
 
 

 

  

Abstract—Kalman filter is an efficient way to estimate the 
parameters of the value function in reinforcement learning. In 
order to solve Markov Decision Process (MDP) problems in 
both continuous state and action space, a new online 
reinforcement learning algorithm using Kalman filter 
technique, which is called Kalman filter-based actor-critic 
(KAC) learning is proposed in this paper. To implement the 
KAC algorithm, Cerebellar Model Articulation Controller 
(CMAC) neural networks are used to approximate the value 
function and the policy function respectively. Kalman filter is 
used to estimate the weights of the critic network. Two 
benchmark problems, namely the cart-pole balancing problem 
and the acrobot swing-up problem are provided to verify the 
effectiveness of the KAC approach. Experimental results 
demonstrate that the proposed KAC algorithm is more efficient 
than other similar algorithms. 

I. INTRODUCTION 
EINFORCEMENT learning (RL) is a powerful machine 
learning technique to solve the optimal control problem 
for a complex decision-making system. RL agent selects 

a control action, observes the consequences of the action and 
gets an immediate reward through interactions with the 
dynamic system. The control performance is evaluated by the 
expected cumulative discounted reward (namely the value 
function) in the long run, and the evaluation is used to update 
the control action so as to improve its performance. In most 
cases, the controlled system is modeled as a Markov Decision 
Process (MDP) [1], which is composed of a state set S , an 
action set A , a Markovian transition probability set P , a 
reward function R  and a discounting factor γ . In order to 
estimate the optimal policies of MDPs, a variety of value 
function estimation techniques [2] have been investigated in 
past decades in the RL community. Temporal Difference (TD) 
methods proposed by [3][4] are preferable value function 
estimation approach due to their fast convergence ability. 
Moreover, many algorithms based on TD methods have been 
studied to estimate the optimal value functions. Q-learning 
[5], Sarsa learning [6], Actor-Critic (AC) methods [7], and 
Adaptive Dynamic Programming (ADP) algorithms [8] are 
normally used in RL with some common characteristics, i.e., 
the TD error. 

Most of the traditional RL methods deal with discrete state 
and action spaces, however, when it comes to large or 
continuous state and/or action spaces in real-world 
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applications, the curse of dimensionality problem is 
inevitable and the control performance of the RL system 
cannot be guaranteed. In order to get the optimal value and 
policy functions for continuous state and/or action spaces, 
different function approximation techniques have been major 
focus in the research field of RL, aiming to design appropriate 
function approximators with high generalization capability 
and computational efficiency. Among which the most 
popular one is value function approximation (VFA) [9], and 
different approximation architectures such as feed-forward 
neural network [10], fuzzy sets [11] and kernel methods [12] 
are considered. Combined with TD approach, RL algorithms 
using VFA have been widely investigated both in theory and 
application in recent years [14-16]. These algorithms update 
parameters of the value function with rules such as gradient 
decent methods or least squares (LS) estimation. Least 
squares related algorithms such as LSTD [16][17], 
Kernel-based Least Squares TD (KLSTD) [18] and their 
eligibility variants are superior to gradient-based methods 
because they eliminate the design of step-size schedules and 
make efficient use of data. However, the computation 
complexity, i.e. the computation per time-step of parameter 
update for LSTD methods are 3( )O k , while recursive LS 
(RLS) [19] or Kalman filtering techniques can reduce this to 

2( )O k , where k is the number of state features [16]. 
Kalman filter technique is our main focus in this paper. The 

traditional Kalman filter can be used to approximate an 
unknown function through a sequence of noisy samples, 
which is viewed as a recursive stochastic algorithm. In [20], 
Kalman filter is generalized to approximate the fixed point of 
an operator, thus the fixed point Kalman filter (FPKF) 
algorithm is used to produce approximate value functions in 
RL problems. [21] generalizes the FPKF algorithm to 
off-policy FPKF ( )λ algorithm. [22] and [23] introduce a 
novel approximation scheme which is called the Kalman 
Temporal Differences (KTD) framework, and KTD-based 
algorithm is provided for deterministic MDPs, while the 
extended KTD (XKTD) framework is used for stochastic 
MDPs. In [24] Kalman filter is used to model the weights on 
the basis functions and a Kalman Filter Q-Learning (KFQL) 
method is proposed to learn an effective policy for MDP with 
continuous state space, and an approximate KFQL (AKFQL) 
by ignoring dependence among basis functions is presented 
as well to solve some benchmark problems in RL. 

