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Abstract —A large number of practical domains, such as 
scene classification and object recognition, have involved more 
than two classes. Therefore, how to directly conduct multiclass 
classification is being an important problem. Although some 
multiclass boosting methods have been proposed to deal with the 
problem, the combinations of weak learners are confined to 
linear operation, namely weighted sum. In this paper, we present 
a novel large-margin loss function to directly design multiclass 
classifier. The resulting risk, which guarantees Bayes consistency 
and global optimization, is minimized by gradient descent or 
Newton method in a multidimensional functional space. At every 
iteration, the proposed boosting algorithm adds the best weak 
learner to the current ensemble according to the corresponding 
operation that can be sum or Hadamard product. This process 
grown in an adaptive manner can create the sum of Hadamard 
products of weak learners, leading to a sophisticated nonlinear 
combination. Extensive experiments on a number of UCI 
datasets show that the performance of our method consistently 
outperforms those of previous multiclass boosting approaches for 
classification. 

Keywords—multiclass boosting; classification; loss function; 
nonlinear combination; probabilistic outputs 

I. INTRODUCTION 
In recent years, the solutions to various problems in 

machine learning and computer vision have involved the 
design of a classifier. One reliable tool for this design is 
boosting, which is a powerful and effective technique for 
combining multiple weak learners to produce a strong 
ensemble. The weak learners are trained in sequence, and each 
one is learnt using a weighted data set where the data points are 
reweighed in the light of the performance of the previous 
learners. Thus, the next weak learner may focus more 
attentions on the data points that are misclassified. In the 
literature, a lot of boosting algorithms have been proposed to 
learn the classifier, including AdaBoost [1], LogitBoost [2], 
GradBoost [3], TaylorBoost [4] and TangentBoost [5]. Most of 
them are primarily designed for binary problems. 

However, more and more practical applications about 
multiclass classification have appeared in the daily life of 
people. Such applications contain handwriting recognition, 
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medical diagnosis, 3D object recognition and wine quality 
grading. In these cases, each data point belongs to one of 
multiple different categories. For instance, on the basis of 
physicochemical tests, the wine quality can be classified into 
“poor”, “middle” and “excellent”. Unlike the traditional binary 
boosting methods, the multiclass boosting approaches can 
effectively deal with this case. 

In general, there are two main strategies for designing mult-
iclass boosting algorithms, namely indirect and direct strategies. 
The first is to decompose the multiclass problem into several 
independent binary sub-problems which can be efficiently 
solved using binary classifiers. Popular methods in this type 
include one-versus-all and one-versus-one. In spite of their 
gains in some cases, these schemes can have several disadvant-
ages, such as imbalanced data distribute, increased complexity, 
getting an optimal joint classifier cannot be guaranteed due to 
ambiguous classification, and the scores generated by different 
classification problems are on different scales. As for the 
second strategy, a set of codewords usually plays an important 
role when multiclass weak learners such as trees are directly 
boosted. Some methods in this class require specific weak 
learners which have high probability to cause the phenomenon 
of over-fitting, or cannot guarantee a large multiclass margin. 
As a result, multiclass boosting is still worth researching. 

If the classifier which minimizes the risk associated with a 
loss function converges asymptotically to the Bayes decision 
rule, then this loss function has a property of Bayes consistency. 
Margin enforcing means penalizing data points which are 
correctly classified but near the boundary. The utility of such 
loss function can perform well on both the small and large 
datasets. Nevertheless, the weakness of weak learners can limit 
the classification performance in some complex cases. An 
effective solution is to combine weak learners in a nonlinear 
rather than linear way, using at least two predefined operations 
such as sum and Hadamard product. To the best of our 
knowledge, such research has not been found for multiclass 
boosting classification in the previous papers. 

