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Abstract— The aim of collaborative clustering is to reveal the
common structure of data which are distributed on different
sites. The topological collaborative clustering, based on Self-
Organizing Maps (SOM) is an unsupervised learning method
which is able to use the output of other SOMs from other
sites during the learning. This paper investigates the impact
of the diversity between collaborators on the collaboration’s
quality and presents a study of different diversity indexes for
collaborative clustering. Based on experiments on artificial and
real datasets, we demonstrated that the quality and the diversity
of the collaboration can have an important impact on the
quality of the collaboration and that not all diversity indexes
are relevant for this task.

I. INTRODUCTION

Collaborative Clustering is an emerging problem in data
mining for the analysis of distributed datasets. Indeed, the
current rise of real-time communication network such as the
Internet and the recent advances in distributed resources in
networks lead to new classes of problems. We focus here
on the problem of multi-site datasets, in particular when
the information stocked in some or all sites is confiden-
tial to the others. For example, we could be interested in
the cluster analysis of a collection of datasets at different
sites (banks, stores, medical organizations, administrations)
describing the same individuals with different information,
i.e. with different descriptors or variables. However, because
of the confidentiality of each dataset, it is impossible to use
all the data in one analysis. A local clustering is nevertheless
possible in each site without breaking the confidentiality
rules.

To solve this issue, previous studies [1], [2], [3] proposed
the use of a Collaborative Clustering. They have shown
that it is possible to use the output of a local analysis to
improve the result of the clustering on another site, in order
to produce an accurate view of the global hidden structure
in different datasets without having direct access to the data.
The aim of the Collaborative Clustering is to distribute the
clustering process and merge the different results without
sharing the data among different centers. In these methods,
during the collaboration step, we do not need the distant
datasets, we only need the result of the clustering of this
dataset. Thus, each site uses its own dataset and the clustering
information from distant datasets. The final partition is then
as close as possible to the one we would have obtained
with a centralized dataset. Pedrycz et al. [1], [2] proposed
a collaborative method based on the K-Means algorithm,
whereas the work of Grozavu et al. [3] is based on the
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learning of a modified Self-Organizing Maps (SOM) [4] to
produce a Topological Collaborative Clustering.

The Collaborative Clustering straightly depends on some
parameters which can have an important impact on the final
results [3]. This is the case of the collaboration confidence
matrix, which weight the influence of the collaborator on
the final clustering [5]. This confidence matrix is critical
in the case of collaboration, because setting in advance
the strength of the collaboration for each collaboration link
can degrade the final results if not set correctly. In an
unsupervised collaborative learning case, no knowledge is
available and usually this parameter is just set to one to
avoid an unconformity to the collaborative dataset. However,
estimating the optimal values could greatly improve the
quality of the collaboration. In this paper, we investigate the
impact of the diversity between collaborators on the quality
of the collaboration and the potential role of this measure to
find optimum parameters for the confidence matrix. The goal
is to obtain insights on the benefit of diversity measures for
a selective collaboration.

The notion of diversity starts to be increasingly used for
different tasks in machine learning. In Ensemble Learning,
diversity measures can be used to evaluate and improve the
accuracy of a classifier [6], [7], [8], [9] or a clusterer [10],
[11], [12], [13] ensemble. The main idea of an ensemble of
classifiers is that each member of the ensemble is not perfect
and can make errors [11]. However, different classifiers
make different errors and it is possible to complement each
classifier with the others, which makes errors on different
objects. A global consensus between the classifiers is then
reached to obtain the final partition, for example using
a majority vote. The diversity of the classifier outputs is
therefore a vital requirement for the success of the ensemble.
Intuitively, we want the ensemble members to be as correct
as possible, and in case they make errors, these errors should
be on different objects [11].

We think that the same idea must be applicable in Col-
laborative Clustering. We therefore investigate here the link
between the diversity between two potential collaborators
and the accuracy gained during the collaboration process. As
there is no consensus on the best diversity index to use, we
also tested and compared seven different diversity measures.

The rest of this paper is organized as follows: in Section
2 we present the Topological Collaborative Clustering algo-
rithm used in our study. Section 3 introduces the diversity
indexes. In section 4 we present the experimental results.
Finally the paper ends with a conclusion and future works
in section 5.
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II. TOPOLOGICAL COLLABORATIVE CLUSTERING

According to the structure of datasets to collaborate, there
are three main types of collaboration learning principle:
horizontal, vertical and hybrid collaboration. The vertical
collaboration is to collaborate the clustering results obtained
from different datasets described by the same variables, but
having different objects. In the case of horizontal clustering,
all datasets are described by the same observations but in
different feature spaces: the same number of objects but a
different number of variables. The hybrid collaboration is not
more than a combination of the both horizontal and vertical
collaboration.