The above Kalman filter-based RL methods are the state of 
the art in the RL community. However, all these algorithms 
are about discrete action space, although some of which are 
involving continuous state space. Continuous state and action 
spaces MDPs are challenging problems arising in multiple 
areas of artificial intelligence. This motivates our research. In 
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this paper, an online Kalman filter-based Actor-Critic (KAC) 
RL approach is proposed to solve both continuous state and 
action spaces MDPs. A parametric function approximation 
method, namely a neural network called Cerebellar Model 
Articulation Controller (CMAC) is used to approximate both 
the value function (the critic) and the policy function (the 
actor). By applying Kalman filter in the critic, parameters of 
the value function are updated so as to improve the evaluation 
performance. Then the weights of the policy function in the 
actor are updated with some prescribed rules to improve the 
control performance. The critic and the actor work alternately 
to learn an optimal policy online. Experimental results on 
some benchmark problems such as the cart-pole balancing 
problem and the mountain car problem are provided to verify 
the effectiveness of the KAC algorithm. Comparison studies 
with conventional actor-critic algorithm in [7] and a 
RLS-based actor-critic method proposed in [19] are also 
investigated in this paper to show the outstanding 
performance of the KAC algorithm. 

The paper is structured in five parts. In section II, the 
standard Kalman filter framework is introduced. The KAC 
algorithm is derived and a CMAC implementation is 
presented in section III. Simulation experiments are provided 
in section IV. Section V draws some conclusions and future 
works are addressed. 

II. KALMAN FILTER: AN OVERVIEW 
Kalman filter is first proposed in 1960 by Kalman [25]. 

Kalman filter is generally used to estimate the state of a 
discrete-time controlled process. For parameter estimation 
problem, the parameter vector can be modeled as a random 
variable, which has the similar form as the state description of 
a controlled process. Then Kalman filter can be used to 
estimate the parameter vector. 

The parameter vector can be stated in a state space 
formulation 
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where θ̂  is the estimation of the parameter θ . y  is an 
unknown function to be approximated by a linear 
combination of prespecified basis function z  , which is 
similar to the output of a controlled process. The random 
variables ξ  and e  with Gaussian distribution are the process 
and measurement noise respectively. 0θ  and 0P are prior 
knowledge of the parameter θ . 

Then the Kalman filter equations are directly given as 
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where kL can be viewed as Kalman gain. Details about 
Kalman filter derivation can be seen in [26]. 

Thus the parameters can be estimated in the above 
recursive form until to the optimal value. 

In next section the parameters of the value function will be 
updated according to the Kalman filter equations (2), and 
Kalman filter-based actor-critic RL method will be derived. 

III. THE KAC LEARNING ALGORITHM 
In this paper we propose a Kalman filter-based actor-critic 

RL algorithm based on the conventional actor-critic (AC) 
framework [1] in RL. The structure of the AC approach is 
shown in Fig. 1. There are three main elements of the AC 
strategy, namely the actor, the critic and the system (also 
called environment). The actor approximates the optimal 
policy and is used to select a control action. The critic 
estimates the performance of the action by a predefined value 
function, and a parametric approximation method is used to 
approximate the value function. Meanwhile, Kalman 
filter-based parameter estimation method is used to update 
the weights of the value function. The system responds to the 
action and transits to the next state from the current state. 
Details about the KAC algorithm are presented as follows. 

A. The Critic 
The critic approximates the value function V  which is 

classically defined as the accumulative discounted reward 
value related to the state s  , 

 1
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where tr is the reward observed at discrete time t. π  is a 
given policy, and the discounted factor γ  satisfying 
0 1γ< ≤ . 

