

Abstract—Kalman filter is an efficient way to estimate the
parameters of the value function in reinforcement learning. In
order to solve Markov Decision Process (MDP) problems in
both continuous state and action space, a new online
reinforcement learning algorithm using Kalman filter
technique, which is called Kalman filter-based actor-critic
(KAC) learning is proposed in this paper. To implement the
KAC algorithm, Cerebellar Model Articulation Controller
(CMAC) neural networks are used to approximate the value
function and the policy function respectively. Kalman filter is
used to estimate the weights of the critic network. Two
benchmark problems, namely the cart-pole balancing problem
and the acrobot swing-up problem are provided to verify the
effectiveness of the KAC approach. Experimental results
demonstrate that the proposed KAC algorithm is more efficient
than other similar algorithms.

I. INTRODUCTION
EINFORCEMENT learning (RL) is a powerful machine
learning technique to solve the optimal control problem
for a complex decision-making system. RL agent selects

a control action, observes the consequences of the action and
gets an immediate reward through interactions with the
dynamic system. The control performance is evaluated by the
expected cumulative discounted reward (namely the value
function) in the long run, and the evaluation is used to update
the control action so as to improve its performance. In most
cases, the controlled system is modeled as a Markov Decision
Process (MDP) [1], which is composed of a state set S , an
action set A , a Markovian transition probability set P , a
reward function R and a discounting factor γ . In order to
estimate the optimal policies of MDPs, a variety of value
function estimation techniques [2] have been investigated in
past decades in the RL community. Temporal Difference (TD)
methods proposed by [3][4] are preferable value function
estimation approach due to their fast convergence ability.
Moreover, many algorithms based on TD methods have been
studied to estimate the optimal value functions. Q-learning
[5], Sarsa learning [6], Actor-Critic (AC) methods [7], and
Adaptive Dynamic Programming (ADP) algorithms [8] are
normally used in RL with some common characteristics, i.e.,
the TD error.

Most of the traditional RL methods deal with discrete state
and action spaces, however, when it comes to large or
continuous state and/or action spaces in real-world

Bin Wang and Dongbin Zhao are with The State Key Laboratory of
Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China. (e-mail: bin.wang@
ia.ac.cn, dongbin.zhao@ia.ac.cn).

This work was supported in part by National Natural Science Foundation
of China under Grant Nos. 61273136 and 61034002, and Beijing Natural
Science Foundation under Grant No. 4122083, and Visiting Professorship of
Chinese Academy of Sciences.

applications, the curse of dimensionality problem is
inevitable and the control performance of the RL system
cannot be guaranteed. In order to get the optimal value and
policy functions for continuous state and/or action spaces,
different function approximation techniques have been major
focus in the research field of RL, aiming to design appropriate
function approximators with high generalization capability
and computational efficiency. Among which the most
popular one is value function approximation (VFA) [9], and
different approximation architectures such as feed-forward
neural network [10], fuzzy sets [11] and kernel methods [12]
are considered. Combined with TD approach, RL algorithms
using VFA have been widely investigated both in theory and
application in recent years [14-16]. These algorithms update
parameters of the value function with rules such as gradient
decent methods or least squares (LS) estimation. Least
squares related algorithms such as LSTD [16][17],
Kernel-based Least Squares TD (KLSTD) [18] and their
eligibility variants are superior to gradient-based methods
because they eliminate the design of step-size schedules and
make efficient use of data. However, the computation
complexity, i.e. the computation per time-step of parameter
update for LSTD methods are 3()O k , while recursive LS
(RLS) [19] or Kalman filtering techniques can reduce this to