In this paper, the classification problem on which we focus 
is directly addressed by multiclass boosting. We present a new 
loss function which has two main properties, namely Bayes 
consistency and margin enforcing. A concept framework for 
the design of multiclass boosting algorithm, which learns more 
sophisticated combinations of multiclass weak learners, is 
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introduced. This concept framework is generalized from binary 
to multiclass boosting by Hadamard product operation. When 
the risk is minimized in a multidimensional functional space, 
an optimization strategy that may be gradient descent or 
Newton method is considered to choose the best weak learner. 
The resulting boosting algorithm can create a final classifier 
which learns the sum of Hadamard products of weak learners. 
In particular, the two operations, sum and Hadamard product, 
can be selected in an adaptive way. Experimental results on 
several UCI datasets show that the proposed algorithm 
performs better than the previous boosting algorithms for 
multiclass classification. 

As will be detailed in Section II, the existing boosting 
approaches for multiclass classification usually focus on a 
linear combination of weak learners, which may be insufficient 
to produce an accurate classifier. However, our method 
considers more complex classifier structure. In summary, the 
major contribution of this paper is divided into the following 
two parts. 

• A new loss function for multiclass boosting is proposed, 
which gives rise to a convex risk. As long as the 
functional space is a convex set, then the discussed 
problem becomes a convex optimization which may be 
convergent to the global optimum. 

• A corresponding algorithm based on the proposed loss 
is implemented, which also has probabilistic outputs so 
that some further applications can use them. 

The rest of this paper is organized as follows. After a 
review of related works in Section II, we present several 
preliminaries in Section III. Section IV describes our adaptive 
multiclass boosting algorithm, which can build a fairly 
complex classifier. The experimental results and analyses are 
listed in Section V. Finally, the concluding discussions are 
provided in Section VI. 

II. RELATED WORKS 
The beginning of boosting algorithm is AdaBoost [1], 

which has a gradient descent procedure for minimizing the risk 
associated with an exponential loss. In [2], LogitBoost which 
carries out Newton method is proposed to minimize the logistic 
risk. Based on Taylor series expansion of the risk, TaylorBoost 
[4] may be applied to any loss function, which results in a 
family of boosting algorithms of either first or second order. It 
is shown that GradBoost [3] and LogitBoost are the special 
cases of TaylorBoost. However, these methods are primarily 
presented for two classes, and limited because of the linear 
combination of weak learners. 

Recently, many efforts [6]–[9] have been devoted to create 
new combinations of weak learners. The goal of [6] is to 
construct products of several decision stumps, which only 
depends on a single operation. Gated classifiers [7] having the 
ability to handle intra-class variation, are built by combining 
sets of previously selected weak learners utilizing the network 
of logical gates (and, or). The technique in [8] combines the 
binary quantized feature responses with sequential forward 
selection to design new weak learners. In [9], the boosting 
algorithms for feature extraction are derived, and grow a final 

predictor by selecting the most likely operation from a pair of 
predefined operations which could be sum and product. 
However, these approaches mainly aim at solving a binary 
classification problem. 

In parallel, a lot of efforts [10]–[16] have appeared in 
multiclass boosting. The ECOC method in [10] designs a 
coding matrix in which each row corresponds to a certain class 
and each column is used to train a binary classifier. The idea of 
ECOC is also generalized in [11], where the elements of 
coding matrix are taken from {−1, 0, +1}. The weight distribut-
ion on instances and the label weighting function are simultan-
eously manipulated in AdaBoost-M2 [1], where the goal of 
weak learner is to minimize a pseudo-loss. RUSBoost [12] 
introducing random undersampling into AdaBoost algorithm is 
a variant of the AdaBoost-M2 procedure. In AdaBoost-MH 
[13], each example is augmented with a feature that identifies a 
class, and receives a binary label depending on whether the 
example belongs to this class. However, these approaches do 
not directly boost multiclass classifier. 

