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Abstract—This paper presents a single layer recurrent network
for solving optimization problems with pseudoconvex objectives
subject to quasiconvex constraints. The penalty method using a
finite penalty parameter is applied for the design and analysis of
the neural network. The lower bounder of the penalty parameter
is given in order to guarantee the exact penalty property. It is
rigorously proved that the neural network is globally convergent
to the global optimal solution of the corresponding optimization
problem. Simulation results are included to illustrate the perfor-
mances of the proposed neural network.

I. INTRODUCTION

RECURRENT neural networks (RNNs) constitute one of
the most successful computational intelligent models.

They have achieved great successes in many engineering
applications, such as kinematic control of redundant robot
manipulators [1], nonlinear model predictive control [2], [3],
hierarchical control of interconnected dynamic systems [4] ,
compressed sensing in adaptive signal processing [5], and so
on. Particularly, since the pioneering work of Hopfield neural
networks [6], [7], RNNs have shown promises for online
optimization. Compared with traditional numerical optimiza-
tion algorithms, RNNs offer a highly computationally efficient
optimization paradigm due to the parallel and distributed
information processing.

The past three decades witnessed remarkable progress in
the area of online optimization using RNNs. For example,
a deterministic annealing neural network was proposed for
solving convex programming problems based on the simulated
annealing algorithm [8], a Lagrangian network was developed
for solving convex optimization problems with linear equality
constraints based on the Lagrangian optimality conditions
[9], the dual networks [10]–[12] were developed for solving
convex optimization problems based on the Karush-Kuhn-
Tucker optimality conditions, projection neural networks were
developed for constrained optimization problems based on the
projection method [13]–[16]. These neural networks models
can globally converge to the unique optimal solutions of
convex optimization problems.

In addition to convex optimization, RNNs have been suc-
cessfully extended to optimization problems with general con-
vex objectives. For example, [17] proposed a projection neural
network for solving pseudomonotone variational inequalities
and pseudoconvex optimization problems. [18] proposed a
recurrent neural network for solving the differentiable pseudo-
convex optimization problems with linear equality constraints.
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[19] proposed a finite-time convergent recurrent neural net-
work for constrained optimization problems with piecewise-
linear objective functions, [20] proposed a penalty-based recur-
rent neural network for solving a class of constrained optimiza-
tion problems with generalized convex objective functions.
[21] proposed a one-layer projection neural network without
any design parameter for solving nonsmooth optimization
problems with generalized convex objective functions.

Despite of the effectiveness and usefulness and the afore-
mentioned RNNs, there are still some issues worth in-depth
investigation. Specifically, previous studies mainly focused on
extending the objectives to generalized convex functions, but
they did not pay much attention on the constraints. In other
words, most existing neural network models can only deal
with convex constraints. However, many real world optimiza-
tion problems involve nonconvex constraints. It is obviously
interesting and necessary to investigate RNNs that allow the
constraint functions not necessarily to be convex.

In this paper, a single layer recurrent neural network is
proposed for optimization problems with pseudoconvex ob-
jectives and quasiconvex constraint functions. To design the
neural network, the penalty method is applied where an exact
penalty function with finite penalty parameter is constructed.
It is proved that the neural network is globally convergent to
its equilibrium point which corresponds to the global optimal
solution of the underlying optimization problem.

The remainder of this paper is organized as follows. Section
II introduces some definitions and preliminary results. Section
III discusses an exact penalty function. Section IV presented a
neural network model and analyzed its convergent properties.
Section V provides simulation results. Finally, Section VI
concludes this paper.

II. PRELIMINARIES

Consider a constrained optimization in the following form

minimize 𝑓(𝑥)
subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚, (1)

where 𝑥 ∈ 𝑅𝑛 is the decision vector; 𝑓 and 𝑔𝑖, : 𝑅𝑛 → 𝑅 (𝑖 =
1, 2, ⋅ ⋅ ⋅ ,𝑚) are continuously differentiable functions, but not
necessarily convex. 𝑓 is assumed to be radially unbounded.
The feasible region

ℱ = {𝑥 ∈ 𝑅𝑛 : 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚}
is assumed to be a nonempty set. The global solutions of the
problem (1) is defined as

𝒢 = {𝑥∗ ∈ ℱ : 𝑓(𝑥) ≥ 𝑓(𝑥∗), ∀ 𝑥 ∈ ℱ}.
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Some definitions and propositions are presented which are
needed to obtain the main results. We refer readers to [22]–
[26] for a more thorough research on these topics.

