗. In order to be useful, this privileged information

should be relevant to errors made by a predictive model in the

input (or decision) space x.

According to Vapnik-Chervonenkis theory (VC theory), this

new LUPI setting implements Structural Risk Minimization

(SRM) approach via the construction of a new SRM struc-

ture on the training set. This task may appear similar to

the development of new structures for non-standard learning

formulations, where the new structures incorporate additional

constraints, such as a large margin for test samples for trans-

duction, or a large number of contradictions for Universum

SVM [2], [7], [8]. The difference is that in earlier non-standard

SVM-based formulations the appropriate structures have been

defined in the same feature space (x-space). In contrast, under

LUPI setting, additional privileged information is specified in a

different feature space, but this information is related to errors

in the input feature space. Recently, a new technology called

SVM+ has been developed for learning under LUPI setting [9].

This approach performs learning in two different spaces, as

shown in Figure 1:

• Decision space Z (via the mapping Φ(x) : x 7→ z), where

the decision rule ŷ = f(z) needs to be estimated. This is

the same feature space as used in standard SVM;

• Correcting space Z

∗ (via the mapping Φ∗(x) : x 7→

z
∗), which reflects the privileged information about the

training data. This information is encoded in the form of

additional constraints on the training errors (e.g., slack

variables) in the decision space.

ξ

Decision space Correcting space

correcting
function

decision
function

X X∗

training
data

ξ2

ξ1

mapping mapping

ξ1

ξ2

Fig. 1. SVM+ maps the training data into the decision space and the
correcting space. Slack variables in the decision space are represented by
the correcting function in the correcting space.

The decision and correcting spaces can use different kernels.

The final performance of SVM+ models depends on the quality

of the privileged information. Technically, the SVM+ approach

estimates a decision function (w·z)+b by using the correcting

function ξ(z∗) = (w∗

·z
∗)+b∗ ≥ 0 as an additional constraint

on the training errors (or slack variables) in the decision space.

The SVM+ classifier is estimated from the training data in (1)

by solving the following optimization problem:

minimize
1

2
‖w‖

2 +
γ

2
‖w

∗

‖

2 + C

n
∑

i=1

ξi

subject to ξ � 0
yi((w · zi) + b) ≥ 1− ξi, i = 1, . . . , n
ξi = (w∗

· z
∗

i
) + b∗, i = 1, . . . , n

(2)

with w ∈ R
d, b ∈ R, w∗

∈ R
k, and b∗ ∈ R as the variables.

The symbol � denotes componentwise inequality.

Privileged information x
∗ often appears in modern complex

clinical data sets. This may be a patient’s medical history after
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diagnosis or medical procedure. Clearly, this information is

available in historical databases, but it cannot be included in

the predictive model which use only patient’s characteristics

x known at the time when diagnosis/medical procedure is

performed.

B. Survival Data Analysis

This section provides general background description of

survival data analysis and its terminology. The survival data (or

failure time data) are obtained by observing individuals from

a certain initial time to either the occurrence of a predefined

event or the end of the study. The predefined event is often

the failure of a subject or the relapse of a disease. The major

difference between survival data and other types of numerical

data is the time to the event occurring is not necessarily

observed in all individuals [1].

A common feature of these data sets is the possibility of cen-

sored observations. Censored data arise when an individual’s

life length is known to occur only during a certain period of

time. Possible censoring schemes are right censoring, when all

that is known is that the individual is still alive at a given time,

and left censoring when all that is known is that the individual

has experienced the event of interest prior to the start of the

study, or interval censoring, where the only information is that

the event occurs within some intervals. In this paper, we only

consider the right censoring scheme.

