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Abstract— This paper details the use of a semi-supervised
approach to audio source separation. Where only a single source
model is available, the model for an unknown source must be
estimated. A mixture signal is separated through factorisation of
a feature-tensor representation, based on the modulation spec-
trogram. Harmonically related components tend to modulate
in a similar fashion, and this redundancy of patterns can be
isolated. This feature representation requires fewer parameters
than spectrally based methods and so minimises overfitting.

Following the tensor factorisation, the separated signals are
reconstructed by learning appropriate Wiener-filter spectral pa-
rameters which have been constrained by activation parameters
learned in the first stage.

Strong results were obtained for two-speaker mixtures
where source separation performance exceeded those used as
benchmarks. Specifically, the proposed semi-supervised method
outperformed both semi-supervised non-negative matrix fac-
torisation and blind non-negative modulation spectrum tensor
factorisation.

I. INTRODUCTION

S
OUND SOURCE SEPARATION is the process of de-

composing a recorded audio mixture into the original

constituent components from which it was formed. The pro-

cess has many applications, including speech enhancement

[1], noise reduction and robustness [2], musical re-mixing [3]

and improvement of quality in hearing aid applications [4].

Depending on the type of signal to be separated, numerous

techniques exist which may be well suited to the application

at hand.

Non-negative matrix factorisation (NMF) and non-negative

tensor factorisation (NTF) produce state-of-the-art blind sin-

gle source separation [5], [6], [7], [8]. In these cases, prior

knowledge about the mixture signal is not assumed. Where

more information about the mixture is available, supervised

separation approaches can be employed. Generally, the avail-

ability of a dictionary-based model for each source can

produce good separation results. As shown in [9], [10], the

established technique for supervised NMF-based separation

is to assemble a dictionary of atoms from training material,

relevant to each source, and learn a linear additive combi-

nation of these which approximate the mixture signal. The

atoms active for each source approximate the sources that

the mixture is comprised of in the magnitude spectrogram

domain.

Tom Barker and Tuomas Virtanen are with the Department of Signal Pro-
cessing, Tampere University of Technology, Finland (email: {thomas.barker,
tuomas.virtanen}@tut.fi).

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 290000 and Academy of Finland grant
number 258708

If only a model for one source is available, then semi-

supervised separation approaches can be employed [11],

[12], to provide superior performance compared to blind

separation. In this scenario, both spectral and temporal acti-

vation parameters for one of the sources must be estimated,

whilst another is modelled through existing atoms. It is quite

possible for overfitting to occur in these cases, where the non-

supervised portion of the signal which should ideally model

missing data instead models the entire mixture. Where both

sources in the mixture have similar properties, such as in

speech-speech mixtures, this problem becomes exaggerated.

Our proposed method minimises the effect of overfitting

by reducing the number of parameters required to represent

the mixture signal. Instead of operating on the power spectro-

gram, as in conventional NMF-based approaches, we utilise a

feature known as the modulation spectrogram (MS). Sources

are separated based on the co-modulation across different

frequency sub-bands, which exist in harmonic sounds [13].

It has also been shown that these modulation features are

likely one of the cues utilised in higher-level human auditory

system stream segregation [14], and are useful in representing

speech signals [15]. The MS features are separated through a

tensor factorisation model, which represents each component

as modulation spectra being activated across different sub-

bands at each time frame.

The rest of this paper is organized as follows: Section

II details the existing NMF-based sound source separation

approaches which currently exit. Section III introduces and

explains the proposed method; first detailing the modulation

spectrogram as a feature, then how this is incorporated into

a semi-supervised tensor factorisation model and finally how

the separated audio can be reconstructed from the factorised

components. Evaluation of the proposed method is given in

Section IV, and conclusions are presented in Section V.

II. BASELINE NMF-BASED SEPARATION APPROACHES

Non-negative matrix factorisation (NMF) produces state-

of-the-art single-channel source separation. It decomposes a

magnitude spectrogram matrix X of a mixture signal into a

sum of components which have a fixed magnitude spectrum

and time varying weight. The magnitude spectrogram matrix

X can then be modelled as matrix X̂, the product of spectral

atom matrix, B with their corresponding weight matrix, W

as:

X ≈ X̂ = BW. (1)

NMF’s effectiveness in the blind case is based on its ability

to isolate redundant patterns in an unsupervised manner. In
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the case of Equation (1), both B and W would be initialised

randomly, and structure of recurring elements would be

learned. In the supervised case, the component spectra are

learned from training material and only the weights, W are

estimated.