Definition 1: A differentiable function 𝑓 , defined on an
open convex set 𝒟 ⊂ 𝑅𝑛, is called pseudoconvex if

𝑥1, 𝑥2 ∈ 𝒟, 𝑓(𝑥1) > 𝑓(𝑥2)⇒ ∇𝑓(𝑥1)𝑇 (𝑥2 − 𝑥1) < 0.

Definition 2: A differentiable function 𝑓 , defined on an
open convex set 𝒟 ⊂ 𝑅𝑛, is called quasiconvex if

𝑥1, 𝑥2 ∈ 𝒟, 𝑓(𝑥1) ≥ 𝑓(𝑥2)⇒ ∇𝑓(𝑥1)𝑇 (𝑥2 − 𝑥1) ≤ 0.

Definition 3: A function 𝑓 : 𝑅𝑛 → 𝑅 satisfies the growth
condition if

lim
∣∣𝑥∣∣→+∞

𝑓(𝑥) = +∞.

Proposition 1: A function 𝑓 : 𝑅𝑛 → 𝑅 satisfies the growth
condition if and only if ∀𝛼 ∈ 𝑅, level set 𝐿(𝛼) = {𝑥 ∈ 𝑅𝑛 :
𝑓(𝑥) ≤ 𝛼} is bounded.

Proposition 2: Let 𝑓 : 𝑅𝑛 → 𝑅 be continuously differen-
tiable. Then max{0, 𝑓(𝑥)} is a regular function, it’s Clarke’s
generalized gradient as follows:

∂max{0, 𝑓(𝑥)} =
⎧
⎨

⎩

∇𝑓(𝑥), for 𝑓(𝑥) > 0;
(0, 1)∇𝑓(𝑥), for 𝑓(𝑥) = 0;
0, for 𝑓(𝑥) < 0.

Proposition 3: If 𝑓 : 𝑅𝑛 → 𝑅 is a regular at 𝑥(𝑡) and
𝑥 : 𝑅→ 𝑅𝑛 is differentiable at 𝑡 and Lipschitz near 𝑡, then

𝑑

𝑑𝑡
𝑓(𝑥(𝑡)) = ⟨𝜉, 𝑥̇(𝑡)⟩ ∀𝜉 ∈ ∂𝑓(𝑥(𝑡)).

Let 𝒜 ⊂ 𝑅𝑛, we denote the closures of 𝒜 by cl𝒜,
the internal of 𝒜 by int𝒜, the border of 𝒜 by bd𝒜, the
complement of 𝒜 by 𝒜𝑐 and the ball centered at the origin
with radius 1 by ℬ.

Throughout this paper, the following assumptions hold.
Assumption 1: The objective function 𝑓(𝑥) satisfies the

growth condition.
Assumption 2: The gradients of constraint functions
∇𝑔𝑖(𝑧), 𝑖 = 1, . . . ,𝑚, are linearly independent, where
𝑔1(𝑧) = 𝑔2(𝑧) = . . . = 𝑔𝑚(𝑧) = 0.

Assumption 3: ℱ = cl(intℱ).
III. EXACT PENALTY FUNCTION

In this section, a penalty function is defined and analyzed
based on an appropriate neighborhood of the feasible region
ℱ . Consider the following function:

𝑉 (𝑥) =

𝑚∑

𝑖=1

max{0, 𝑔𝑖(𝑥)}.

𝑉 (𝑥) is a continuous function and satisfies the growth con-
dition. By Proposition 1 the feasible region ℱ = {𝑥 ∈ 𝑅𝑛 :
𝑉 (𝑥) ≤ 0} is a compact subset. For any 𝑥 ∈ 𝑅𝑛, we define
the index sets:

𝐼0(𝑥) = {𝑖 : 𝑔𝑖(𝑥) = 0, 𝑖 ∈ 𝐼},
𝐼+(𝑥) = {𝑖 : 𝑔𝑖(𝑥) > 0, 𝑖 ∈ 𝐼},

𝐼−(𝑥) = {𝑖 : 𝑔𝑖(𝑥) < 0, 𝑖 ∈ 𝐼}.
The Clarke’s generalized gradient of 𝑉 (𝑥) as follows:

∂𝑉 (𝑥) =
∑

𝑖∈𝐼+(𝑥)

∇𝑔𝑖(𝑥) +
∑

𝑖∈𝐼0(𝑥)
[0, 1]∇𝑔𝑖(𝑥). (2)

Since 𝑉 (𝑥) is a continuous function and satisfies the growth
condition, then ∃ 𝑟 > 0 such that

𝒟 := {𝑥 ∈ 𝑅𝑛 : 𝑉 (𝑥) < 𝑟} ⊆ ℱ +𝑅ℬ.
For the problem (1), a penalty function is commonly defined
as follows:

𝐸𝜎(𝑥) = 𝑓(𝑥) +
1

𝜎
𝑉 (𝑥),

where 𝜎 > 0 is penalty parameter. The 𝐸𝜎(𝑥) is a continuous
function and satisfies the growth condition.

Consider the following problem:

min𝐸𝜎(𝑥), 𝑥 ∈ 𝒟. (3)

The Clarke’s generalized gradient of 𝐸𝜎(𝑥) as follows:

∂𝐸𝜎(𝑥) = ∇𝑓(𝑥) + 1

𝜎
∂𝑉 (𝑥).

Since 𝒟 is an open set, any local solution of problem (3),
provided it exists, is unconstrained; thus problem (3) can be
considered as an essentially unconstrained problem. The sets
of global solutions of problem (3) is denoted by 𝒢(𝜎) :

𝒢(𝜎) = {𝑥 ∈ 𝒟 : 𝐸𝜎(𝑦) ≥ 𝐸𝜎(𝑥), ∀𝑦 ∈ 𝒟}.
Definition 4: The function 𝐸𝜎(𝑥) is an exact penalty func-

tion for problem (1) with respect to the set 𝒟 if there exists
an 𝜎∗ > 0 such that for all 𝜎 ∈ (0, 𝜎∗], 𝒢(𝜎) = 𝒢.

The following lemma plays an important role in conver-
gence analysis.

Lemma 1: There exist 𝑅 > 0 and 𝑚𝑔 > 0 such that

min
𝑥∈(ℱ+𝑅ℬ)∖intℱ

dist(0, ∂𝑉 (𝑥)) ≥ 𝑚𝑔 > 0. (4)

Proof: First, we prove that ∀ 𝑥 ∈ bdℱ , 0 /∈ ∂𝑉 (𝑥).
If not, then ∃ 𝑥̃ ∈ bdℱ such that, dist(0, ∂𝑉 (𝑥̃)) = 0. Since
𝑥 → dist(0, ∂𝑉 (𝑥)) is a lower semi-continuous real-valued
function and ℱ = cl(intℱ), we can take {𝑥𝑘} ⊂ ℱ𝑐, 𝑥𝑘 → 𝑥̃
and 𝜂𝑘 ∈ ∂𝑉 (𝑥𝑘) such that lim𝑘→∞ ∣∣𝜂𝑘∣∣ = 0. There exist
𝛼𝑘𝑖 ∈ [0, 1] (𝑖 ∈ 𝐼0(𝑥𝑘)) such that

𝜂𝑘 =
∑

𝑖∈𝐼+(𝑥𝑘)

∇𝑔𝑖(𝑥𝑘) +
∑

𝑖∈𝐼0(𝑥𝑘)
𝛼𝑘𝑖∇𝑔𝑖(𝑥𝑘). (5)

Extracting a subsequence and re-indexing, we assume with
out loss of generality that, for all natural numbers 𝑘, 𝐼+(𝑥𝑘)
= 𝐼+(𝑥1), 𝐼0(𝑥𝑘) = 𝐼0(𝑥1) and lim𝑘→∞ 𝛼𝑘𝑖 = 𝛼𝑖 Taking
𝑘 →∞ in (5), then

∑

𝑖∈𝐼+(𝑥1)

∇𝑔𝑖(𝑥̃) +
∑

𝑖∈𝐼0(𝑥1)

𝛼𝑖∇𝑔𝑖(𝑥̃) = 0. (6)

Note that 𝐼+(𝑥1) ∕= ∅ and 𝑔𝑖(𝑥̃) = 0 ( 𝑖 ∈ 𝐼+(𝑥1) ∪ 𝐼0(𝑥1)),
(6) is a contradiction to Assumption 2, thus ∀ 𝑥 ∈ bdℱ , 0 /∈
∂𝑉 (𝑥).
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Next, by Proposition 4.1 in [27], there exist 𝑅 > 0 and
𝑚𝑔 > 0 such that

min
𝑥∈(ℱ+𝑅ℬ)∖intℱ

dist(0, ∂𝑉 (𝑥)) ≥ 𝑚𝑔 > 0.