2()O k , where k is the number of state features [16].
Kalman filter technique is our main focus in this paper. The

traditional Kalman filter can be used to approximate an
unknown function through a sequence of noisy samples,
which is viewed as a recursive stochastic algorithm. In [20],
Kalman filter is generalized to approximate the fixed point of
an operator, thus the fixed point Kalman filter (FPKF)
algorithm is used to produce approximate value functions in
RL problems. [21] generalizes the FPKF algorithm to
off-policy FPKF ()λ algorithm. [22] and [23] introduce a
novel approximation scheme which is called the Kalman
Temporal Differences (KTD) framework, and KTD-based
algorithm is provided for deterministic MDPs, while the
extended KTD (XKTD) framework is used for stochastic
MDPs. In [24] Kalman filter is used to model the weights on
the basis functions and a Kalman Filter Q-Learning (KFQL)
method is proposed to learn an effective policy for MDP with
continuous state space, and an approximate KFQL (AKFQL)
by ignoring dependence among basis functions is presented
as well to solve some benchmark problems in RL.

The above Kalman filter-based RL methods are the state of
the art in the RL community. However, all these algorithms
are about discrete action space, although some of which are
involving continuous state space. Continuous state and action
spaces MDPs are challenging problems arising in multiple
areas of artificial intelligence. This motivates our research. In

A Kalman Filter-based Actor-Critic Learning Approach
Bin Wang and Dongbin Zhao

R

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3657

this paper, an online Kalman filter-based Actor-Critic (KAC)
RL approach is proposed to solve both continuous state and
action spaces MDPs. A parametric function approximation
method, namely a neural network called Cerebellar Model
Articulation Controller (CMAC) is used to approximate both
the value function (the critic) and the policy function (the
actor). By applying Kalman filter in the critic, parameters of
the value function are updated so as to improve the evaluation
performance. Then the weights of the policy function in the
actor are updated with some prescribed rules to improve the
control performance. The critic and the actor work alternately
to learn an optimal policy online. Experimental results on
some benchmark problems such as the cart-pole balancing
problem and the mountain car problem are provided to verify
the effectiveness of the KAC algorithm. Comparison studies
with conventional actor-critic algorithm in [7] and a
RLS-based actor-critic method proposed in [19] are also
investigated in this paper to show the outstanding
performance of the KAC algorithm.

The paper is structured in five parts. In section II, the
standard Kalman filter framework is introduced. The KAC
algorithm is derived and a CMAC implementation is
presented in section III. Simulation experiments are provided
in section IV. Section V draws some conclusions and future
works are addressed.

II. KALMAN FILTER: AN OVERVIEW
Kalman filter is first proposed in 1960 by Kalman [25].

Kalman filter is generally used to estimate the state of a
discrete-time controlled process. For parameter estimation
problem, the parameter vector can be modeled as a random
variable, which has the similar form as the state description of
a controlled process. Then Kalman filter can be used to
estimate the parameter vector.

The parameter vector can be stated in a state space
formulation

1

0 0 0 0 0

ˆ ˆ ,
ˆ , (0,)

ˆ , (0,1)

k k

T
k k k k k

N P

y z e e N

θ θ

θ θ ξ ξ

θ

+
⎧ =
⎪⎪ = +⎨
⎪ = +⎪⎩

 (1)

where θ̂ is the estimation of the parameter θ . y is an
unknown function to be approximated by a linear
combination of prespecified basis function z , which is
similar to the output of a controlled process. The random
variables ξ and e with Gaussian distribution are the process
and measurement noise respectively. 0θ and 0P are prior
knowledge of the parameter θ .

Then the Kalman filter equations are directly given as

1

1

ˆ ˆ ˆ(),

,
1

.
1

T
k k k k k k

k k
k T

k k k
T

k k k k
k k T

k k k

L y z
P z

L
z P z

P z z P
P P

z P z

θ θ θ+

+

⎧
⎪

= + −⎪
⎪⎪ =⎨ +⎪
⎪
⎪ = −

+⎪⎩

 (2)

where kL can be viewed as Kalman gain. Details about
Kalman filter derivation can be seen in [26].

Thus the parameters can be estimated in the above
recursive form until to the optimal value.

In next section the parameters of the value function will be
updated according to the Kalman filter equations (2), and
Kalman filter-based actor-critic RL method will be derived.