In this work, we are specifically interested in horizontal
collaborations. Horizontal collaboration is the most difficult
one, since in such cases, the groups of data are described in
different spaces: each dataset is described by different vari-
ables, but has the same objects (samples) as other datasets.
In this case the problem is how to collaborate the clusters
derived out of a set of classifications from different charac-
teristics? and how to manipulate the collaborative/confidence
parameter where no information is available about the
distant clustering?

In the Topological Collaborative Clustering, each dataset
is clustered with a Self-Organizing Map (SOM). To simplify
the formalism, the maps built from various datasets will
have the same dimensions (number of neurons) and the
same structure (topology). The main idea of the horizontal
collaboration principle between different SOM is that if an
observation from the ii-th dataset is projected on the j-th
neuron in the ii - map, then that same observation in the jj-
th dataset will be projected on the same j-th neuron of the
jj-th map or one of its neighboring neurons. In other words,
neurons that correspond to different maps should capture the
same observations. Therefore, an additional term reflecting
the principle of collaboration is added to the classical SOM
objective function. This function is adapted/weighted by a
collaborative parameter in order to represent the confidence
and the cooperation between the [ii] classification and [jj]
classification. A new collaboration step is also added to
estimate the importance of the collaboration, during the
collaborative learning process. To compute the relevance of
the collaboration, two parameters are introduced: the first one
is to adapt the distant clustering information, and the second
is for weighting the collaborative clustering link (the map
which receive information about the distant map).

Formally, the following new objective function is com-
posed of two terms:

R
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where P represents the number of datasets (or the classifi-
cations), N - the number of observations, |w| is the number
of prototype vectors from the ii SOM map (the number of
neurons).
χ (xi) is the assignment function which allows to find

the Best Matching Unit (BMU), it selects the neuron with
the closest prototype from the data xi using the Euclidean
distance.

χ(xi) = argmin
(
‖xi − wj‖2

)
σ(i, j) represents the distance between two neurons i and

j from the map, and it is defined as the length of the shortest
path linking cells i and j on the SOM map.
K[cc]
σ(i,j) is the neighborhood function on the SOM [cc] map

between two cells i and j.
The nature of the neighborhood function K[cc]

σ(i,j) is iden-
tical for all the maps, but its value varies from one map to
another: it depends on the closest prototype to the observation
that is not necessarily the same for all the SOM maps.

The value of the collaboration parameter α is determined
during the first phase of the collaboration step, and β = α2.
This parameter allows to determine the importance of the
collaboration between each two datasets, i.e. to learn the
collaboration confidence between all datasets and maps [5].
Its value belongs to [1-10], it is 1 for the neutral link,
when no importance to collaboration is given, and 10 for the
maximal collaboration within a map. Its value varies each
iteration during the collaboration step.

The value of the collaboration confidence parameter de-
pends on topological similarity between the both collabora-
tion maps. In this case, one cannot use the prototypes vectors
to compute this parameter because of the different feature
spaces.

To compute the collaborated prototypes matrix, a gradient
optimization is used as follow:

w∗[ii] = argmin
w
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where:

Lij =
(
K

[ii]
σ(j,χ(xi))

−K [jj]
σ(j,χ(xi))

)2
Indeed, during the collaboration with a SOM map, the

algorithm takes into account the prototypes of the map and
its topology (the neighborhood function).

III. DIVERSITY MEASURES

In Ensemble Learning, because of the relationship between
the diversity of the ensemble and the ensemble perfor-
mance, diversity measures is therefore helpful in designing
the individual classifiers, the ensemble, and choosing the
combination method.

Several diversity indexes have been proposed for this tasks,
both for classification [6], [7], [8], [9] and clustering [10],
[12], [13], [11] ensembles, as well as different way of using
theses diversity index to improve the consensus function. The
general result is that the diversity of the ensemble is indeed
related to the accuracy of the ensemble. A diversity not too
low neither too high is preferable. However, the definition
of the diversity index is still difficult and the effect of the
diversity remains difficult to quantify [6]

In this paper, we address the question of the use of the
diversity for a different task. In unsupervised collaborative
methods we don’t try to find a consensus between several
partitions, but the aims is to find the best collaboration
between several clustering during the learning.