The following theorem establishes a sufficient condition for
𝐸𝜎(𝑥) to be an exact penalty function.

Theorem 1: 𝐸𝜎(𝑥) is an exact penalty function for (1) with
respect to the set 𝒟.

Proof: By the compactness of cl𝒟 and the continuity of
𝐸𝜎(𝑥), for all 𝜎 > 0, 𝐸𝜎(𝑥) admits a global minimum point
on cl𝒟. We show first that there exists an 𝜎∗1 > 0 such that, for
all 𝜎 ∈ (0, 𝜎∗1 ] we have 𝒢(𝜎) ∕= ∅. Suppose that this assertion
is false. Then, for any integer 𝑘 there must exist an 𝜎1𝑘 ≤ 1/𝑘
and 𝑦(𝑘) ∈ bd𝒟 such that

𝐸𝜎1𝑘
(𝑦(𝑘)) = inf

𝑥∈cl𝒟
𝐸𝜎1𝑘(𝑥).

There exists a convergent subsequence, which we relabel
{𝑦(𝑘)} such that, lim𝑘→∞ 𝑦(𝑘) = 𝑦, and 𝑦 ∈ bd𝒟. For each
natural number 𝑘,

inf𝑥∈ℱ 𝑓(𝑥) = inf𝑥∈ℱ 𝐸𝜎1𝑘
(𝑥) ≥ inf𝑥∈cl𝒟 𝐸𝜎1𝑘

(𝑥)

= 𝐸𝜎1𝑘
(𝑦(𝑘)) = 𝑓(𝑦(𝑘)) + 1

𝜎1𝑘
𝑉 (𝑦(𝑘))

≥ inf𝑥∈cl𝒟 𝑓(𝑥) +
1
𝜎1𝑘

𝑉 (𝑦(𝑘)).
(7)

It follows from (7) that

max{𝑔𝑖(𝑦), 0} = lim𝑘→∞max{𝑔𝑖(𝑦(𝑘)), 0}
≤ lim sup𝑘→∞ 𝜎1𝑘[inf𝑥∈ℱ 𝑓(𝑥)− inf𝑥∈cl𝒟 𝑓(𝑥)] = 0.

Therefore,
𝑔𝑖(𝑦) ≤ 0, for all 𝑖 ∈ 𝐼. (8)

From (8), we have 𝑦 ∈ ℱ ⊂ 𝒟, which is a contradiction with
𝑦 ∈ bd𝒟. Therefore, there exists an 𝜎∗1 > 0 such that, for all
𝜎 ∈ (0, 𝜎∗1 ] we have 𝒢(𝜎) ∕= ∅.

Next, we will prove that there exists an 𝜎∗ > 0 (0 < 𝜎∗ ≤
𝜎∗1) such that, for all 𝜎 ∈ (0, 𝜎∗] we have 𝒢(𝜎) ⊆ 𝒢. Namely,
there exists 𝜎∗ > 0, such that if 𝜎 ∈ (0, 𝜎∗], and 𝑧 ∈ 𝒟
satisfies

𝐸𝜎(𝑧) = inf
𝑥∈𝒟

𝐸𝜎(𝑥),

then 𝑧 ∈ ℱ , and 𝑓(𝑧) = inf𝑥∈ℱ 𝑓(𝑥).
Let us assume the converse. Then there exist a sequence
{𝜎𝑘}∞𝑘=1 ⊂ (0, 𝜎∗1 ] and a sequence {𝑧(𝑘)}∞𝑖=1 ⊂ 𝒟 such that
for all natural numbers 𝑘,