III. THE KAC LEARNING ALGORITHM
In this paper we propose a Kalman filter-based actor-critic

RL algorithm based on the conventional actor-critic (AC)
framework [1] in RL. The structure of the AC approach is
shown in Fig. 1. There are three main elements of the AC
strategy, namely the actor, the critic and the system (also
called environment). The actor approximates the optimal
policy and is used to select a control action. The critic
estimates the performance of the action by a predefined value
function, and a parametric approximation method is used to
approximate the value function. Meanwhile, Kalman
filter-based parameter estimation method is used to update
the weights of the value function. The system responds to the
action and transits to the next state from the current state.
Details about the KAC algorithm are presented as follows.

A. The Critic
The critic approximates the value function V which is

classically defined as the accumulative discounted reward
value related to the state s ,

 1
0

() k
t k t

k

V s E r s sπ
π γ

∞

+ +
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑ (3)

where tr is the reward observed at discrete time t. π is a
given policy, and the discounted factor γ satisfying
0 1γ< ≤ .

Fig. 1. The conventional actor-critic architecture.

3658

After each action selection, the critic evaluates the
performance of the action by the following TD error

 1 1() ()t t t tr V s V sδ γ+ += + − (4)
To approximate the value function in large or continuous

spaces, a classical linear function approximator is used in the
critic. The value function is approximated by

 () ()T
i t t iV s s vφ= (5)

where ()tsφ is a basis functions vector, and v is a weights
vector. i is an iteration step, similarly hereinafter.

When linear approximators are used, the linear least
squares estimation needs to be solved with the following cost
function

2 2

1
1 1

()
i i

T T T
i j j j j j

j j

J v r v v r vγφ φ φ+
= =

= + − = − Δ∑ ∑ (6)

where 1
T T T
j j jv v vφ φ γφ +Δ = − . This least squares estimation can

be computed recursively with Kalman filter. Compared with
(1), we can get the parameter update equation similar to (2)

 1 1()T
i i i i i iv v K r vφ− −= − − Δ (7)

 1

11
i i

i T
i i i

P
K

P
φ

φ φ
−

−

Δ
=

+ Δ Δ
 (8)

 1 1
1

11

T
i i i i

i i T
i i i

P P
P P

P
φ φ
φ φ

− −
−

−

Δ Δ
= −

+ Δ Δ
 (9)

Thus the critic can be implemented with a linear
approximator and the parameters can be updated by equations
(7) ~ (9).

B. The Actor
The actor is also implemented by a linear function

approximator to approximate the control policy. Input of the
actor is the current state, and the output of the actor is

 () ()T
i t t iA s s wψ= (10)

where ()tsψ is a basis function vector, and w is the weights
vector of the actor.

A noise term in with Gaussian probabilistic distribution is
added to ()i tA s as an exploration of the control policy. Then
the actual action which directly acts on the controlled system
is modified as

 ' () () (0, ())i t i t i VA s A s n tσ= + (11)
The variance of the noise is defined as [19]

()

1

2

()
1 exp ()V

t

k
t

k V s
σ =

+
 (12)

where 1k and 2k are positive regulating constants, and ()tV s
is the current value function estimation of the critic.

The actor can learn its weights through an estimation of the
policy gradient [19]

'

1
() ()

()
()

k t k t
i i t t

V

A s A s
w w s

t
αδ ψ

σ−
−

= + (13)

where α is a learning rate of the actor.

In addition, the system considered in the actor-critic
algorithms is just modeled to transit the system state and
provide a reward signal. None of the system parameters is

needed in the learning process, thus it implies that the
proposed KAC algorithm is a model-free RL approach.

Algorithm 1: The KAC algorithm
Initialization
The actor weights w , learning rate α , exploration
factor 1k and 2k ,
The critic weights v , and discount factor γ ,

0P Iβ= .
Repeat for each trial
 ()s t ← initial state of trial
 While ()s t is not the terminal state
 According to ()s t , compute ()tA s by (10),
 and determine the actual action ' ()tA s by (11)
 Take action ' ()tA s , observe reward r,
 Update the weights of the critic by (7)
 Update the actor weights according to (13)
 () (1)s t s t← +

Fig. 2. The KAC algorithm learning procedure.