SAMME [14] directly extends the AdaBoost algorithm to 
the multiclass case without reducing it to multiple binary 
problems, and is equivalent to a forward stagewise additive 
modeling algorithm that minimizes a multiclass exponential 
loss function. In [15], a general framework is created, where 
the optimal requirements on the weak learner are identified. 
However, the corresponding boosting method is not shown to 
be Bayes consistency. An optimal set of codewords and a 
margin enforcing loss for multiclass boosting are introduced in 
[16], where the related risk is only minimized by gradient 
descent. Two boosting algorithms are proposed, which are 
different in terms of the strategy used to update the predictor. 
Although these methods are directly designed for multiclass 
problem, it should be noted that the combination of multiclass 
weak learners is linear. 

III. MULTICLASS SETTING AND LOSS FUNCTION 
In this section, we present the multiclass setting and a new 

loss function for multiclass boosting. The boldface letters are 
used to denote vectors. 

A. Multiclass Setting 
Let the labeled dataset be denoted as (X, C) = {(x1 , c1), …, 

(xi , ci), …, (xN , cN)}, in which ,d
i ∈x \  {1, , }ic K∈ …  denotes 

a class label, and the data are independently and identically 
distributed samples from an unknown probability distribution. 
Usually, the objective is to learn an optimal classification rule 
F(x): X → {1, …, K} from the training data, so that a class 
label c can be assigned to a new input x. In the sense of 
minimum error rate, the optimal classifier should be Bayes 
decision rule 

 ( ) arg max ( | ).k C|XF P c k= =x x  (1) 

Due to the intractability of estimating PC|X (c | x), there is a 
difficulty to implement Bayes decision rule. One possible 
solution is to resort to boosting approach, which combines 
some weak classifiers to estimate the Bayes decision rule. 
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Note that the class labels ±1 play a significant role in a 
binary classification. Therefore, there is a need to recode the 
class label c with a multidimensional vector y. For this, a set of 
K distinct unit codewords Y = {y1, …, yK}, which are the 
vertices of a K−1 dimensional regular simplex centered at the 
origin [17], has been used in [16]. So each class label k can be 
mapped into a codeword 1k K −∈y \  that identifies the class 
label. 

Let 1( ) K −∈f x \  be a predictor, the margin of ( )f x  with 
respect to class k can be defined as in [16] 

 ( )( ), ( ), max ( ), 2,k k l
l kM ≠⎡ ⎤= < > − < >⎣ ⎦f x y f x y f x y  (2) 

where ,< ⋅ ⋅ >  denotes the standard inner product. To attain the 
probabilistic results, we may naturally implement the following 
classifier 

 ( )( ) arg max ( ), ,k

k
F Zσ= < >x f x y  (3) 

where ( ( ), )k
kZ σ= < >∑ f x y  is a normalization constant, and 

( )σ ⋅  a sigmoid function. Since the sigmoid function is monoto-
nically increasing with regard to its argument, maximizing the 
function itself is equivalent to maximizing its argument. 
Equivalently, (3) can satisfy the following expression 

 ( )( ) arg max ( ), ,k
kF M=x f x y  (4) 

as is easily verified. Therefore, F(x) can find a class which has 
the largest margin for the predictor f(x). Then we should search 
for an optimal predictor which minimizes the classification risk 

 { },
1

( ) [ , ( )] [ , ( )],
N

M X Y M M i i
i

R E L L
=

= ≈∑f y f x y f x  (5) 

where [ , ]ML ⋅ ⋅  is a multiclass loss function. In general, the 
optimal predictor is approximated as a linear combination of 
multiclass weak learners. In this case, the risk can be 
minimized by solving the optimization problem 

 ( ) min  [ ( )]

  .          ( ) ( ),
MR

s t span G
⎧⎪
⎨

∈⎪⎩

f x f x

f x
 (6) 

where 1{ ( ), , ( )}mG = g x g x…  is the set of all multiclass weak 
learners 1( ) : K

i X −→g x \ , and span(G) the functional space 
of linear combinations of ( )ig x . 