𝜎𝑘 ≤ 1

𝑘
, 𝐸𝜎𝑘(𝑧

(𝑘)) = inf
𝑥∈𝒟

𝐸𝜎𝑘(𝑥), 𝑧
(𝑘) /∈ ℱ (9)

For each natural number 𝑘,

inf𝑥∈ℱ 𝑓(𝑥) = inf𝑥∈ℱ 𝐸𝜎𝑘(𝑥) ≥ inf𝑥∈𝒟 𝐸𝜎𝑘(𝑥)
= 𝐸𝜎𝑘(𝑧

(𝑘)) = 𝑓(𝑧(𝑘)) + 1
𝜎𝑘
𝑉 (𝑧(𝑘))

≤ inf𝑥∈𝒟 𝑓(𝑥) + 1
𝜎𝑘
𝑉 (𝑧(𝑘))

(10)

Extracting a subsequence and re-indexing, we may assume
without loss of generality that there exists

lim
𝑘→∞

𝑧(𝑘) = 𝑧. (11)

By (10) and (11), similar to proof of (8), we have 𝑧 ∈ ℱ .
Since 𝑧(𝑘) is a global minimizer of 𝐸𝜎𝑘(𝑥) on 𝒟, then for

each integer 𝑘 ≥ 1,

0 ∈ ∂𝐸𝜎(𝑧(𝑘)) = ∇𝑓(𝑧(𝑘)) + 1

𝜎𝑘
∂𝑉 (𝑧(𝑘)),

0 ∈ ∇𝑓(𝑧(𝑘))+
1

𝜎𝑘
[
∑

𝑖∈𝐼+(𝑧(𝑘))

∇𝑔𝑖(𝑧
(𝑘))+

∑
𝑖∈𝐼0(𝑧

(𝑘))

[0, 1]∇𝑔𝑖(𝑧
(𝑘))].

(12)
For each integer 𝑘 ≥ 1, ∃ 𝛼𝑘𝑖 ∈ [0, 1] such that

0 = 𝜎𝑘∇𝑓(𝑧(𝑘))+
∑

𝑖∈𝐼+(𝑧(𝑘))

∇𝑔𝑖(𝑧(𝑘))+
∑

𝑖∈𝐼0(𝑧(𝑘))
𝛼𝑘𝑖∇𝑔𝑖(𝑧(𝑘)).

(13)
By (9), for all integers 𝑘 ≥ 1,

𝐼+(𝑧
(𝑘)) ∕= ∅. (14)

Extracting a subsequence and re-indexing, we may assume
without loss of generality that, for all natural numbers 𝑘,
𝐼+(𝑧

(1)) = 𝐼+(𝑧
(𝑘)), 𝐼−(𝑧(1)) = 𝐼−(𝑧(𝑘)), and for each

𝑖 ∈ 𝐼0(𝑧(1)),
lim
𝑘→∞

𝛼𝑘𝑖 = 𝛼𝑖. (15)

Set 𝑘 →∞ in (13), it follows from (9), (11) and (15) that

0 =
∑

𝑖∈𝐼+(𝑧(1))

∇𝑔𝑖(𝑧) +
∑

𝑖∈𝐼0(𝑧(1))
𝛼𝑖∇𝑔𝑖(𝑧). (16)

By 𝑧 ∈ ℱ ,

𝑔𝑖(𝑧) = 0, 𝑖 ∈ 𝐼+(𝑧(1)) ∪ 𝐼0(𝑧(1)). (17)

Therefore, (16) is a contradiction with Assumption 1. The
contradiction proves that there exists 𝜎∗ > 0, such that if
𝜎 ∈ (0, 𝜎∗], then 𝒢(𝜎) ⊆ 𝒢.

Let 𝑥̃ be a global minimizer of problem (1) and 𝑥𝜎 ∈
𝒢(𝜎) (𝜎 ∈ (0, 𝜎∗]), then

𝑓(𝑥𝜎) = 𝐸𝜎(𝑥𝜎), 𝑓(𝑥̃) = 𝐸𝜎(𝑥̃). (18)

Therefore, as 𝑓(𝑥𝜎) = 𝑓(𝑥̃), (18) implies that 𝐸𝜎(𝑥̃) =
𝐸𝜎(𝑥𝜎) and this proves that 𝑥̃ is a global solution to problem
(3).