We define the diversity between two potential collaborators
as the difference between the two partitions obtained sepa-
rately from each of these collaborators on their own dataset.
A low diversity means that the two datasets (representing
the same objects in two different spaces) are partitioned
in a same way by the two clustering algorithms. A high
diversity means that the two dataset are partitioned in a
very different way, either because of differences in the two
clustering methods used or because of intrinsic difference in
the data representation in the two different spaces. In our
study, any high diversity were due to a difference in the
data space, because we used the same algorithm to partition
both datasets. To compute the diversity index we used several
well-known indexes of similarity between two data partitions.
These indexes are usually based on the agreement between
the two partitions, i.e. each pair of object should be either in
the same cluster in both partitions or in different clusters in
both partitions.

In the following, we note P1 and P2 the two partitions we
wish to compare. We define a11 as the number of object pairs
belonging to the same cluster in P1 and P2, a10 denotes the
number of pairs that belong to the same cluster in P1 but
not in P2, and a01 denotes the pairs in the same cluster in
P2 but not in P1. Finally, a00 denotes the number of object
pairs in different clusters in P1 and P2.

A. Rand index

The Rand index [14] is one of the most used index. It can
be defined as follow:

Rand =
a00 + a11

a00 + a01 + a10 + a11
(2)

However, this index does not take into account the fact
that the agreement between partitions could arise by chance
alone. This could greatly bias the results for higher values
of concordance [15].

B. Adjusted Rand index

To solve this issue, [15] proposed the Adjusted Rand
index, which gives the overall concordance of two partitions
taking into account that the agreement between them could
appear by chance.

AdjustedRand =
a00 + a11 − nc

a00 + a01 + a10 + a11 − nc
(3)

where:

nc =
N(N2+1) - (N+1)

∑
n2i - (N+1)

∑
n2j +

∑∑ n2
ij

N

2(N -1)
(4)

with N the total number of objects, ni the number of
objects belonging to the cluster i of P1, nj the number of
objects belonging to the cluster j of P2 and nij the number
of object in cluster i in P1 and j in P2.

Here nc is the agreement we would expect to arise by
chance alone.

C. Jaccard index

The Jaccard index [16] follows the same idea as the Rand
index, without taking into account the number of object pairs
in different clusters in both P1 and P2.

Jaccard =
a11

a01 + a10 + a11
(5)

D. Wallace’s coefficient

Wallace’s coefficient [17] can be more informative than
Adjusted Rand by providing a directional information about
the partition relation. It can be defined as:

WP1→P2 =
a11

a11 + a10
and WP2→P1 =

a11
a11 + a01

(6)

Note that WP1→P2 6=WP2→P1.

E. Adjusted Wallace index

For the same reason as the Adjusted Rand index, [18]
proposed the used of the expected Wallace index under
independence (Wi) to make sure the agreement is not due
to chance alone.

WiP1→P2 =
1

N(N − 1)

|P2|∑
i

ni(ni − 1) (7)

with N the total number of objects and ni the number of
objects in cluster i of the partition P2.
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The Adjusted Wallace index is then defined as:

AWP1→P2 =
WP1→P2 −WiP1→P2

1−WiP1→P2
(8)

F. Normalized Mutual Information

Other type of indexes can also be used, for example based
on the information theory.

The Normalized Mutual Information index, for example,
can be used to compute the shared information between two
partitions [19]:

NMI =
−2
∑
ij nij log

nijN
ninj∑

i nilog
ni

N +
∑
j nj log

nj

N

(9)

with N the total number of objects, ni the number of
objects belonging to the cluster i of P1, nj the number of
objects belonging to the cluster j of P2 and nij the number
of object in cluster i in P1 and j in P2.

G. Variation of Information

The Variation of Information is another index based on the
information theory. This coefficient establishes how much
information is included in each partitions, and how much
information one partition gives about the other [20].

V I = - 2
∑
ij

nij
N
log

nijN

ninj
-
∑
i

ni
N
log

ni
N

-
∑
j

nj
N
log

nj
N

(10)

with N the total number of objects, ni the number of
objects belonging to the cluster i of P1, nj the number of
objects belonging to the cluster j of P2 and nij the number
of object in cluster i in P1 and j in P2.

IV. EXPERIMENTAL RESULTS

To evaluate the impact of the diversity on the collabora-
tive clustering we used four datasets of different size and
complexity (see Section IV-A).