The learning procedure of the KAC algorithm is shown in

Fig. 2. For a given initial state, the actor outputs an action, and
a noisy control action acts on the system to get the state
transition and the reward. The critic generates an estimation
of the value function to evaluate the control performance, and
then the critic updates its weights by (7), while the actor is
updated by (13). In this way the KAC algorithm iterates
online until the terminal state is satisfied.

C. Neural Network Implementation
A neural network implementation of the KAC algorithm is

proposed in this paper. We use a kind of feed forward neural
network which is called Cerebellar Model Articulation
Controller (CMAC) to approximate the actor and the critic,
respectively.

CMAC is proposed by Albus in 1975 [27]. As a linear
function approximator, CMAC has been widely investigated
and applied in RL. Details can be seen in [27]. Fig. 3 shows
the architecture of a CMAC neural network. The input state
space S is mapped to the association space A , and then
mapped to the output space O . The corresponding map
functions are

 1

2

⇒
⇒

f : S A
f : A O

 (14)

The first map 1f is a tile coding map, which detects each
input state and groups the receptive fields of the features into
partitions of the input state space. There are C tilings and M
partitions for each input state. For multi-input state space, the
total physical memory of the CMAC network is nM C , with
n dimension of the input. We adopt a hashing technique
presented in [1] to reduce memory requirements

 1

1

() ()
n

i

i

A s a i M −

=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑ (15)

 () () modF s A s N= (16)

3659

Fig. 3. The architecture of a CMAC neural network.

where 0 ()a i M≤ ≤ is the activated tile for the i-th state,

()F s is the physical memory location of the state s, and N is
the number of the physical memory.

Thus the second map 2f namely the output of the CMAC
network is

 () ()Tf s W F s= (17)
where W is the adjustable weights matrix. ()F s here can be
viewed as the basis function vector of the actor and the critic
approximation.

With this structure of CMAC network, the actor and the
critic can be implemented to approximate the control policy
and the value function, respectively.

IV. EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed KAC

algorithm in this paper, we implement it on two benchmark
problems in RL, which are the cart-pole balancing problem
and the acrobot swing-up problem, respectively. Furthermore,
comparison studies with conventional actor-critic algorithm
[7] as well as Fast-AHC method [19] are given to investigate
the data efficiency of the KAC approach.

A. The Cart-pole Balancing Problem
The cart-pole balancing problem [10] suggested by the

diagram in Fig. 4 depicts the task of balancing a single pole
mounted on a cart, which moves on a bounded, horizontal
track. A force F is applied to the cart to keep the pole
balanced and avoid out of the track boundaries. There are four
states for the cart-pole system, which are θ , angle of the pole
with respect to the vertical position ; θ� , angle velocity; x ,
position of the cart on the track; and x� , cart velocity.

Fig. 4. The cart-pole balancing problem.

The system dynamics of the cart-pole is described by

()

()

2

2

2

sin cos sin sgn()
=

4 cos
3

sin cos sgn()

p
c

c

c

c

g F ml x
ml

ml
m m

F ml x
x

m m

μ θ
θ θ θ θ μ

θ
θ

θ θ θ θ μ

⎧⎪⎪⎪ − + + −⎪⎪⎪⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜ −⎪ ⎟⎜⎨ ⎟⎟⎜ +⎝ ⎠⎪⎪⎪⎪⎪ + − −⎪⎪ =⎪⎪ +⎪⎩

�
� �

��

� �� �
��

(18)

The system parameters of the cart-pole are the same as [10].
The cart-pole balancing task is completed when the following
state boundary constraints are satisfied

 5 5 , 2.4 2.4m x mθ− ≤ ≤+ − ≤ ≤+D D (19)
Where the angle constraints are more severe than other
related works [10][19], which can test the outstanding
performance of the proposed KAC algorithm.