IV. NEURAL NETWORK MODEL

To solve the the optimization problem (1), a neural network
is presented based of the exact penalty property of 𝐸𝜎(𝑥) as
follows

𝑥̇(𝑡) ∈ −∂𝐸𝜎(𝑥(𝑡)), 𝑥0 ∈ 𝒟. (19)

𝑥̄ ∈ 𝒟 is said to be an equilibrium point of system (19),
if 0 ∈ −∂𝐸𝜎(𝑥̄). We denote by ℰ(𝜎) the set of equilibrium
point of (19).

Proposition 4 (see [28]): Let 𝑥̄ ∈ ℱ , 𝑥̄ ∈ ℰ(𝜎), then 𝑥̄ ∈
𝒢 if 𝑓 is a pseudoconvex function and 𝑔𝑖, 𝑖 = 1, . . . ,𝑚 are
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quasiconvex functions. Moreover, there exists a 𝜎∗ > 0, such
that for all 𝜎 ∈ (0, 𝜎∗], if 𝑥𝜎 ∈ ℰ(𝜎), then 𝑥𝜎 ∈ 𝒢.

Proposition 5: Let 𝑥∗ ∈ 𝒢, then 𝑥∗ ∈ ℰ(𝜎) for all 𝜎 > 0
such that 𝜆∗𝑖 ≤ 1/𝜎, 𝑖 ∈ 𝐼0(𝑥∗).

Since ∇𝑓(𝑥) is continuous and ∂𝑉 (𝑥) is upper semicontin-
uous with nonempty compact convex values, cl𝒟 ∖ intℱ is a
compact subset, there exist 𝐿𝑓 > 0 and 𝐿𝑉 > 0 such that, for
𝑥 ∈ cl𝒟 ∖ intℱ , ∣∣∇𝑓(𝑥)∣∣ ≤ 𝐿𝑓 and ∣∂𝑉 (𝑥)∣ = max{∣∣𝜂∣∣ :
𝜂 ∈ ∂𝑉 (𝑥)} ≤ 𝐿𝑉 .

The following corollary shows that any equilibrium point
of (19) corresponds to an optimal solution of (1) when the
penalty parameter is sufficiently small.

Corollary 1: If 𝜎∗ = 𝑚𝑔/2𝐿𝑓 and 𝜎 ∈ (0, 𝜎∗], then
ℰ(𝜎) ⊆ 𝒢.

Proof: Note that for all 𝑥 ∈ 𝒟 ∖ ℱ and 𝜎 ∈ (0, 𝜎∗],
∃ 𝜈0 ∈ ∂𝑉 (𝑥) such that

∣∂𝐸𝜎(𝑥)∣ := min{∣∣∇𝑓(𝑥) + (1/𝜎)𝜈∣∣ : 𝜈 ∈ ∂𝑉 (𝑥)}
= ∣∣∇𝑓(𝑥) + (1/𝜎)𝜈0∣∣
≥ (1/𝜎)∣∣𝜈0∣∣ − ∣∣∇𝑓(𝑥)∣∣
≥ (1/𝜎)𝑚𝑔 − 𝐿𝑓 > 0.

Therefore, if 𝑥 ∈ ℰ(𝜎), then 𝑥 ∈ 𝒢.
Theorem 2: Any state of (19) converges to an optimal

solution of Problem (1) if 𝜎∗ = 𝑚𝑔/2𝐿𝑓 , 𝜎 ∈ (0, 𝜎∗] and 𝑓(𝑥)
is a pseudoconvex function and 𝑔𝑖(𝑥), 𝑖 ∈ 𝐼 are quasiconvex
functions.

Proof: By Corollary 1, ℰ(𝜎) ⊆ ℱ .
If 𝑥(𝑡) ∈ ℰ(𝜎), then 𝑥(𝑡) reaches ℰ(𝜎) in finite time.
If 𝑥(𝑡) /∈ ℰ(𝜎), 𝑓(𝑥(𝑡)) > 𝑓(𝑥∗). Since 𝑓(𝑥) is pseudocon-

vex, then
⟨∇𝑓((𝑡)), 𝑥(𝑡)− 𝑥∗⟩ > 0. (20)

If 𝑥(𝑡) ∈ bdℱ , ∃ 𝛼𝑖 ∈ [0, 1], 𝑖 ∈ 𝐼0(𝑥(𝑡)),
𝑥̇(𝑡) = −∇𝑓(𝑥(𝑡))− (1/𝜎)