 
Fig. 1.  The conventional actor-critic architecture. 

 

3658



 
 

 

After each action selection, the critic evaluates the 
performance of the action by the following TD error 

 1 1( ) ( )t t t tr V s V sδ γ+ += + −  (4) 
To approximate the value function in large or continuous 

spaces, a classical linear function approximator is used in the 
critic. The value function is approximated by 

 ( ) ( )T
i t t iV s s vφ=  (5) 

where ( )tsφ  is a basis functions vector, and v is a weights 
vector. i is an iteration step, similarly hereinafter. 

When linear approximators are used, the linear least 
squares estimation needs to be solved with the following cost 
function 
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where 1
T T T
j j jv v vφ φ γφ +Δ = − . This least squares estimation can 

be computed recursively with Kalman filter. Compared with 
(1), we can get the parameter update equation similar to (2) 
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Thus the critic can be implemented with a linear 
approximator and the parameters can be updated by equations 
(7) ~ (9). 

B. The Actor 
The actor is also implemented by a linear function 

approximator to approximate the control policy. Input of the 
actor is the current state, and the output of the actor is 

 ( ) ( )T
i t t iA s s wψ=  (10) 

where ( )tsψ  is a basis function vector, and w  is the weights 
vector of the actor. 

A noise term in with Gaussian probabilistic distribution is 
added to ( )i tA s  as an exploration of the control policy. Then 
the actual action which directly acts on the controlled system 
is modified as 

 ' ( ) ( ) (0, ( ))i t i t i VA s A s n tσ= +  (11) 
The variance of the noise is defined as [19] 
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where 1k and 2k are positive regulating constants, and ( )tV s  
is the current value function estimation of the critic. 

The actor can learn its weights through an estimation of the 
policy gradient [19] 
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where α is a learning rate of the actor. 
 

In addition, the system considered in the actor-critic 
algorithms is just modeled to transit the system state and 
provide a reward signal. None of the system parameters is 

needed in the learning process, thus it implies that the 
proposed KAC algorithm is a model-free RL approach. 

Algorithm 1: The KAC algorithm 
Initialization 
The actor weights w , learning rate α , exploration 
factor 1k and 2k , 
The critic weights v , and discount factor γ , 

0P Iβ= . 
Repeat for each trial 
    ( )s t ← initial state of trial 
    While ( )s t  is not the terminal state 
        According to ( )s t , compute ( )tA s by (10), 
        and determine the actual action ' ( )tA s by (11) 
        Take action ' ( )tA s , observe reward r,  
        Update the weights of the critic by (7) 
        Update the actor weights according to (13) 
        ( ) ( 1)s t s t← +  

Fig. 2.  The KAC algorithm learning procedure. 
 
The learning procedure of the KAC algorithm is shown in 

Fig. 2. For a given initial state, the actor outputs an action, and 
a noisy control action acts on the system to get the state 
transition and the reward. The critic generates an estimation 
of the value function to evaluate the control performance, and 
then the critic updates its weights by (7), while the actor is 
updated by (13). In this way the KAC algorithm iterates 
online until the terminal state is satisfied. 

C. Neural Network Implementation 
A neural network implementation of the KAC algorithm is 

proposed in this paper. We use a kind of feed forward neural 
network which is called Cerebellar Model Articulation 
Controller (CMAC) to approximate the actor and the critic, 
respectively.  

CMAC is proposed by Albus in 1975 [27]. As a linear 
function approximator, CMAC has been widely investigated 
and applied in RL. Details can be seen in [27]. Fig. 3 shows 
the architecture of a CMAC neural network. The input state 
space S  is mapped to the association space A , and then 
mapped to the output space O . The corresponding map 
functions are 

 1

2

⇒
⇒

f : S A
f : A O

 (14) 

The first map 1f  is a tile coding map, which detects each 
input state and groups the receptive fields of the features into 
partitions of the input state space. There are C tilings and M 
partitions for each input state. For multi-input state space, the 
total physical memory of the CMAC network is nM C , with 
n dimension of the input. We adopt a hashing technique 
presented in [1] to reduce memory requirements 
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Fig. 3.  The architecture of a CMAC neural network. 

 
where 0 ( )a i M≤ ≤  is the activated tile for the i-th state, 

( )F s  is the physical memory location of the state s, and N is 
the number of the physical memory. 