The graphical representation of the survival data for a

hypothetical study with six subjects is shown in Figure 2. In

this study, subject 2 and 6 experienced the event of interest

prior to the end of the study and they are called the exact

observations. On the contrary, no events occur to subject 1,

3, and 5 before the end of the study. These subjects, who

might experience the event after the end of the study, are only

known to be alive at the end of the study. Subject 4 was

included in the study for some time but further observation

cannot be obtained. The data for subject 1, 3, 4, and 5 are

called censored (right-censored) observations. Thus, for the

censored observations, it is known that the survival time is

greater than a certain value, but it is not known by how much.

U5

δ5 = 0

Study time (t)
U4, U6

δ6 = 1

δ4 = 0

δ3 = 0

δ2 = 1

δ1 = 0

Subject

1

2

3

4

5

6

0 U2

Fig. 2. Example of survival data in a study-time scale. The exact observations
are indicated by solid dots, and the censored observations by hollow dots.

Let T denote the event time, such as death or lifetime;

C denote the censoring time, e.g., the end of study or loss

to follow-up. The T ’s are assumed to be independent and

identically distributed with probability density function ϕ(t)
and survival function S(t). For right censoring scheme, we

only know Ti > Ci with observed Ci. Then the survival

data can be represented by pairs of random variables (Ui, δi),
i = 1, . . . , n. The δi indicates whether the observed survival

time Ui corresponds to an event (δi = 1) or is censored

(δi = 0). The Ui is equal to Ti if the lifetime or event is

observed, and to Ci if it is censored. Mathematically, Ui and

δi are defined as

Ui = min(Ti, Ci), (3)

δi = I(Ti ≤ Ci) =

{

0, for censored observation,

1, for exact observation.
(4)

In Figure 2, subject 4 and 6 have the same observed survival

time (U4 = U6), but their censoring indicators are different

(δ4 = 0, δ6 = 1). Hence, in the survival analysis, we are given

a set of data, (xi, Ui, δi), i = 1, . . . , n, where xi ∈ R
d, Ui ∈

R+ and δi ∈ {0, 1}. The symbol R+ denotes non-negative

real numbers. In contrast, under supervised learning setting,

we are given a set of training data, (xi, yi), i = 1, . . . , n,

where xi ∈ R
d and yi ∈ R. The target values yi’s can be real-

valued such as in standard regression, or binary class labels

in classification.

Classical statistical approach for modeling survival data

aims at estimating the survival function S(t), which is the

probability that the time of death is greater than a certain

time t, or Pr(T > t). More generally, the goal is to esti-

mate S(t | x), or survival function conditioned on subject’s

characteristics, denoted as feature vector x. Assuming that the

probabilistic model S(t | x) is known, or can be accurately es-

timated from the available data, this model provides complete

statistical characterization of the data. In particular, it can be

used for prediction and for explanation (i.e., identifying input

features that are strongly associated with an outcome, such as

death).

III. PREDICTIVE MODELING OF SURVIVAL DATA VIA

LUPI

In many applications, the goal is to estimate (or predict)

survival at a certain pre-specified time point τ . Such time

point, for example, could be the survival of cancer patients

two years after initial diagnosis, or the survival status of

patients one year after the bone marrow transplant procedure.

Generally, τ can be about half of the maximum observed

survival time. Next we describe a possible formalization of

this problem under predictive setting, leading to a binary

classification formulation.

Given the training survival data, (xi, Ui, δi, yi), i =
1, . . . , n, where xi ∈ R

d, Ui ∈ R+, δi ∈ {0, 1}, and

yi ∈ {−1,+1}, estimate a classification model f(x) that

predicts a subject’s status at a pre-specified time τ based on

the input (or covariates) x. In the survival data, the status of

subject i at time τ is a binary class label through the following

encoding:

yi =

{

+1, if Ui < τ,

−1, if Ui ≥ τ.
(5)
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where Ui is the observed survival time and δi is the corre-

sponding event indicator. Note that Ui and δi are only available

for training, not for prediction (or testing stage). So the chal-

lenge of predictive modeling is to develop novel classification

formulations that incorporate the time information (Ui) and

uncertain nature of the censored data.