A. Datasets

We performed several experiments on four datasets (one
artificial and three real) from the UCI Repository of machine
learning datasets [21].
• Waveform dataset - This artificial dataset consists of

5000 instances divided into 3 classes. The original base
included 40 variables, 19 of which are noise attributes
with mean 0 and variance 1. Each class is generated
from a combination of 2 of 3 ”base” waves.

• Wisconsin Diagnostic Breast Cancer (WDBC) - This
dataset has 569 instances with 32 variables (ID,
diagnosis, 30 real-valued input variables). Each data
observation is labelled as benign (357) or malignant
(212). Variables are computed from a digitized image
of a fine needle aspirate (FNA) of a breast mass. They
describe characteristics of the cell nuclei present in the
image.

• Isolet - This dataset was generated as follows: 150
subjects spoke the name of each letter of the alphabet
twice. Hence, we have 52 training examples from
each speaker. The speakers are grouped into sets
of 30 speakers each, and are referred to as isolet1,
isolet2, isolet3, isolet4, and isolet5. The data consists
of 1559 instances and 617 variables. All variables are
continuous, real-valued variables scaled into the range
-1.0 to 1.0.

• Spam Base - The SpamBase dataset is composed from
4601 instances described by 57 variables. Every variable
described an e-mail and its category: spam or not-spam.
Most of the attributes indicate whether a particular word
or character was frequently occurring in the e-mail.
The run-length attributes (55-57) measure the length of
sequences of consecutive capital letters.

B. Estimation of quality

As a criteria to estimate the quality of the collaboration,
we computed the gain in accuracy with collaboration, in
comparison to without.

A common way to assess the usefulness of a clustering re-
sult is indirect validation, whereby clusters are applied to the
solution of a problem and the correctness is evaluated against
objective external knowledge. This procedure is defined by
[22] as ”validating clustering by extrinsic classification”, and
has been followed in many other studies. Thus, to adopt
this approach we need labelled data sets, where the external
(extrinsic) knowledge is the class information provided by
labels. Hence, if the clustering methods find significant
clusters in the data, these will be reflected by the distribution
of classes. Thus a purity score can be expressed as the
percentage of elements of the assigned class in a cluster.

The accuracy of a SOM is equal to the average purity of all
the neurons. A good SOM should have a high degree of the
accuracy index. The accuracy of a neuron is the percentage
of data belonging to the majority class. Assuming that the
data labels set L = l1, l2, ..., l|L| and the prototypes set
C = c1, c2, ..., c|C| are known, the formula that expresses
the accuracy of a map is the following:

accuracy =

|C|∑
k=1

ck
N
× max

|L|
i=1|cik|
|ck|

(11)

where |ck| is the total number of data associated with the
neuron ck, and |cik| is the number of observations of class
li which are associated to the neuron ck and N - the total
number of observations (data).

C. Experimental results on the Waveform dataset

The waveform dataset is structured in 3 classes (Figure
1) and the first 20 variables from the waveform dataset
correspond to relevant features and the last twenty variables
- to noisy variables. From this figure it is easy to see that the
data distribution in subset db1 is much better (easy to identify
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Fig. 1. Waveform dataset distribution

classes) compared to the subsets db6 containing only noisy
variables. Intuitively, even if the diversity between a relevant
dataset and a noisy dataset is high, the collaboration should
not increase the results. The presence of noisy and acurate
variables can therefore be used to generate ”good” and ”bad”
collaborators and predict the diversity between collaborators
and its effect.

To simplify the interpretation of the collaboration prin-
ciple, in this example, we firstly assume a scenario of a
collaboration between 10 sites. We divided the basic wave-
form dataset size 5000× 40 in ten subsets as following: the
first subset containing variables 1 to 4, the second dataset
is composed of variables 5 to 8, and so on. So the first
five subsets (db1, db2, db3, db4, db5) are composed of
relevant waveform variables and the last five subsets (db6,
db7, db8, db9, db10) are composed of noisy variables. Figure
2(a) represents the data visualization of a relevant subsets
(db1) and Figure 2(b) represents a noisy subsets (db6).
The visualization was obtained using a Principal Component
Analysis (PCA) on these subsets and the colors represent the
real class data distribution.

One of the challenges in the unsupervised collaborative
clustering is the choice of the collaborator. As described in
section 3 a diversity measure should be computed before the
collaboration as a measure of the quality of the potential
collaborator. In this toy example, we know that the SOM
trained on the noisy datasets are ”bad” collaborators as they
don’t have any relevant information to share, whereas the
SOM trained on relevant variables are reliable collaborators.