∑

𝑖∈𝐼0(𝑥(𝑡))
𝛼𝑖∇𝑔𝑖(𝑥(𝑡)), (21)

thus

(𝑑/𝑑𝑡)𝐸(𝑡, 𝑥∗) = −∣∣𝑥̇(𝑡)∣∣2 − ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥∗)⟩
−(1/𝜎)

∑

𝑖∈𝐼0(𝑥(𝑡))
𝛼𝑖⟨∇𝑔𝑖(𝑥(𝑡)), 𝑥(𝑡)− 𝑥∗⟩. (22)

Since 𝑔𝑖(𝑥) ( 𝑖 ∈ 𝐼0(𝑥(𝑡))) are quasiconvex functions and
𝑔𝑖(𝑥(𝑡)) ≥ 𝑔𝑖(𝑥∗), then

⟨∇𝑔𝑖(𝑥(𝑡)), 𝑥(𝑡)− 𝑥∗⟩ ≥ 0, 𝑖 ∈ 𝐼0(𝑥(𝑡)).
By (20 and (22), (𝑑/𝑑𝑡)𝐸(𝑡, 𝑥∗) ≤ 0.

If 𝑥(𝑡) ∈ intℱ ,
(𝑑/𝑑𝑡)𝐸(𝑡, 𝑥∗) = −∣∣𝑥̇(𝑡)∣∣2 − ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥∗)⟩. (23)

By (20) and (23) (𝑑/𝑑𝑡)𝐸(𝑡, 𝑥∗) ≤ 0.
Therefore, the state of (19) either converges to an optimal

solution of (1) in finite time or converges to an optimal solution
of (1) asymptotically.

Remark 1: Compared with existing results on recurrent
neural networks for pseudoconvex optimization, such as [29],
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Fig. 1. Transient behaviors of the proposed neural network for Example 1

the contribution of the neural network model (19) lies in
this applicability of deal with generalized convex constraint
functions. In contrast, previous models and theoretic results
are only valid for convex constraints.

V. SIMULATION RESULTS

In this section, simulation results on a numerical example
are provided to illustrate the effectiveness and efficiency of
the proposed recurrent neural network model (19).

Example 1: Consider an optimization problem as follows:

min 𝑓(𝑥) =
𝑥2
1+𝑥1+𝑥2

𝑥1+1

subject to ln(𝑥21 + 𝑥22) ≤ 0, 1
2 − 𝑥2 + 𝑥21 ≤ 0.

(24)

The objective function 𝑓 is pseudoconvex, the constraint
function 𝑔1 = ln(𝑥21 + 𝑥22) is quasiconvex, and the constraint
function 𝑔2 = 1

2 −𝑥2+𝑥21 is convex. The generalized gradient
∂𝐸𝜎 is computed as

∂𝐸𝜎(𝑥) = (
𝑥21 + 2𝑥1 − 𝑥2 + 1

(𝑥1 + 1)2
,

1

𝑥1 + 1
)𝑇 + (1/𝜎)∂𝑉 (𝑥),

where

∂𝑉 (𝑥) = ∂max{0, ln(𝑥21 + 𝑥22)}+ ∂max{0, 1
2
− 𝑥2 + 𝑥21}.

The global optimal solution of (24) is (−0.1321, 0.5175)𝑇 .
Fig. 1 illustrates the transient behaviors of the proposed neural
network from 30 random initial states. Fig. 2 shows the 2-
dimensional phase plot from 100 random initial states. The
simulation results show that the proposed neural network
always converges to the global optimization problem (24).
Moreover, the proposed neural network is capable of com-
puting the optimal solution in micro-second scale, which is
highly efficient.
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Fig. 2. Phase plot of the proposed neural network for Example 1

VI. CONCLUSION

This paper presents a single layer recurrent neural network
for optimization problems with pseudoconvex objectives and
quasiconvex inequality constraints based on an exact penalty
design. The proposed neural network is proved to be con-
vergent to the global optimal solution of the corresponding
optimization problem. Simulation results are discussed to sub-
stantiate the characteristics and effectiveness of the proposed
neural network. Future investigations are directed to general
nonconvex optimization.
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