In the hypothetical study shown in Figure 3, suppose a

subject’s status is given by (5), then there is no ambiguity in

the statuses of subject 2 and 6. Likewise, the survival status of

subject 5 is known, even though the observation is censored.

However, the survival statuses of subjects 1, 3, and 4 are

indeterminate since the observed survival times are shorter

than τ .

U5

Study time (t)
U4, U6

δ6 = 1, y6 = +1

δ4 = 0, y4 = +1, p4 = 1− U4/τ

δ3 = 0, y3 = +1, p3 = 1− U3/τ

δ2 = 1, y2 = −1

δ1 = 0, y1 = +1, p1 = 1− U1/τ

Subject

1

2

3

4

5

6

0

δ5 = 0, y5 = −1, p5 = 1

U2

τ

Fig. 3. Example of survival data under the predictive problem setting. The
goal is to find a model f(x) that predicts the subjects’ statuses at time τ .

There are two simplistic ways to handle the censored data

into standard classification formulation:

• Treat the censoring time as the actual event time, i.e.,

replace Ti with Ci. This approach underestimates the

actual event time because Ti > Ci.

• Discard the censored data and estimate a binary classifier

using only exact observations. This approach is used

in empirical comparisons presented later in Section V

and VI (under the name standard SVM, or sSVM). It may

yield sub-optimal models, as we ignore the information

available in censored data.

This paper proposes a different strategy for incorporating

censored data which leads to the SVM+/LUPI classifier. We

assign a certainty measure pi to reflect and quantify the

uncertain nature of the censored data. One simple rule is to set

the certainty of a subject being alive/dead at time τ inversely

proportional to the (known) survival time, as indicated in

Figure 3. That is, pi = (τ − Ui)/τ = 1− Ui/τ .

The idea is that if Ui is small, it is more likely subject i will

not survive at time τ . Or, subject i is dead at time τ with high

certainty. On the other hand, if Ui is very close to τ , subject i

will be alive/dead at time τ with low certainty. Therefore, the

survival data (xi, Ui, δi, yi), i = 1, . . . , n, can be translated

into (xi, τ − Ui, pi, yi), i = 1, . . . , n. Further, the censoring

information (available/known for training data, but not for test

data) can be regarded as the privileged information under the

LUPI paradigm (2), as follows:

The available survival data (xi, τ −Ui, pi, yi) can be repre-

sented as (xi,x
∗

i
, yi), where x

∗

i
= (τ−Ui, pi) is the privileged

information. Then the problem of survival analysis can be

formalized and modeled using the SVM+/LUPI paradigm.

IV. COMPUTATIONAL IMPLEMENTATION OF LUPI

LUPI model selection is very difficult due to the fact that the

kernelized version of SVM+ binary classifier has four tuning

parameters. Hence, the computationally efficient solution of

LUPI optimization becomes critical.

The process of training of standard SVM (or SVM+) in-

volves solving a large Quadratic Programming (QP) problem.

The computational complexity of solving the QP problem

in SVM training grows as O(n3), where n is the sample

size [10]. To overcome these computational problems, many

existing SVM implementations use Platt’s Sequential Minimal

Optimization (SMO) for training [11]. SMO is a fast iterative

algorithm that breaks large QP problem into many QP sub-

problems of the smallest possible size (with only two vari-

ables), which can be solved analytically. This approach was

implemented in the LIBSVM package (for standard SVM) and

made this package popular in the machine learning community.

Recently, a generalized SMO was developed for SVM+ [12].

However, this implementation is proprietary and not available

in public domain.

Our initial implementations of SVM+ used a general-

purpose convex optimization package CVX [13]. However,

the scalability is an issue of using CVX as the solver of

the QP problem. It takes more than 20 minutes to find the

solution of the QP problem when the training size exceeds

1000 samples. Thus, current model selection strategies become

impractical and infeasible. Notably, most recent academic

papers seem to use general-purpose optimization for their

LUPI implementations, as they show empirical comparisons

only for small training sets (about 200 to 400 samples), and

they do not address/describe the challenging issues of model

selection. A typical quote from [14]: “On the data set of this

size (a few thousand) we found it infeasible to run experiments

using SVM+.”