We first learned a SOM for all of these datasets with a
10×10 map size. Then we computed all the diversity indexes
introduced in section 3 on six pairs of subsets (see Table 1).
These results (Table 1) represent the diversity measures com-
puted for classifications obtained from the relevant datasets
(db2/db3 and db3/db4), diversity computed between relevant
vs noisy classifications (db2/db8 and db4/db9), and finally
the diversity obtained for classifications issued from noisy
waveform subsets only (db7/db8 and db9/db10).

The Rand, Jaccard, Wallace’s, Adjusted Wallace and Vari-

(a) dataset db1

(b) dataset db6

Fig. 2. Data distribution of 4 datasets to collaborate

ation of Information measures doesn’t give a good indication
about the diversity between the classifications because they
are very similar for all the comparisons. For example, for
the Rand index it is hard to point out that the diversity
between the db2 and db3 (both relevant classifications) is
much higher compared to the diversity between db4 and db9
(db4 - relevant classification and db9 - noisy classification),
the difference between them is 0.12 and both greater than 0.5.
More complicated is the comparison between the diversities
obtained using relevant vs noisy datasets and only noisy
datasets (last columns from the table 2) where the indexes
are all 0.5.

Analysing the Adjusted Rand (AR) and NMI (Normal Mu-
tual Information) measures, it is easy to note that the diversity
between relevant classifications (db2/db3 and db3/db4) is
much higher compared to the diversity obtained from noisy
classifications (db2/db8 and db4/db9): from 0.33 to 0.2e-
3. Moreover, the diversity between the noisy classifications
db7/db8 and db9/db10 is also much smaller compared to
the diversity obtained from relevant classifications. So, these
indexes allow us easily to detect the relevant classifications
to collaborate and the irrelevant classifications to not use for
collaboration.

Taking into account these results, our choice in this
work was to use the Adjusted Rand index. The di-
versity between two collaborators is represented by
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TABLE I
DIVERSITY MEASURE ON THE WAVEFORM SUBSETS

Subset Relevant datasets Relevant vs Noisy datasets Noisy datasets
Diversity index db2/db3 db3/db4 db2/db8 db4/db9 db7/db8 db9/db10
Rand 0.6707 0.7042 0.5539 0.555 0.543 0.5553
Adjusted Rand 0.2625 0.3356 0.00008 0.0002 0.00002 0.00004
Jaccard 0.3429 0.3869 0.2017 0.2008 0.2 0.2003
Wallace’s coefficient 0.5079 0.5578 0.3332 0.3342 0.33 0.3334
Adjusted Wallace 0.5135 0.5581 0.3383 0.3347 0.35 0.3411
Normal Mutual Information 0.262 0.3072 0.0002 0.0006 0.0003 0.0004
Variation of Information 2.334 2.1918 3.1577 3.1631 3.168 3.1664

1 − Adjusted Rand index.

Fig. 3. The plot of diversity and the accuracy difference after collaboration

The Figure 3 presents the plot of diversity compared to
the accuracy gain obtained after the collaboration on these
10 waveform subsets. The abscissa represents the Diversity
index and the ordinate represents the gain obtained after the
collaboration (difference between the initial accuracy and
after collaboration accuracy - from -13.02% to 12.7%). Note
that the real class label of the waveform dataset were used
only for the validation and not for the learning of the map.
The results (Figure 3) show that if the diversity is very high
(diversity close to 1) the accuracy index will decrease after
the collaboration, and if the diversity is small, the accuracy
will not change significantly (close to 0). The accuracy index
will increase more in the case of an average diversity (from
0.6 to 0.9) if the collaboration is made with a relevant map,
and it can decrease in the case of the collaboration with a
noisy map.

After this study, our conclusions is that if the diversity is
very high (close to 0.9) the collaboration algorithm should
not take into account the corresponding partition, but if the
diversity is small, usually the collaboration will not produce
a higher accuracy, but the partition can be used however
because the accuracy index will not decrease.

In the following, for all datasets we will attempt also
1000 experiences, where each experience represents a
collaboration between a fixed subset and a randomly
selected subset.