The semi-supervised case consists of modelling one of the

sources through a dictionary of spectral atoms, which remain

unchanged, and estimating the spectra of the atoms for the

unknown source(s). The mixture is therefore modelled by

the concatenation of the matrices describing the known and

unknown sources. That is,

B = [BS1
B

S2] (2)

W =

[

W
S1

W
S2

]

(3)

where superscripts S1 and S2 denote spectral basis dictionar-

ies for each source. Specifically, BS1 would be constructed

from atoms obtained from training data consisting of material

from S1 whilst B
S2 would be estimated to represent S2

while processing the mixture. Likewise, weights matrix W

is composed of the concatenation of weights for each source,

such that the mixture model becomes:

X̂ =
[

B
S1
B

S2
]

[

W
S1

W
S2

]

(4)

Matrices B
S2, WS1 and W

S2 are estimated by minimising

the Kullback-Leibler (KL) divergence (shown to be effec-

tive in audio-based NMF applications [5]) between X and

X̂ through iterative update equations which act across all

weights in W but on only the untrained bases in B
S2, as in

[11].

III. PROPOSED NTF SEPARATION METHOD

The proposed method makes use of a tensor factorisation

model which represents the mixture signal as the sum of

products in 3 dimensions, rather than 2 as in NMF. The

signal is divided into sub-bands, and recurring low-frequency

modulation patterns across bands approximate the mixture.

The 3-dimensional tensor model and the limited number of

spectral bins required to represent the modulations reduces

the number of parameters required for the model, which

in turn reduces the tendency for overfitting. The semi-

supervised approach involves learning some of the modula-

tion patterns from training material, whilst others are learned

through update equations, similarly to in established NMF-

based approaches.

A. Modulation Envelope Feature Representation

The use of the modulation spectrogram as a feature is in-

spired by the computational modelling of the human cochlea,

where vibration in this inner-ear structure is transduced to

electrically encoded signals. Spatial excitation response of

the basilar membrane is dependent upon excitation frequency,

and separate components must be sufficiently distinct in

frequency to stimulate unique areas of the membrane. This
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Fig. 2. Block diagram overview of the production of a modulation
spectrogram tensor used in factorisation.
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Fig. 3. An approximation to X the mixture tensor, X̂ is formed by the
sum of outer products between rank-one tensors and an error term. Each
rank-one tensor is a column of the component matrices G, A and T and
represent a separate component in the separation. Update equations aim to

minimise the difference between X and X̂ .

motivates the idea that similar frequencies exist within

the same auditory filter ‘channels’, and that the output of

the cochlea can be divided into frequency bands. Each

band’s output approximates the instantaneous excitation en-

ergy present in that channel. A harmonic sound spanning

many auditory channels will produce a similar modulation

pattern in all channels. This redundancy between modulation

envelope spectra does not exist in the conventional spectral

representation of mixture signals, so can not be used as

a feature when separating spectral components originating

from the same source within a mixture.

The MS based tensor used in our factorisations is produced

in the following way: First, the monaural audio signal is

filtered with a 20-band gammatone filterbank, implemented

with Slaney’s Auditory Toolbox [16]. The output of each

filterbank channel is half-wave rectified then low-pass filtered

with a single-pole recursive filter with -3dB bandwidth of

26Hz, to produce the modulation envelope (ME). The mod-

ulation spectrogram for each filterbank channel is obtained

by taking the short-time Fourier transform (STFT) of each

channel with a Hamming analysis window. The frequency

dimension of the STFT output is truncated to 150 positive

frequency bins since much of the high frequency content is

removed by filtering, resulting in no meaningful contribution

from these bins during factorisation. A 3-dimensional tensor,

X (Figure 2) is therefore produced, with dimensions of

(number of filterbank channels x size of truncated STFT x

number of observation frames) which we denote as R x N

x M .
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B. Tensor Model

Tensor X is approximated by a sum of K components.