To learn an approximate optimal policy for the cart-pole
balancing problem, the CMAC configurations of the actor
and the critic neural networks need to be determined first,
which are listed in Table I.

TABLE I
CMAC PARAMETERS FOR THE ACTOR AND THE CRITIC NETWORKS

Parameters The actor network The critic network
n 4 4
C 4 4
M 7 7
N 80 30
W 1[0, ,0]N×… 1[0, ,0]N×…

In addition, other initial parameters of the KAC algorithm

are the actor network learning rate 0.5α= , exploration
factor 1 20.4, 0.5k k= = , the discount factor 0.95γ = and

0.04β = . Online learning of the KAC algorithm for the
cart-pole balancing problem begins with the state randomly
initialized between [0,0.5] . And according to Fig. 2, the
algorithm iterates until the terminal state is reached, which
satisfies (19), and then the task is completed successfully
when this has lasted 12000 time steps. The reward in this
problem is defined as

0,

()
1,

within bounds
r t

otherwise
⎧⎪⎪=⎨⎪−⎪⎩

 (20)

A successfully learning process is shown in Fig. 5. The
angle and the position variables are all within predefined
constraints. In order to investigate the Kalman filter
estimation performance, we compare the KAC algorithm
with other related methods. [19] proposed a Fast-AHC
learning approach, which is based on recursive least squares
estimation combined with actor-critic learning. Furthermore,
conventional actor-critic learning algorithm is also
implemented in this paper. The comparison configurations
are all the same as KAC algorithm. We carry out 100 runs
consisting of a maximum of 2000 consecutive trials for the
cart-pole balancing problem. The comparison results are
shown in Table II.

3660

Fig. 5. Online learning process of the cart-pole balancing problem with KAC

algorithm.

We compare the trials needed to balance the pole

successfully. It can be concluded from Table II that the
proposed KAC algorithm can complete the cart-pole
balancing task with fewer trials than other algorithms, which
demonstrates that the KAC algorithm presented in this paper
is efficient.

TABLE II
PERFORMANCE COMPARISON RESULTS WITH OTHER METHODS

Algorithms Minimal
trials

Maximal
trials

Average
trials

Success
rate

KAC 11 954 192 98%
Fast-AHC 12 709 217 98%
AC 10 1957 306 97%

B. The Acrobot Swing-up Problem
Acrobot [1] is a two-link, underactuated roughly analogous

to a gymnast swinging on a high bar, as shown in Fig. 6. Only
the second joint can exert torque. The goal of the acrobot
swing-up problem is to swing the tip above line. There are
four continuous state variables: two link angles 1θ and 2θ ,

and two angle velocities 1θ� and 2θ� . The system dynamics of
the acrobot is described as follows

2 2 1
1

1
2

2 1 1 2 1 2 1 2 2
2 2 2

2 2 2 2 1

sinc

c

d
d

d d m l l
m l I d d

θ φ
θ

τ φ θ θ φ
θ

⎧⎪ +⎪ =⎪⎪⎪⎪⎨⎪ + − −⎪⎪ =⎪⎪ + −⎪⎩

��
��

�
��

 (21)

Fig. 6. The acrobot swing-up problem.

where

()
()

() ()
()

2 2 2
1 1 1 2 1 2 1 2 2 1 2

2
2 2 2 1 2 2 2

2
1 2 1 2 2 2 2 1 2 2 1 2

1 1 1 1 1 2

2 2 2 1 2

2 cos

cos

sin 2 sin
cos 2

cos 2

c c c

c c

c c

c

c

d m l m l l l l I I

d m l l l I

m l l m l l
m l m l g

m l g

θ

θ

φ θ θ θ θ θ

θ π φ

φ θ θ π

= + + + + +

= + +

=− −

+ + − +

= + −

� � �

The parameters of the acrobot system are the same as [1].
The state variables also have bounded constraints as follows

 1 2

1 2

[,], [,],

[4 , 4], [9 ,9]