(a) waveform subset 1

(b) waveform subset 2

Fig. 4. Waveform datasets: Collaboration results between a fixed subset
and 1000 randomly subsets (axe X represents the Diversity and axe Y - the
Accuracy gain)

The Figure 4 represents the visualization of the obtained
accuracy gain before the collaboration and the diversity
between each pair of datasets for 1000 experiments randomly
selected from the initial waveform dataset. Each image
(Figure 4(a) and 4(b)) corresponds to the collaboration results
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(a) Waveform dataset (b) SpamBase dataset

(c) Isolet dataset (d) Wdbc dataset

Fig. 5. Collaboration results between a fixed subset and 1000 randomly subsets (axe X represents the Diversity and axe Y - the Accuracy gain)

obtained using two fixed waveform subsets and 1000 ran-
domly subsets for each one. The blue colour represents that
the collaboration was made with a more relevant dataset and
the red colour means that the collaboration was conducted
with a less relevant dataset (containing noisy variables). The
axis represent the diversity (axe X: from 0 to 1) and the
corresponding difference between the accuracy index before
the collaboration and after the collaboration (axe Y).
As it can be noted, when the diversity is small, the accuracy
gain is also small, but when the diversity is high the accuracy
will decrease. In this case, the high diversity means that the
dataset is noisy because the fixed subset contains relevant
variables, so the collaboration results depends also on the
quality of the collaboration subset.

D. Experimental results on different datasets

In this section we present the results obtained on the
waveform, Isolet, wdbc and spambase dataset. For all these
datasets, we attempt experiments between a fixed subset
and 1000 randomly selected subsets; the diversity and the

accuracy gain were computed for each experiment presented
in the Figure 5.

As it can be noted from the Figures 5(b), 5(c), 5(d), the
results are close to those obtained on the waveform dataset
(Figure 5(a)), i.e. in the case of average diversity - the
accuracy gain will increase after the collaboration.

The diversity to choose depends also on the dataset. For the
waveform dataset (Figure 5(a)) a good diversity is between
0.4 and 0.8, but it can be noted that the the accuracy after the
collaboration of subsets having the diversity in this range can
also decrease (red points in the image), that means that the
collaboration were conducted between a relevant collaborator
and a non-relevant collaborator (containing noisy variables).
For the SpamBase dataset, the accuracy index after the
collaboration will increase in the majority cases, and it will
decrease when the diversity is very high, close to 0.9 as it can
be noted from the Figure 5(b). The experiences attempted on
the Isolet dataset represented in the Figure 5(c) shows that
the accuracy will decrease when the diversity between the
collaborators is in the range [0.95 - 1]. And, finally in the
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case of Wisconson breast cancer dataset (Figure 5(d)), the
accuracy index will decrease for a diversity situated in the
range [0.85 - 1]. All these results show a similar behaviour of
the collaboration results against the diversity, i.e.. an average
diversity between the collaborators allows to obtain a
higher performance after the collaboration.

It should be noted, that for all these experiences the
accuracy can decrease in the case of an average diversity
if the collaboration is attempted with a less relevant subset
(collaborator). So, as we mentioned earlier, the quality of
the collaborator is a very important index in the case of
collaborative learning compared to consensus learning where
only the diversity can be enough to conclude.

V. CONCLUSIONS

This paper focuses on Collaborative Clustering and inves-
tigates the impact of the diversity between collaborators on
the collaboration’s quality. We showed that only some usual
diversity indexes are relevant for this task. Experiments on
artificial and real datasets demonstrate the importance of the
diversity on the collaboration quality. Overall, the variability
of the collaboration’s quality increase with the diversity.
Indeed, a high diversity means that the potential collaborator
achieve a very different clustering, which can be either a very
good solution (in that case it is worth collaborating with it) or
a very bad one (in which case the quality of the collaboration
will be lower than no collaboration at all). A low diversity
means that the two clustering are very similar, and none
of the two collaborators will benefit on the collaborations,
as they don’t have any new information to share. We also
shown that the quality of the clustering algorithm on its
own dataset is very important for the collaboration’s quality
improvement regarding the diversity index. If the clustering
algorithm is efficient on its dataset, it will benefit from
the collaboration with collaborators not too diverse (as very
diverse collaborators could perform a random clustering)
nor too similar (as a similar clustering does not have any
new information to share). However if the algorithm is not
adapted to the dataset or if the dataset is very noisy and
does not contain exploitable information, it is more probable
to increase the quality of the clustering by collaborating with
very diverse collaborators, to increase the change to obtain
valuable information. Being able to evaluate the quality of
the couple algorithm/dataset is therefore very important for
Collaborative Clustering tasks.

In the future, we plan to incorporate the diversity measures
as a guide for a Selective Collaborative Clustering. We wish
to propose a Collaborative method between several datasets
with a diversity-based weight on each of the potential
collaborators, in order to optimize the final quality of the
collaborative clustering.
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