Each component is the product of three factors, one each

from G, A and T where G
R×K contains the auditory chan-

nel dependent gains, AN×K the frequency basis functions

which models the spectral content of a modulation envelope

feature, and T
M×K is the time-varying activation of each

component (Figure 3). The approximation, X̂ , for X is given

as:

Xr,n,m ≈ X̂r,n,m =
K
∑

k=1

Gr,kAn,kTm,k (5)

The model therefore describes a component’s ME existing at

different levels across channels, being activated at particular

points in time.

This tensor representation benefits from requiring fewer

parameters than conventional NMF, making it less prone to

over-fitting. The truncation of the discrete Fourier transform

(DFT) results in our representation means that the total

number of entries in the factor matrices G, A and T is

K × (M + R + N). Conventional NMF approaches retain

the full-length DFT result (defined here as length P ), which

totals K × (M + P ) entries in the NMF representation. In

our implementations, R = 20, N = 150 and P = 513
(redundancy in the 1024 bin DFT output allows removal of

complex conjugates), so R+N < P .

C. Semi-Supervised Data Representation

In our semi-supervised application of MS-NTF, a model

for a single known speaker, S1 is learned from training ma-

terial. Model parameters describing channel-wise activations

and modulation spectra basis functions for S1 are contained

in matrices G
S1 and A

S1 respectively. Modulation spectra

and channel gain data in G
S1 and A

S1 are produced from

training material utterances. For each example, modulation

tensors are produced as in Figure 2, and each single time

frame of the modulation tensors are factorised into a single

component as presented in [6]. Each component forms a col-

umn in G
S1 and A

S1. The spectra and channel-gains of the

unknown speaker S2 are estimated through update equations

given in Section III-D, and are contained in the randomly

non-negative initialised matrices G
S2 and A

S2 (Figure 4).

Time-wise activations for both sources are contained in the

matrices T
S1 and T

S2 .

For a 2-source mixture, with K1 the number of compo-

nents approximating source 1 and K2 the number for source

2, the mixture signal X̂ can be described as the sum of

components:

X̂r,n,m =
K1
∑

k=1

G
S1

r,kA
S1

n,kT
S1

m,k +
K2
∑

k′=1

G
S2

r,k′A
S2

n,k′T
S2

m,k′ (6)

The left hand sum-of-products in Equation (6) is the ap-

proximation to source 1 (supervised) whilst the right-hand

sum-of-products approximates source 2 (unsupervised).

The matrices to be factorised can also be formed as per

the NMF examples presented in Section II thus:

Training
Utterance

Production of 3D
ME Tensor

G
S1

G
S2

X

t1 G
Factorise

A
S1

A
S2

A

Random
Non-negative
Initialisation

Fig. 4. Stylised overview of the production of channel activation and
modulations spectra data matrices G

t3 and A
t3 used in semi-supervised

separation of the mixture signal. Concatenation of matrices obtained from
training material and those randomly initialised matrices to model the
unknown source form the matrices used in tensor factorisation.

G = [GS1
G

S2] (7)

A = [AS1
A

S2] (8)

T = [TS1
T

S2] (9)

This allows writing the the model in Equation (6) using

Equation (5).

D. Factorisation Algorithm

The model parameters G, A and T are estimated by min-

imising the generalised Kullback-Leibler (KL) divergence D,

D(X‖X̂ ) =
∑

r,n,m

Xr,n,m log
Xr,n,m

X̂r,n,m

−Xr,n,m + X̂r,n,m

(10)

between X and X̂ . This divergence measure is commonly

used in non-negative tensor and matrix factorisation, [17],

producing effective performance with NMF based source

separation [5], [18].