We opted to implement SVM+ using the quadprog package

in Matlab Optimization Toolbox. The quadprog package was

designed specifically for solving the QP problems, rather than

general convex optimization problems. Our implementation

involves the selection of the optimization option and also the

stopping criterion (tolerance) optimally tuned for our LUPI

models. Our experiments suggest that the quadprog imple-

mentation of SVM+ is capable of handling training data sets

of size 1K-5K samples. That is, solving SVM+ optimization

problem (for 1K-5K training samples) takes 2-12 seconds on

a typical PC.

V. EMPIRICAL COMPARISONS FOR SYNTHETIC DATA

The empirical comparisons between the classical Cox re-

gression and the proposed LUPI-based approach for modeling

survival data are presented in this section. In these compar-

isons, the Cox modeling approach based on the proportional
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hazards model is used under the predictive setting as follows.

Once a survival function S(t | x) is estimated (from training

data), it is used for prediction via simple thresholding rule:

yi =

{

+1, if S(t | xi) < r,

−1, if S(t | xi) ≥ r,
(6)

where the threshold value r reflects the misclassification costs

given a priori. All comparisons presented in Sections V and VI

assume equal misclassification costs. So the threshold level is

set to r = 0.5. Our implementation of the LUPI-based survival

analysis model involves additional simplifications:

• For LUPI, the non-linearity is modeled only in the cor-

recting space [15]. That is, in all experiments the decision

space uses linear parametrization, and the correcting

space is implemented via non-linear (RBF) kernels.

• For the standard SVM (sSVM), the survival times and

event indicators are ignored. Both linear and non-linear

mappings are investigated.

Consequently, sSVM with RBF kernel has two tuning param-

eters, C and σ (RBF width parameter), whereas LUPI has

three tuning parameters, C, γ, and σ. Furthermore, sSVM with

linear kernel has one tuning parameter (C). In contrast, there

is no tunable parameter in the Cox modeling approach.

Empirical comparisons for the synthetic data are designed to

understand relative advantages and limitations of SVM-based

methods for modeling the survival data sets with various sta-

tistical characteristics, such as the number of training samples,

the noise in the observed survival times, and the proportion of

censoring. First, we consider the synthetic data set generated

as follows [16]:

• Set the number of input features d to 30.

• Generate x ∈ R
d with each element xi being a random

number uniformly distributed within [−1, 1].
• For the coefficient vector

β = [1, 1, 2, 3, 3, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0,

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

generate the event time Ti via exponential distribution

Exp((β · x) + 2). The Gaussian noise ν ∼ N (0, 0.2) is

also added to the event time Ti. Generate the censoring

time Ci via exponential distribution Exp(λ).
• The survival time Ui and event indicator δi are obtained

according to (3) and (4). The rate of the exponential dis-

tribution, λ, is used to control the proportion of censoring

in the training set.

• Assign class label to each data vector by the rule in (5).

The time of interest, τ , is set to the median value among

the survival times, so that the prior probability for each

class is about the same.

• Generate 400 samples for training, 400 for validation, and

2000 for testing.

This data set conforms to the probabilistic assumptions (i.e.,

exponential distribution) underlying the classical modeling

approach. So the Cox modeling approach is expected to be

very competitive for the synthetic data set. The following

experimental procedure was used in all experiments:

• Estimate the classifier using the training data.

• Find optimal tuning parameters for each method using

the validation data. For the Cox modeling approach, the

validation data are not used.

• Estimate the test error of the final model using the test

data.

Further, the experiment is performed ten times with different

random realizations of the training, validation, and test data.