B. Loss Function 
To derive some useful properties, we rely on the following 

multiclass loss function 

 ( )
1

[ , ( )] log 1 exp ( ), .
K

k
M

i
L

=

⎡ ⎤= + − < − >⎣ ⎦∑y f x f x y y  (7) 

Firstly, as can be seen from Appendix A, the lower bound of (7) 
is log{2 2 exp[ 2 ( ( ), )]}M+ − f x yi . Owing to the monotonic 
properties of the logarithm and exponential functions, the mini-
mization of empirical risk encourages the predictors which 
have large margin for every example. Note that when K = 2, 
the loss (7) reduces to 

 ( )2[ , ( )] log 2 log 1 exp 2 ( ) ,L y f y f= + + −⎡ ⎤⎣ ⎦x xi  (8) 

which is equivalent to the logistic loss [2]. Secondly, it is 
shown in Appendix B that the objective function in (6) is 
convex. If the functional space is a convex set, then the 
optimization problem is convex, which can be effectively 
solved by numerical methods and guarantees convergence to 
the global optimum. Finally, it can be clearly seen from 
Appendix C that 

 ( )*
|arg max ( ), arg max ( | ),k k

Y Xk k
Pσ < > =f x y y x  (9) 

which implements Bayes decision rule (1). In addition, once 
the optimal predictor * ( )f x  is estimated, there has a way to 
attain the class probability, namely 

 ( )*
| ( | ) ( ), .k k

Y XP Zσ= < >y x f x y  (10) 

After t boosting iterations, we set the estimate of the 
optimal predictor to ( )tf x . Around point ( )tf x , the first and 
second order functional derivatives of the risk ( ),t

MR +f g  
along the direction of multiclass weak learner g(x), are 

 

0

1 0

1

[ ]
[ ; ]

[ , ( ) ( )]

( ),

t
t M

M

N
i t

M i i
i

N

i i
i

R
R

L

ε

ε

εδ
ε

ε
ε

=

= =

=

∂ +
=

∂

∂= +
∂

= − < >

∑

∑

f g
f g

y f x g x

g x w

 (11) 

 

2
2

2
0

2

2
1 0

2
,

1 1

[ ]
[ ; ]

[ , ( ) ( )]

( ),

t
t M

M

N
i t

M i i
i

N K
k

i i i k
i k

R
R

L

ε

ε

εδ
ε

ε
ε

λ

=

= =

= =

∂ +
=

∂

∂= +
∂

= < − >

∑

∑∑

f g
f g

y f x g x

g x y y

 (12) 
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where 

 
( )

( )1

exp ( ),
( )

1 exp ( ),

t kK
i ik

i i t k
k i i=

− < − >
= −

+ − < − >∑
f x y y

w y y
f x y y

 (13) 

 
( )
( ), 2

exp ( ),
.

1 exp ( ),

t k
i i

i k
t k

i i

λ
− < − >

=
⎡ ⎤+ − < − >⎣ ⎦

f x y y

f x y y
 (14) 

At t + 1 iteration, the direction which brings the greatest 
decrease of the risk is 

 * arg min [ ; ]t
MG

Rδ
∈

=
g

g f g  (15) 

when gradient descent is used [1][4][16], or 

 
{ }2

*
2

[ ; ]
arg max

[ ; ]

t
M

tG
M

R

R

δ
δ∈

=
g

f g
g

f g
 (16) 

when Newton method is used [2][4]. 

IV. ADAPTIVE MULTICLASS BOOSTING ALGORITHM 
In this section, a multiclass boosting algorithm that can 

learn more sophisticated combination of multiclass weak 
learners is presented in detail. 