The divergence is minimised by iteratively applying update

equations derived as in [19], [20], to G
S2, AS2, TS1 and

T
S2. The update equations use the definition of C = X/X̂ ,

element-wise. The update rule for GS2 is:

G
S2

r,k′ ← G
S2

r,k′

∑

n,m Cr,n,mA
S2

n,k′T
S2

m,k′

∑

n′,m′ A
S2

n′,k′T
S2

m′,k′

(11)

The update rule for AS2 is:

A
S2

n,k′ ← A
S2

n,k′

∑

r,m Cr,n,mG
S2

r,k′T
S2

m,k′

∑

r′,m′ G
S2

r′,k′T
S2

m′,k

(12)

The update rule for T is:

Tm,k ← Tm,k

∑

r,n Cr,n,mGr,kAn,k
∑

r′,n′ Gr′,kAn′,k

(13)

which updates weights for both estimated sources in T
S1

and T
S2, as per Equation (9). C is recalculated following
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each update of G, A or T. The equations should be applied

until convergence is reached.

E. Signal Reconstruction

Following factorisation of the mixture signal into G, A

and T through update equations, components of the mixture

signal are separated in the modulation envelope domain. The

basis functions in A exist in the (band-limited) MS domain,

but are required in the STFT domain for reconstruction.

The full-bandwidth spectral basis functions for reconstruc-

tion are therefore learned by factorisation of a component

synthesis tensor, V , using channel and temporal activations

G and T derived in the semi-supervised factorisation. V

is created by filtering the mixture signal with the auditory

filterbank described in Section III-A and taking the STFT

of each channel output. This process is conceptually like

that demonstrated in Figure 2, omitting the rectification and

filtering stage. The complex-valued STFT output is retained,

but only the magnitudes are used during factorisation. No

truncation of DFT results is performed, so V has dimensions

of R x P x M . Signal reconstruction spectral basis functions

are generated in a matrix B (dimensions: P x K) which

is estimated by minimising the Kullback-Leibler divergence

between |V| and its approximation ˆ
|V|. ˆ
|V| is calculated from

components G, B and T as:

ˆ
|V|r,p,m =

K
∑

k=1

Gr,kBp,kTm,k. (14)

B is calculated by continued application of the update rule

until convergence:

Bp,k ← Bp,k

∑

r,m Er,p,mGr,kTm,k
∑

r,m Gr,kTm,k

, (15)

where E = |V|/ ˆ
|V| and B is randomly initialised with

positive values.

Summation of all components either trained as S1 or

generated from update equations as in S2 produces the

Wiener filter which is applied to (complex-valued) V as in

[10]. The spectrograms for each source, VP×M are, then,

generated with the following operations:

V
S1

p,m =
R
∑

Vr,p,m

∑K1

k=1
Gr,kBp,kTm,k

∑K

k′=1
Gr,k′Bp,k′Tm,k′

(16)

V
S2

p,m =
R
∑

Vr,p,m

∑K2

k=1
Gr,kBp,kTm,k

∑K

k′=1
Gr,k′Bp,k′Tm,k′

(17)

which involve summation over the sub-band channels to

produce a 2-dimensional complex valued matrix of time-

frequency points in each case. Conversion back to the time-

domain is achieved by applying an inverse STFT and overlap-

add combination of the frames.

IV. EVALUATION

The performance of the proposed semi-supervised NTF

algorithm was evaluated against both semi-supervised NMF,

and blind NTF separation. One-hundred test mixtures were

produced between pairs of talkers, where one talker was

consistently present in all mixtures. The consistent talker

was used to inform the pre-learned for supervised speaker

model, S1. The separation performance across all mixtures

was evaluated using the BSS Eval Matlab toolbox [21].

A. Generation of Test and Training Material

Mixture material was produced by summing pairs of

speech utterances from the CMU Arctic speech database.

The database consists of 7 talkers, from which one formed

the ‘supervised’ model (US English, Scottish Accent) in

all cases, whilst the ‘unknown’ source was selected from

the other available speakers. 10 training utterances from

the supervised speaker were randomly selected as training

material, and were excluded from the test set. Pairs of

utterances from the test set were randomly selected, one from

the supervised speaker model and another from the other

speakers. Each pair was RMS normalised and summed to

form the test mixtures.

To produce the training data for the proposed method from

the training utterances, each was transformed to the modu-

lation spectrogram domain. Each temporal frame was fac-

torised to produce a frame spectrum and channel gains. From

the 10 training utterances, approximately 12,000 frames of

atoms were initially produced for both channel-wise gains

and spectra which were then normalised based on their

L1-norm. Each atom spectrum was concatenated with its

corresponding channel-wise gains. The concatenated frames

were k-means clustered to form 100 vector atoms using the

KL-divergence between cluster centres and observations, as

in [9]. The resulting dictionary contains a more generalised

version of the speaker model, and reduces complexity for

factorisation. The 100 vectors were then separated into

channel-gain and spectral matrices GS1 and A
S1 which were

used in factorisation.