In this experiment, the average proportion of the censored

observation is 16.7% (or about 67 observations in the training

set are censored). The test errors for ten trials are shown in

Table I. The average test errors in percentage (along with

standard deviations) for the Cox model, sSVM with linear

kernel, sSVM with RBF kernel, and LUPI are 27.9±1.5,

24.8±1.2, 27.9±1.0, and 23.8±1.3, respectively.

The LUPI achieves the lowest test error among the methods

in eight trials. Comparing the sSVM method with different

kernels, it is not surprising to find that sSVM with linear kernel

performs better than that with RBF kernel. Because our syn-

thetic data is generated from a nearly linear model and there

is intrinsic linearity in the data, methods with linear kernel

are expected to perform better than those with RBF kernel.

The Cox model has the highest test error in all trials. The

results indicate that LUPI method yields performance similar

or superior to classical Cox models, even though this synthetic

data set is generated using exponential distributions (for which

the Cox method is known to be statistically optimal).

A. Number of Training Samples

To investigate the effect of training sample size on the test

errors, the training sample size is reduced to 250 and 100. The

validation sample sizes are changed accordingly. The results

are reported in Table II and III.

For 250 training samples, the average test errors for the

Cox model, sSVM with linear kernel, sSVM with RBF kernel,

and LUPI are 28.5±2.1, 27.6±1.7, 31.1±1.7, and 27.6±2.8,

respectively. The LUPI has the best performance in six trials,

although the average test errors for LUPI and sSVM with

linear kernel are roughly the same. Further, the performance

gap between the Cox model and LUPI (or sSVM with linear

kernel) is closing when the size of the training data is reduced.

This observation is more evident when the sample size is

reduced to 100. For 100 training samples, the sSVM with

linear kernel has the lowest test error in four trials, and the

Cox model has the best performance in three. However, LUPI

gives the lowest test error in one trial only.

This can be explained by the fact that simpler model would

have better generalization performance with small training

sample size. Moreover, based on our problem setting described

in Section III, the class labels (y) already carry the survival

time information partially. That is why sSVM with linear

kernel can achieve better performance with training sample

size 100, even without the knowledge of the survival time.
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TABLE I

THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 400 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10

Cox 26.9 27.9 28.7 27.1 30.6 28.6 25.1 28.0 26.8 29.1

sSVM linear 23.6 23.8 24.6 23.7 26.9 24.7 23.4 26.1 25.0 26.0

sSVM rbf 27.9 28.0 27.6 27.4 27.5 29.4 26.9 29.4 26.3 28.2

LUPI 23.4 22.4 26.4 24.5 25.0 23.1 22.7 23.2 22.5 24.6

TABLE II

THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 250 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10

Cox 27.0 27.6 25.8 31.3 29.6 29.4 27.4 26.9 32.4 27.3

sSVM linear 25.5 26.7 25.3 26.5 29.1 28.7 28.0 27.6 30.6 27.4

sSVM rbf 28.7 31.3 29.0 32.0 31.2 34.7 30.9 30.8 30.4 31.8

LUPI 32.0 23.5 27.0 26.8 28.7 27.7 26.0 25.0 27.0 32.5

TABLE III

THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 100 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10

Cox 31.6 31.8 32.5 32.1 32.1 36.5 30.8 31.4 32.5 30.4

sSVM linear 31.4 31.3 35.6 27.6 33.3 32.8 31.4 29.8 32.6 30.9

sSVM rbf 35.4 35.0 35.4 33.4 33.8 35.0 34.1 33.1 36.1 30.3

LUPI 32.8 36.1 35.2 26.9 30.5 36.8 37.1 30.9 36.2 31.5

Table IV summarizes the relative performance of the four

methods, as a function of sample size. The LUPI outperforms

all other methods when the training sample size is larger

than 250. Nonetheless, the Cox model is more competitive for

moderate training sample size (100), with which gives similar

performance as the sSVM with linear kernel.