θ π π θ π π

θ π π θ π π

∈ − ∈ −

∈ − ∈ −� � (22)

The acrobot swing-up problem is accepted as successful if
1| |θ π≥ , which is the goal. Thus the reward value can be

defined as

100,

()
1,

reach the goal
r t

otherwise
⎧⎪⎪=⎨⎪−⎪⎩

 (23)

To implement the KAC algorithm, we adopt the same
configuration of the neural networks except that the number
of the physical memory of the actor network is 100, while the
number is 80 for the critic network. In addition, the learning
parameters of the KAC algorithm are 0.9γ = ,

0.2α= , 0.01β = , 1 0.4k = , 2 0.5k = .

Fig. 7. Online learning process of the acrobot swing-up problem with KAC

algorithm.

3661

TABLE III
PERFORMANCE COMPARISON RESULTS WITH OTHER METHODS

Algorithms Minimal
steps

Maximal
steps

Average
steps

Success
rate

KAC 56 290 157 99.9%
Fast-AHC 62 298 171 99.6%
AC 80 299 171 99.7%

The learning process starts from the stable equilibrium and

iterates until to the goal state. The successful online learning
process is shown in Fig. 7. For further comparison on the
acrobot swing-up problem, we investigate the algorithms
mentioned in the cart-pole balancing problem. 1000 trails
which consist of a maximum of 300 time steps are carried out
for each algorithm. We present the statistical results in Table
III. Although these three algorithms have similarly good
performance, the KAC algorithm performs better and fewer
time steps are needed to swing up the acrobot. We can
conclude that the KAC approach is remarkable in solving
these MDPs.

V. CONCLUSION
A new reinforcement learning algorithm using Kalman

filter, which is called Kalman filter-based actor critic (KAC)
learning is proposed in this paper. KAC algorithm reduces the
computation complexity and improves the sample efficiency,
which can improve the learning performance to some extent.
Kalman filter is used to estimate the parameters of the value
function efficiently, and combined with actor-critic approach,
the KAC algorithm can solve MDPs in both continuous state
and action space. It is the first time that Kalman filter is used
in RL to learn the continuous control strategy online. To
implement the KAC algorithm, CMAC neural networks are
used to approximate the value function and the policy
function. Two benchmark problems in RL community are
carried out to verify the effectiveness of the KAC approach.
Experimental results demonstrate that the proposed KAC
algorithm is more efficient than other similar algorithms.

There are many ways to extend the Kalman filter-based RL
methods with actor-critic structures. Value function used in
this paper is a state value function, which can be easily
extended to state-action value function (or Q-function) with
little modification. Furthermore, the theoretical proof
deserves to be researched in the future.

ACKNOWLEDGMENT
The authors would like to thank Dr. Xin Xu for his publicly

available simulation codes for Fast-AHC and cart-pole
balancing learning.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

Cambridge: MIT press, 1998.
[2] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement

learning and dynamic programming using function approximators.
CRC Press, 2010.

[3] R. S. Sutton, "Learning to predict by the methods of temporal
differences," Mach. Learn., vol. 3, no. 1, pp. 9-44, 1988.

[4] P. Dayan, “The convergence of TD(λ) for general λ ,” Mach. Learn.,
vol. 8, pp. 341-362, 1992.

[5] C. J. C. H. Watkins and P. Dayan, "Q-learning," Mach. Learn., vol. 8,
no. 3-4, pp. 279-292, 1992.

[6] G. A. Rummery and M. Niranjan, “On-line Q-learning using
connectionist systems,” Technical Report CUED/F-INFENG/TR166,
Engineering Department, Cambridge University, UK, 1994. Available:
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf

[7] V. R. Konda and J. Tsitsiklis, “Actor-critic algorithms,” In Advances in
Neural Information Processing Systems 12: Proceedings of the 1999
Conference, Denver, Colorado, 2000, pp. 1008–1014.