Let the functional space, which is a nonlinear combination 
of multiclass weak learners, such as the sum of Hadamard 
products, be GΩ  

 ,1 ,( ) | ( ) ( ) ( ),  G j j m
j

G
⎧ ⎫

Ω = = ∈⎨ ⎬
⎩ ⎭

∑h x h x g x g x g:…:  (17) 

where : denotes Hadamard product. For any 1 2, G∈ Ωh h , it is 
easy to discern that 1 2+h h  still belongs to GΩ . Therefore, the 
functional space GΩ  is a convex set. It follows that the 
optimization problem 

 ( ) min  [ ( )]

  .          ( )
M

G

R

s t
⎧⎪
⎨ ∈ Ω⎪⎩

f x f x

f x
 (18) 

produces a global minimum. Specifically, the predictor after t 
iterations is assumed to be of the form 

 
1

( ) ( ),
S

t t
j

j=

=∑f x p x  (19) 

where each term is defined as 

 ,1 ,
( ) ( ) ( ),  .j

t j
j j j m

m= ∈p x g x g x:…: `  (20) 

Similar to [9], there are two types of updates at t+1 iteration, 
namely additive and Hadamard product.  In the additive case, a 
multiclass weak learner is added to the current predictor tf , 
which may be regarded as standard multiclass boosting. From 
(11) and (12), the optimal weak learner *

0g  is given by (15) or 
(16), depending on the choice of optimization strategy. Then 
the optimal step size can be obtained by 

 * *
0 0arg min ( ).t

MR
α

α α
∈

= +f g
\

 (21) 

Hence, the updated predictor has the following risk 

 0 1 * *
0 0( ) ( ).t t

M MR R α+ = +f f g  (22) 

As for the second case, each term in (19) can be updated by a 
new weak learner, such as 1( ) ( ) ( ).t t

j j
+ =p x p x g x:  Therefore, 

the updated predictor can be achieved 

 

1( ) ( ) ( ) ( )

( ) ( ) ( ).

t t t
i j

i j

t t
j j

+

≠
= +

= +

∑f x p x p x g x

Q x p x g x

:

:
 (23) 

where ( ) ( ) ( ).t t t
j j= −Q x f x p x  

Around point ( )t
jQ x , the first and second order functional 

derivatives of the risk 1( )t
MR +f  with respect to the above 

update in ( )tf x  are 

 

0

1 0

1

[ ]
[ ; , ]

[ , ( ) ( ) ( )]

( ),

t t
M j jt

M

N
i t t

M j i j i i
i

N

i i
i

R
R j

L

ε

ε

ε
δ

ε

ε
ε

=

= =

=

∂ +
=

∂

∂= +
∂

= − < >

∑

∑

Q p g
f g

y Q x p x g x

g x φ

:

: (24) 

 

2
2

2

0

2

2
1 0

2
,

1 1

[ ]
[ ; , ]

[ , ]

( ), ( ) ( )

t t
M j jt

M

N
i t t

M j j
i

N K
t k

i j i i i k
i k

R
R j

L

ε

ε

ε
δ

ε

ε
ε

θ

=

= =

= =

∂ +
=

∂

∂= +
∂

= < − >

∑

∑∑

Q p g
f g

y Q p g

g x p x y y

:

:

:

(25) 
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where 

( )
( )1

exp ( ),
( ) ( )

1 exp ( ),

t k
K j i it k

i j i i t k
k j i i=

− < − >
= −

+ − < − >
∑

Q x y y
φ p x y y

Q x y y
:  (26) 

 
( )
( ), 2

exp ( ),
.

1 exp ( ),

t k
j i i

i k
t k
j i i

θ
− < − >

=
⎡ ⎤+ − < − >⎣ ⎦

Q x y y

Q x y y
 (27) 

Using the combination of (15) or (16) with (24) and (25), we 
can obtain the best weak learner *

jg . Moreover, the optimal 
step size along this direction is 

 * *arg min ( ).t t
j M j j jR

α
α α

∈
= +Q p g

\
:  (28) 

As a result, the updated predictor has the following risk 

 1 * *( ) ( ).j t t t
M M j j j jR R α+ = +f Q p g:  (29) 

For each update strategy, this method computes the optimal 
multiclass weak learners and the corresponding risks. Then it 
chooses the update which leads to the largest decrease of the 
classification risk. This procedure is summarized in Algorithm 
1, and named as SOHP-MCBoost for brevity. 