TABLE IV

TEST ERRORS AS A FUNCTION OF TRAINING SAMPLE SIZE (≤ 400).

Training size 100 250 400

Censoring 15.2% 16.9% 16.7%

Cox 32.2 ± 1.7 28.5 ± 2.1 27.9 ± 1.5
sSVM linear 31.7 ± 2.1 27.6 ± 1.7 24.8 ± 1.2
sSVM rbf 34.1 ± 1.6 31.1 ± 1.7 27.9 ± 1.0
LUPI 33.4 ± 3.4 27.6 ± 2.8 23.8 ± 1.3

TABLE V

TEST ERRORS AS A FUNCTION OF TRAINING SAMPLE SIZE (≥ 750).

Training size 750 1000 1200

Censoring 16.5% 16.2% 15.6%

Cox 27.7 ± 1.0 27.9 ± 0.5 26.9 ± 0.5
sSVM linear 24.0 ± 1.2 23.5 ± 0.7 22.6 ± 0.6
sSVM rbf 26.7 ± 1.0 25.4 ± 0.8 24.6 ± 1.0
LUPI 23.7 ± 2.1 22.7 ± 0.7 21.9 ± 0.7

To study the effectiveness of the LUPI method for large

training size, we increase the training and validation sample

size to 750, 1000, and 1200. In addition, the test sample size

is set to 5000. The test errors are summarized in Table V. As

expected, with the increasing size of training samples, the test

errors of all methods are reduced, and the relative advantage

of LUPI is more noticeable. This shows that mapping the

privileged information into correcting space helps to estimate

a better classifier.

B. Noise Level in the Survival Time

To examine the effect of noise level in the survival time on

the test errors, noise with different variances are added to the

survival time. The noise variance ranges from 0 to 0.5 and

the training and validation sample sizes are set to 250. The

proportion of censored observations is kept around 16%. The

test errors of the four methods are summarized in Table VI as

a function of noise levels.

TABLE VI

TEST ERRORS AS A FUNCTION OF NOISE LEVELS.

Noise level 0 0.1 0.25 0.5

Censoring 15.3% 16.0% 16.7% 19.3%

Cox 10.9 ± 0.7 23.0 ± 2.1 30.7 ± 1.9 34.8 ± 1.7
sSVM linear 13.8 ± 1.5 21.7 ± 3.0 28.9 ± 2.0 34.3 ± 1.9
sSVM rbf 16.5 ± 1.2 24.0 ± 2.6 30.9 ± 2.3 35.7 ± 3.1
LUPI 14.8 ± 1.9 22.1 ± 2.7 26.7 ± 1.7 32.1 ± 1.9

It is evident that the test errors are reduced in all methods

when the noise variance is decreased. When there is no noise in

the survival time, the data are generated from a distribution that

follows exactly the Cox modeling assumption. It is expected

that the Cox model achieves the lowest test error under the

zero-noise scenario. However, the increasing of noise level has

much larger negative effect in the Cox modeling approach. The
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test error is increased from 11% to 35% when the noise level

is raised from 0 to 0.5. Meanwhile, for the same changes in

the noise level, the test error of LUPI is raised from 15% to

32%.

Apart from the zero-noise scenario, the sSVM with linear

kernel achieves the lowest average test error when the noise

variance is 0.1. The LUPI, however, has the best performance

when the noise level is higher than 0.25. It can be concluded

that the SVM-based methods are more suitable for noisy

data or data deviated much more from the Cox modeling

assumption.

C. Proportion of Censoring

We also adjust the proportion of censoring in the training

data to investigate the effect of censoring on the test errors. The

percentage of censored observations in the training data varies

from 6% to 45% in our experiment. The noise variance is set

to 0.2 and the training and validation sample sizes are kept at

250. The experiment results are summarized in Table VII.

TABLE VII

TEST ERRORS AS A FUNCTION OF CENSORING RATES.