Thus the second map 2f  namely the output of the CMAC 
network is  

 ( ) ( )Tf s W F s=  (17) 
where W is the adjustable weights matrix. ( )F s  here can be 
viewed as the basis function vector of the actor and the critic 
approximation. 

With this structure of CMAC network, the actor and the 
critic can be implemented to approximate the control policy 
and the value function, respectively.  

IV. EXPERIMENTAL RESULTS 
In order to verify the effectiveness of the proposed KAC 

algorithm in this paper, we implement it on two benchmark 
problems in RL, which are the cart-pole balancing problem 
and the acrobot swing-up problem, respectively. Furthermore, 
comparison studies with conventional actor-critic algorithm 
[7] as well as Fast-AHC method [19] are given to investigate 
the data efficiency of the KAC approach. 

A. The Cart-pole Balancing Problem 
The cart-pole balancing problem [10] suggested by the 

diagram in Fig. 4 depicts the task of balancing a single pole 
mounted on a cart, which moves on a bounded, horizontal 
track. A force F  is applied to the cart to keep the pole 
balanced and avoid out of the track boundaries. There are four 
states for the cart-pole system, which are θ  , angle of the pole 
with respect to the vertical position ; θ�  , angle velocity; x  , 
position of the cart on the track; and x�  , cart velocity. 

 
Fig. 4.  The cart-pole balancing problem. 

 
The system dynamics of the cart-pole is described by 
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The system parameters of the cart-pole are the same as [10]. 
The cart-pole balancing task is completed when the following 
state boundary constraints are satisfied 

 5 5 , 2.4 2.4m x mθ− ≤ ≤+ − ≤ ≤+D D   (19) 
Where the angle constraints are more severe than other 
related works [10][19], which can test the outstanding 
performance of the proposed KAC algorithm. 

To learn an approximate optimal policy for the cart-pole 
balancing problem, the CMAC configurations of the actor 
and the critic neural networks need to be determined first, 
which are listed in Table I. 

TABLE I 
CMAC PARAMETERS FOR THE ACTOR AND THE CRITIC NETWORKS 

Parameters The actor network The critic network 
n 4 4 
C 4 4 
M 7 7 
N 80 30 
W 1[0, ,0]N×…  1[0, ,0]N×…  

 
In addition, other initial parameters of the KAC algorithm 

are the actor network learning rate 0.5α= , exploration 
factor 1 20.4, 0.5k k= = , the discount factor 0.95γ = and 

0.04β = . Online learning of the KAC algorithm for the 
cart-pole balancing problem begins with the state randomly 
initialized between [0,0.5] . And according to Fig. 2, the 
algorithm iterates until the terminal state is reached, which 
satisfies (19), and then the task is completed successfully 
when this has lasted 12000 time steps. The reward in this 
problem is defined as 

 
0,

( )
1,

within bounds
r t

otherwise
⎧⎪⎪=⎨⎪−⎪⎩

 (20) 

A successfully learning process is shown in Fig. 5. The 
angle and the position variables are all within predefined 
constraints. In order to investigate the Kalman filter 
estimation performance, we compare the KAC algorithm 
with other related methods. [19] proposed a Fast-AHC 
learning approach, which is based on recursive least squares 
estimation combined with actor-critic learning. Furthermore, 
conventional actor-critic learning algorithm is also 
implemented in this paper. The comparison configurations 
are all the same as KAC algorithm. We carry out 100 runs 
consisting of a maximum of 2000 consecutive trials for the 
cart-pole balancing problem. The comparison results are 
shown in Table II.  
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Fig. 5.  Online learning process of the cart-pole balancing problem with KAC 

algorithm. 
 