V. EXPERIMENT 
In this section, some extensive experimental evaluations of 

the proposed multiclass boosting algorithm are described, 
which are compared with those of the existing methods for 
classification.  All the experiments are fully implemented in 
MTALAB (R2012b) which is installed on an Intel Core 2 CPU 
E7500, 2.93GHz, 2GB RAM PC. 

A. Dataset 
Two types of datasets, namely synthetic data and real data, 

are used to carry out our experiments. To get the synthetic data, 
we consider the three-class and four-class problems in a two-
dimensional space. The former problem has Gaussian classes 
of means [1, 2], [0, -1], [-2, 1] and covariances [1, 0.5; 0.5, 2], 
[1, 0.4; 0.4, 1], [2, 0.3; 0.3, 1], respectively. Similarly, for the 
latter problem, the class means are [2, 2], [-2, 2], [-2, -2], [2, -
2], and the corresponding covariances are [1, 0.8; 0.8, 2], [2, 
0.6; 0.6, 1], [1, 0.4; 0.4, 2], [2, 0.2; 0.2, 1]. In each class, 
training and test sets of 1000 examples are randomly sampled. 
Averaged results over five such independently drawn training-
test set combinations are utilized. 

The real datasets summarized in Table 1 are taken from the 
UCI machine learning repository [18]. Since no test sets are 
provided in the Glass, Seeds, Vehicle, Redwine and Yeast 
datasets, 5-fold cross-validation is used to evaluate the 
accuracy. That is to say, each dataset is randomly split into five 
folds, each of which is tested with the remaining four as 
training data. For the other datasets, the predefined training and 
test splits are used. In all case, the weak learners are decision 
trees which are built with a greedy and top-down recursive 
procedure. Since the extension of ROC curves for multiple 

Algorithm 1 Adaptive multiclass boost (SOHP-MCBoost) 
Input: Dataset (X, C), the number of classes K, a set of 
codewords Y, multiclass loss function [ , ]ML ⋅ ⋅  and the 
number of iterations T. 

Initialization: Set t = 0, S = 0 and 1( )t K −= ∈f x 0 \ . 

while t < T do 

For gradient descent, find the best additive update * *
0 0α g  

with (11), (15) and (21); For Newton method, find this 
best update with (11), (12), (16) and (21). 

Compute the updated risk 0
MR  with (22). 

for j=1 to S do 

For jth term in (19), find the best direction *
jg  by 

using (24) and (25) in (15) or (16), and the optimal 
step size *

jα  by (28). 

Compute the update risk j
MR  via (29). 

end for 

Set * arg min ,     {0, , }.j
j Mj R j S= ∈ …  

If j* = 0, calculate 1 * *
1 0 0

t
S α+

+ =p g  and S = S + 1; 
Otherwise, calculate 

* * * *

1 * *t t
j j j jα+ =p p g: . 

For *j j≠ , update 1t t
j j
+ ←p p . 

Update 1 1
1( ) ( )St t

jj
+ +

=← ∑f x p x . 

Set t = t +1. 

end while 

Output: decision rule 

( )
( )1

( ),
( ) arg max

( ),

T k

k K T k
k

F
σ

σ=

< >
=

< >∑

f x y
x

f x y
 

TABLE I.  SUMMARY OF TEN SELECTED UCI DATASETS 

Dataset #Instances #Test #Classes #Attributes 
Glass 214 5-fold 6 9 
Seeds 210 5-fold 3 7 

Vehicle 846 5-fold 4 18 
Redwine 1599 5-fold 6 11 

Yeast 1484 5-fold 10 8 
Isolet 7797 1559 26 617 

Landsat 6435 2000 6 36 
Letter 20000 4000 26 16 

Pendigit 10992 3498 10 16 
Shuttle 58000 14500 7 9 
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class classification problems is intractable, the classification 
accuracy is taken as performance measure. 