For the semi-supervised NMF factorisation, exemplar

atoms were selected from the same training material. The

atoms were k-means clustered to produce 1,000 atoms for

the supervised model, an approach which produced stronger

source separation performance than randomly sampled dic-

tionaries in [9] and where performance does not increase

significantly with dictionary size larger than 1,000 atoms.

B. Evaluation Procedure

Each test mixture was separated using the proposed

method, and the source-distortion-ratio (SDR) metric used

to evaluate separation performance. The mean SDR over the

100 test mixtures was compared for separation methods on

trial.

The proposed semi-supervised factorisation, training and

reconstruction methods were used to separate each of the test

mixtures. The same test mixtures, with the same training

data were also separated using the semi-supervised NMF

algorithm [11], with and without sparsity constraints. Blind

NTF separation as in [6] was evaluated, where the mixture

was separated directly into 2 components, without the re-

liance on clustering, since this provided greatest separation

performance in the blind case.
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Fig. 5. Mean SDR figures for semi-supervised NTF (proposed) compared to semi-supervised NMF and blind NTF, against varying number of unknown
speaker atoms, K2.

For both NMF and NTF-based separation methods, a 1024

sample (64 ms) window with 50% overlap was used in

the analysis, as this had provided satisfactory separation in

previous experiments [10], [6]. The Wiener-filtering recon-

struction method (Equations 16, 17) was used to reconstruct

each source.

Update equations were applied for different numbers of

iterations. It has been noted in [11] that overfitting (and

hence decreased separation performance) can occur as a

greater number of iterations are applied in the NMF case.

Separation performance was evaluated after applying 50,

100, and 200 update iterations. 200 iterations was the point

where generally the cost function ceased to decrease by a

non-negligible amount with each additional iteration. In the

unsupervised NTF case, 200 iterations of updates were used.

NMF separation was trialled both with and without sparsity

constraints, and also for differing numbers of iterations. Both

semi-supervised methods were trialled with 1,2,5,10 and 20

components modelling the unknown speaker.

C. Results

The average SDR for each separated sources produced a

single separation performance figure for each test case. For

each test condition, the mean over 100 randomly generated

trials is presented in Figure 5. Only the NMF results without

sparsity constraints are shown, as these provided appreciably

better separation SDR across all test conditions than those

with sparsity constraints. Also omitted are the results for 100

iterations in both the NMF and NTF approaches, which lie

between the 50 and 200 iteration results at both extremes of

K2.

The semi-supervised MS-NTF produces improved sepa-

ration performance over blind MS-NTF separation for low

numbers of noise components, and also removes the require-

ment to classify each speaker or cluster separated compo-

nents. Better SDRs are also produced compared to semi-

supervised NMF, where the unknown talker model can easily

overfit to approximate the trained talker model. Overfitting

however also appears to occur with increasing number of

K2 atoms in the NTF case, since performance decreases

with this parameter and becomes quite poor for K2 > 5.

For higher values of K2, fewer update equation iterations

produce stronger results for both NTF and NMF approaches,

which suggests that overfitting is occuring in these cases.

V. CONCLUSIONS

We have presented a semi-supervised sound-source sep-

aration method which has been shown to be effective in

separating two-speaker mixtures. Using training material, we

were able to model a single speaker, whilst the unknown

speaker parameters where learned through update equations

applied to a tensor model. The representation of the mixture

in the modulation spectrogram domain enabled redundancy

arising from harmonic relationships across sub-bands to be

exploited in identifying and modelling parts of a mixture

arising from the same original source. Following semi-

supervised factorisation in the modulation-spectrum domain,

full bandwidth spectral models were learned for each source

using the activations learned in the modulation domain. For

test signals consisting of two speakers (one unknown), the

proposed method was shown to be able to produce greater

SDR-based separation performance than both blind-NTF and

semi-supervised NMF methods.
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