Censoring 6.2% 16.6% 30.6% 45.4%

Cox 27.4 ± 1.3 28.8 ± 1.2 33.0 ± 1.9 41.2 ± 1.5
sSVM linear 25.8 ± 2.4 26.8 ± 2.6 31.9 ± 1.7 39.2 ± 1.3
sSVM rbf 27.4 ± 1.8 28.4 ± 2.5 33.7 ± 1.6 41.6 ± 1.9
LUPI 27.0 ± 1.2 25.7 ± 1.9 30.6 ± 1.6 37.8 ± 2.5

When about 6% of the training data are censored, the sSVM

with linear kernel gives the lowest test error. A low censoring

rate means that most of the observed survival times are exact.

Through our class label encoding scheme, most of training

samples can be associated with well-defined class labels and

the survival time information can be completely embedded in

the class membership. Thus, the sSVM with linear kernel is

expected to perform better than the LUPI since the parameter

tuning (model selection) is easier for the sSVM.

On the contrary, if a large portion of the observations

are censored (about 16% or more), the LUPI outperforms

all other methods. With more censored observations in the

training set, more observed survival times are obtained by the

non-linear operator in (3). Hence, there exists non-linearity

within the survival time information, and methods with non-

linear parametrization (kernel) are expected to achieve better

performances.

VI. REAL-LIFE DATA SETS

This section describes empirical comparisons using three

real-life data sets from the Survival package in R [17]. For

all comparisons, the common decision space for SVM+/LUPI

uses the linear kernel while the correction space uses the

RBF kernel. For the sSVM method, both linear and the RBF

kernels are investigated. In all experiments, the time of interest

τ was set to the median of the observed survival times.

Our experiments for the three medical data sets follow the

procedure [2], [15]:

• Use five-fold cross-validation to estimate the test errors.

• Within each training fold, the parameter tuning (model

selection) is performed through a five-fold resampling.

Our experimental set-up uses double resampling proce-

dure [2]. One level of resampling is used for estimating the

test error of the learning method, and the second level is

for tuning the model parameters. Since there is no well-

defined class labels for the censored observations with Ui < τ ,

the test errors are reported based on samples with definite

labels, i.e., exact observations and censored observations with

Ui ≥ τ . Further, model parameters are selected based on the

performance with those samples linked to well-defined labels.

The Veteran data set is from the Veterans’ Administration

Lung Cancer Study which is a randomized trial of two

treatment regimens for lung cancer [17]. In the Veteran data

set, there are 137 instances (observations) and each instance

has 10 attributes. Less than 7% of the instances are censored.

Among the nine censored instances, one has the observed

survival time less than the time of interest. In other words,

only one instance is associated with the uncertain class label

in the Veteran data set.

The Lung data set studied the survival and usual daily

activities in patients with advanced lung cancer by the North

Central Cancer Treatment Group (NCCTG) [17]. There are

167 instances in this data set, and each instance has 8

attributes. About 28% of the instances are censored, and 21

censored instances are linked to uncertain class labels.

The PBC data set is from the Mayo Clinic trial in primary

biliary cirrhosis (PBC) of the liver conducted between 1974

and 1984 [17]. The PBC data set contains 258 instances

and each instance has 22 attributes. More than half of the

instances are censored, and 54 censored instances do not have

the definite class labels.

The descriptions of the data sets are summarized in Ta-

ble VIII. The number of censored observation within each

data is listed in the row of ‘δ = 0’. The row of ‘Censored %’

indicates the proportions of censored observations in the data

sets. The ‘Uncertain %’ row shows the percentage of data with

uncertain class labels. Table VIII also shows the test errors

from different methods applied to the three data sets.

TABLE VIII

SUMMARY OF THE Survival DATA SETS AND THE EXPERIMENT RESULTS.