B. Experimental results 
To begin with, we evaluate different optimization strategies 

used for weak learner selection in our multiclass boosting. Fig. 
1 shows the average accuracy, which are achieved on the two 
synthetic datasets. As can be seen from this figure, the classifi-
cation performance with Newton method is not superior to that 
with gradient descent. In particular, the accuracy gap is 
obvious for four-class synthetic dataset. A viewpoint in [4] is 
that Newton method is more accurate than gradient descent for 
binary problem, but it is unclear whether such viewpoint still 
holds promise for multiclass problem. Here we provide an 
experimental supplement. Thereafter, gradient descent is used 
as the optimization strategy for selecting weak learners in the 
remaining experiments. 

The next experiment is designed to examine that the 
performance of multiclass boosting can be affected by tuning 
the depth of decision tree. In Table 2,  the average results (with 
50 iterations) on five UCI datasets are shown, and Tree(num) 
means that the depth of this decision tree is num. It can be 
clearly seen from this table that the moderate tree leads to the 
best performance in 4 of the 5 datasets. The simple tree cannot 
capture the interesting and important trends in the dataset, and 
the more complex tree can cause the severe over-fitting. 
Particularly, the phenomenon of over-fitting is visible in the 

Redwine dataset, where increasing the depth of tree results in 
lower accuracy. Henceforth, the tree whose depth is two is 
utilized as the weak learners. 

Finally, the performance of our method is compared with 
those of the existing methods in Table 3. In this table, all 
classifiers are trained with 50 iterations. The LPBoost and 
TotalBoost [19], which perform multiclass classification by 
attempting to maximize the minimal margin in the training set, 
make use of linear and quadratic programming, respectively. 
As can be seen, our proposed approach has the best accuracy 
on all datasets. For example, the gain can be improved from a 
previous best of 58.8% to 62.08% in the Letter dataset. Unlike 
GD-MCBoost, our method searches a larger space of weak 
learners, which can exploit some underlying structures from a 
dataset. Moreover, the weak learners are continually combined 
into complex combinations if and only if such combinations 
can lead to better performance. These may be the reasons 
behind the improvement. Compared with the other methods, 
our method has a Bayes consistent and large margin solution, 
which partly explains the superiority. In addition, Fig. 2 shows 
the accuracy curves for our method and GD-MCBoost on the 
Letter dataset. 

VI. CONCLUSIONS 
So far, we have acquired the optimization methods in the 

functional space for learning the final classifier, and well 
demonstrated the effectiveness of the proposed concept 
framework. Although our algorithm is a variant of some 
existing boosting algorithms, it is different in aspects of 1) 
convex optimization using a new multiclass loss function, 2) 
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Fig. 1. Average accuracy curves of our method with gradient descent and
Newton method, for three classes on the top and four classes on the bottom 

TABLE II.  THE AVERAGE CLASSIFICATION ACCURACY (%) ON 
VARIOUS DATASETS USING DIFFERENT WEAK LEARNERS FOR SOHP-

MCBOOST. BOLD NUMBER MEANS THE BEST ACCURACY 

Dataset Tree(1) Tree(2) Tree(3) 
Glass 71.51 77.08 76.63 
Seeds 90.95 92.86 89.52 

Vehicle 72.34 76.60 75.89 
Redwine 57.41 54.35 50.22 

Yeast 54.92 55.12 52.92 
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Fig. 2. Plot of the accuracy curves on the Letter dataset, for SOHP-MCBoost 
and GD-MCBoost 
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more sophisticated combinations of multiclass weak learners, 
and 3) probability distribution over classes. Experimental 
results on UCI datasets have shown that our method produces 
better classification performance. Theoretically, there are two 
special combinations in the functional space. One is only 
based on Hadamard product, which may be regarded as a 
generalization of [6] to multiclass. Suppose the computational 
cost for building each decision tree is O(μ), then the best 
computational cost of our algorithm is O(μT) when this 
extreme case occurs. The other is the combinations of pure 
addition operators, which is similar to GD-MCBoost. This 
case can result in the worst time complexity for our method, 
namely O(μT2). 