[8] J. J. Murray, C. J. Cox, G. G. Lendaris and R. Saeks, “Adaptive
dynamic programming,” IEEE Trans. Sys. Man Cybern. Part C, vol.
32, no. 2, pp. 140-152, 2002.

[9] M. Geist and O. Pietquin, "Algorithmic survey of parametric value
function approximation," IEEE Trans. Neural Netw. Learn. Syst.,
vol.24, no.6, pp.845,867, June 2013

[10] J. Si, Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp.
264-276, 2001.

[11] D. B. Zhao, Y. H. Zhu, H. B. He, “Neural and fuzzy dynamic
programming for under-actuated systems,” in Proc. 2012 IEEE Int.
Joint Conf. Neural Networks (IJCNN 2012), June 10-15, 2012, pp.
1895-1900.

[12] G. Taylor and R. Parr, "Kernelized value function approximation for
reinforcement learning," in Proc. 26th Annu. Int. Conf. Mach. Learn.,
New York, 2009, pp. 1017-1024.

[13] B. Wang, D. Zhao, C. Alippi and D. Liu, “Dual heuristic dynamic
programming for nonlinear discrete-time uncertain systems with state
delay,” Neurocomputing, 3 August 2013. Available:
http://dx.doi.org/10.1016/j.neucom.2013.06.037

[14] D. Zhao, B. Wang and D. Liu, “A supervised Actor–Critic approach for
adaptive cruise control,” Soft Comput., vol. 17, no. 11, pp. 2089-2099,
2013.

[15] Y. Zhu and D. Zhao, "Online model-free RLSPI algorithm for
nonlinear discrete-time non-affine systems." in Neural Information
Processing (ICONIP 2013), Springer Berlin Heidelberg, 2013, pp.
242-249.

[16] J. A. Boyan, “Technical update: Least-squares temporal difference
learning,” Mach. Learn., vol. 49, no. 2-3, pp. 233–246, 2002.

[17] M. G. Lagoudakis and R. Parr, "Least-squares policy iteration," J.
Mach. Learn. Res., vol. 4, pp. 1107-1149, 2003.

[18] X. Xu, D. Hu and X. Lu, "Kernel-based least squares policy iteration
for reinforcement learning," IEEE Trans. Neural Netw., vol.18, no.4,
pp. 973-992, July 2007.

[19] X. Xu, H.G. He and D.W. Hu, “Efficient reinforcement learning using
recursive least-squares methods,” J. Artif. Intell. Res., vol. 16, pp.
259-292, 2002.

[20] D. Choi and B. V. Roy, "A generalized Kalman filter for fixed point
approximation and efficient temporal-difference learning," Discret.
Event Dyn. Syst., vol. 16, no. 2, pp. 207-239, 2006.

[21] M. Geist and B. Scherrer, "Off-policy Learning with Eligibility Traces:
A Survey", J. Mach. Learn. Res., vol. 15, pp. 289-333, 2014.

[22] M. Geist, O. Pietquin and G. Fricout, "Kalman temporal differences:
the deterministic case," IEEE Symp. Adapt. Dyn. Program. Reinf.
Learn. (ADPRL '09), 2009, pp. 185-192.

[23] M. Geist and O. Pietquin, "Kalman temporal differences," J. Artif.
Intell. Res., vol. 39, no. 1, pp. 483-532, 2010.

[24] C. Tripp and R. Shachter, “Approximate Kalman filter Q-learning for
continuous state-space MDPs,” in Proc. 29th Conf. Uncertain. Artifi.
Intell., Bellevue, 2013, pp. 644-653.

[25] R. E. Kalman, "A new approach to linear filtering and prediction
problems," J. Basic Eng., vol. 82, no.1, pp. 35-45, 960.

[26] G. Welch and G. Bishop, "An introduction to the Kalman filter," 1995.
Available: http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

[27] J. S. Albus, “A new approach to manipulator control: the cerebellar
model articulation controller (CMAC).” J. Dyn. Syst. Measur. Control,
vol. 97, no. 3, pp. 220-227, 1975.

3662