Data set Veteran Lung PBC

Size 137 167 258
Attributes 10 8 22
δ = 0 9 47 147
Censored % 6.57 28.14 56.98
Uncertain % 0.7 12.6 20.9

Cox 23.4 ± 4.6 43.3 ± 5.6 34.3 ± 7.1
sSVM linear 26.1 ± 7.3 40.8 ± 8.2 32.2 ± 6.4
sSVM rbf 29.9 ± 4.9 37.7 ± 7.4 33.0 ± 4.9
LUPI 30.4 ± 4.5 38.3 ± 9.9 25.3 ± 10.6

These comparisons suggest that SVM-based modeling

achieves lower test error than the Cox model in two data sets

that have significant amount of censored/uncertain data. These

results also show large variability of estimated test errors, due

to partitioning of the available data into five (training, test)
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folds. This variability is reflected in large standard deviations

(of test error rates).

Another reason for variability of the SVM-based model

estimates is due to its model selection via resampling. Notably,

standard deviations of error rates for LUPI shown in Table VIII

are generally higher than standard deviations for the Cox

model (which has no tunable parameters). This underscores

the importance of robust model selection strategies for the

SVM-based approaches. Further, the LUPI approach can easily

model the non-linearity in the data, even though our compar-

isons use linear parametrization in the decision space, in order

to make fair comparisons with the Cox regression.

We observe the effect of censoring rate on the generalization

performance from these results. For the Veteran data set that

has very small amount of censored/uncertain data, the Cox

model gives the lowest test error. However, LUPI shows its

advantage when the proportion of censoring is increased. This

is especially true for the PBC data set, within which more

than half instances are censored. Since the high censoring rate

brings some level of non-linearity to the privileged informa-

tion, LUPI performs better.

VII. CONCLUSIONS AND DISCUSSION

This paper proposes predictive modeling of survival data as

a binary classification problem. We apply the SVM+ formula-

tion to solve the problem. The SVM+ approach incorporate

the information about survival time to estimate an SVM

classifier. We have illustrated the advantages and limitations

of these modeling approaches using several synthetic and real-

life data sets. We also improved the scalability of the SVM+

implementation by using the quadprog as the QP solver.

This implementation is capable of handling 1K-5K training

samples. Likewise, it solves the SVM+ optimization problem

within reasonable time so that the model selection strategies

are feasible.

Advanced SVM-based methods appear very effective when

the proportion of censoring in the training data is large,

or the observed survival time does not follow the classical

probabilistic assumptions, e.g., the exponential distribution [1],

[16]. With more training data available, LUPI can estimate a

classifier with higher accuracy. On the other hand, when the

proportion of censored data is small, then the best strategy is

to apply the standard SVM classifier.

The LUPI paradigm maps all privileged information onto

the same correcting space. However, in real-life data (such

as clinical data or survival data) different training samples

(patients) often have different privileged information. One

possible strategy for handling such heterogeneous training

data is to map different types of privileged information onto

different correcting spaces. This new approach is called the

Multiple-Space Privileged Information (MSPI), an extension

of the SVM+/LUPI framework [9]. The survival data have

two different types of hidden information (due to exact obser-

vations and due to censoring). Under MSPI approach, these

two types of hidden information can be modeled in two dif-

ferent correcting spaces. It has never been tested empirically;

therefore, finding strategies to map the privileged information

into multiple spaces would be the focus of our future work.

The equal misclassification cost is assumed throughout this

paper; however, realistic medical applications use unequal

costs, i.e. the costs for false-positive and false-negative are

different. We will incorporate different misclassification costs

into the SVM+/LUPI formulations. Incorporating different

costs can be easily done for standard SVM+ model following

the same approach as in standard cost-sensitive SVM [2].

However, special attention may be needed for handling cen-

sored data which is often encountered in medical prediction

applications. Further, our methodology for predictive model-

ing of survival data can be readily extended to other (non-

medical) applications, such as predicting business failure (aka

bankruptcy) or predicting marriage failure (aka divorce).
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