Additionally, for a specific dataset, the two operations can 
be combined in an adaptive manner, which need not predefine 
the number of operators and reduces the risk of over-fitting. 
Since the work in this paper can be regarded as a proof of 
concept to some extent, the research on real applications 
which are characterized by noise and high dimensionality is 
our ongoing work. The codes used here are completely 
independent of dataset, therefore an interesting benefit may be 
obtained by learning data-dependent codes for multiclass. 
Furthermore, we would like to explore multiclass semi-
supervised boosting learning in the future. 

APPENDIX 

A. The lower bound of multiclass loss 
From (7), one can express the multiclass loss as 

( )

( )

[ , ( )] log 2 log 1 exp ( ),
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For convenience, we omit x in f(x). In (30), if we define the 
product term as P, then 
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Substituting (2) in (31) 
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 (32) 

where arg max ,
l

lll
≠

= < >
y y

f y . Hence, we have 

 ( )[ , ] log 2 log 1 exp 2 ( , ) .ML M≥ + + −⎡ ⎤⎣ ⎦y f f y  (33) 

B. The convexity of objective funtion 
Given x, let the probability of class yk be | ( | )k

k Y XPβ = y x . 
We have 
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                                                                                          (36) 

TABLE III.  ACCURACY (%) OF MULTICLASS BOOSTING ALGORITHMS ON FIVE UCI DATASETS. BOLD NUMBER MEANS THE HIGHEST 
ACCURACY. THE ALGORITHMS ON THE FIRST FOUR ROWS ARE TRAINED USING TREES OF 4 LEAVES, AND THE REST USE DEPTH-2 DECISION TREES 

AS WEAK LEARNERS 

Algorithm Isolet Landsat Letter Pendigit Shuttle Average 
AdaBoost-M2 [1] 19.24 78.90 16.33 64.92 93.91 54.66 

LPBoost [19] 11.55 71.60 9.83 45.68 32.59 34.25 
TotalBoost [19] 30.21 73.65 22.93 76.13 74.02 55.39 
RUSBoost [12] 11.55 44.95 9.83 29.27 79.16 34.95 

AdaBoost-SAMME [14] 61.00 79.80 45.65 83.82 99.70 73.99 
AdaBoost-Cost [15] 63.69 83.95 42.00 80.53 99.55 73.94 
GD-MCBoost [16] 84.28 86.35 58.80 92.94 99.73 84.82 
SOHP-MCBoost 85.82 87.15 62.08 94.03 99.97 85.81 
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where , .k j
k j = −η y y  In [16], all the codewords are different. 

That is to say, for any k and j, , 0.k j ≠η  As a result, the 

matrices , ,[ ]T
k j k jη η are positive definite. It is easily verified that 

(36) is strictly positive definite. Therefore, the objective 
function ( | )MR f x  is strictly convex. 

C. Bayes consistency 
Using the following form 

 ( ),1 exp ( ), ,k
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j

β
β

+ < > =f x η  (37) 

from (35), we obtain 
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Therefore, if the optimum of ( | )MR f x  is * ( )f x , then (37) 
holds. It follows that 

 ( ) ( )
,( ), ( ), ( ),

                     log log ,

k j
k j

k j jβ β β

∗ ∗ ∗< >=< > − < >

= − −

f x η f x y f x y
 (39) 

and 

 ( )*
| 1 2( ), log ( | ) ,k k

Y XP c c< >= − +f x y y x  (40) 

for constants 1c  and 2c . It shows that implementing (3) is 
identical to executing Bayes decision rule (1). 
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