We compare the trials needed to balance the pole 

successfully. It can be concluded from Table II that the 
proposed KAC algorithm can complete the cart-pole 
balancing task with fewer trials than other algorithms, which 
demonstrates that the KAC algorithm presented in this paper 
is efficient. 

TABLE II 
PERFORMANCE COMPARISON RESULTS WITH OTHER METHODS 

Algorithms Minimal 
trials 

Maximal 
trials 

Average 
trials 

Success 
rate 

KAC 11 954 192 98% 
Fast-AHC 12 709 217 98% 
AC 10 1957 306 97% 

 

B. The Acrobot Swing-up Problem 
Acrobot [1] is a two-link, underactuated roughly analogous 

to a gymnast swinging on a high bar, as shown in Fig. 6. Only 
the second joint can exert torque. The goal of the acrobot 
swing-up problem is to swing the tip above line. There are 
four continuous state variables: two link angles 1θ  and 2θ ,  

and  two angle velocities 1θ�  and 2θ� . The system dynamics of 
the acrobot is described as follows 
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Fig. 6.  The acrobot swing-up problem. 
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The parameters of the acrobot system are the same as [1]. 
The state variables also have bounded constraints as follows 

 1 2

1 2

[ , ], [ , ],

[ 4 , 4 ], [ 9 ,9 ]

θ π π θ π π

θ π π θ π π

∈ − ∈ −

∈ − ∈ −� �   (22) 

The acrobot swing-up problem is accepted as successful if 
1| |θ π≥ , which is the goal. Thus the reward value can be 

defined as 

 
100,

( )
1,

reach the goal
r t

otherwise
⎧⎪⎪=⎨⎪−⎪⎩

  (23) 

To implement the KAC algorithm, we adopt the same 
configuration of the neural networks except that the number 
of the physical memory of the actor network is 100, while the 
number is 80 for the critic network. In addition, the learning 
parameters of the KAC algorithm are 0.9γ = , 

0.2α= , 0.01β = , 1 0.4k = , 2 0.5k = .  

 
Fig. 7.  Online learning process of the acrobot swing-up problem with KAC 

algorithm. 
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TABLE III 
PERFORMANCE COMPARISON RESULTS WITH OTHER METHODS 

Algorithms Minimal 
steps 

Maximal 
steps 

Average 
steps 

Success 
rate 

KAC 56 290 157 99.9% 
Fast-AHC 62 298 171 99.6% 
AC 80 299 171 99.7% 

 
The learning process starts from the stable equilibrium and 

iterates until to the goal state. The successful online learning 
process is shown in Fig. 7. For further comparison on the 
acrobot swing-up problem, we investigate the algorithms 
mentioned in the cart-pole balancing problem. 1000 trails 
which consist of a maximum of 300 time steps are carried out 
for each algorithm. We present the statistical results in Table 
III. Although these three algorithms have similarly good 
performance, the KAC algorithm performs better and fewer 
time steps are needed to swing up the acrobot. We can 
conclude that the KAC approach is remarkable in solving 
these MDPs. 

V. CONCLUSION 
A new reinforcement learning algorithm using Kalman 

filter, which is called Kalman filter-based actor critic (KAC) 
learning is proposed in this paper. KAC algorithm reduces the 
computation complexity and improves the sample efficiency, 
which can improve the learning performance to some extent. 
Kalman filter is used to estimate the parameters of the value 
function efficiently, and combined with actor-critic approach, 
the KAC algorithm can solve MDPs in both continuous state 
and action space. It is the first time that Kalman filter is used 
in RL to learn the continuous control strategy online. To 
implement the KAC algorithm, CMAC neural networks are 
used to approximate the value function and the policy 
function. Two benchmark problems in RL community are 
carried out to verify the effectiveness of the KAC approach. 
Experimental results demonstrate that the proposed KAC 
algorithm is more efficient than other similar algorithms. 

There are many ways to extend the Kalman filter-based RL 
methods with actor-critic structures. Value function used in 
this paper is a state value function, which can be easily 
extended to state-action value function (or Q-function) with 
little modification. Furthermore, the theoretical proof 
deserves to be researched in the future. 
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