
 
 

 

  

Abstract—Spiking neural systems can represent external 
stimuli and internal states by means of sets of neurons firing 
together, the so-called cell assemblies. Neural assembly 
computing (NAC) is an approach that investigates how spiking 
neural assemblies represent things and states of the world, how 
interaction among assemblies results in information processing, 
computation and behavior. Mainly, NAC deals with digital 
assemblies in which all-or-none cell members are firing. The 
notion of analog assemblies is introduced, describing sets of 
neurons that represent something proportionally to their 
driving stimuli. Interactions among digital and analog cell 
assemblies create a rich computational environment. In this 
paper a spiking neural network that compares the magnitude of 
two analog assemblies is presented.    

I. INTRODUCTION 
YNCHRONICITY is a property ubiquitously found in 
biological neural networks, such as the visual, olfactory 

and auditory systems, as well as in thalamus and other neural 
circuits. However, it remains unclear how neural synchrony 
results in information processing and neural computation (see 
[1] for review). For decades, it was thought that neurons 
represent information and compute by means of neural firing 
rate. Traditional artificial neural networks (ANN) are strongly 
based on such assumptions [2]. But evidences from empirical 
biology have shown that precise spike timing plays an 
important role in representation and computation in brains. In 
fact, “many behavioral responses are completed too quickly 
for the underlying sensory processes to rely on estimation of 
neural firing rates over extended time windows” [3]. As a 
consequence, many researchers have focused on Spiking 
Neural Networks (SNN), the third generation of ANN [4], 
[5]. SNN takes advantage of individual spike timing for 
encoding and processing information. The association of both 
spike-timing and synchronism in SNN may lead to a rich 
computational environment, capable of dealing with input 
selection, consolidation and combination of learned 
information, binding information in cell assemblies, among 
others [6]. 

In 1982 Abeles proposed that neurons may play the role of 
‘coincidence detectors’ instead of mean spike integrators [7]. 
This hypothesis put neurons in the scene as synchronous 
detectors, an idea comparable to the ‘reader’ notion proposed 
by Buzsáki [8]. Neurons operating in synchronism naturally 
give rise to cell assemblies, an idea proposed by Hebb in 1949 
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[9]. A feed-forward network with pools (sets) of neurons 
working together was proposed by Abeles as ‘synfire chains’ 
[10]. In synchronous operation synfire chains have all 
neurons firing at the same time. Afterwards, it was proposed 
the notions of ‘synfire braid’ [11], and later ‘polychronous 
groups’ [12]. These concepts consider that sets of spiking 
neurons do not necessarily need to fire synchronously for 
characterizing a cell assembly activity. Instead, they may fire 
in a time-locked fashion. 

These concepts tried to explain how sets of spiking neurons 
compute. In this direction, the neural assembly computing 
(NAC) approach was proposed [13]. NAC investigates how 
neural assemblies represent things and states of the world, 
how interactions among assemblies lead to information 
processing, and how it results in computation and behavior.  

NAC is strongly based on synchronicity among coalitions; 
in such way that almost all NAC topologies rely on internal 
rhythm generators, a bioinspired approach (see [8], [6]). So 
far, NAC assemblies were treated as operating in ‘digital’ 
mode: either all members are firing or all members are silent. 
By using the all-or-none operational mode it was shown that 
neural assemblies can perform Boolean functions, realize 
bistable memory without demanding any plasticity 
mechanism, and sustain bistable rhythmic loops. Finally, by 
associating these functions NAC can perform finite-state 
automata (FSA) [14].  

Nevertheless, it is important to note that external stimuli 
may lead a set of spiking neurons to behave not as all-or-none 
digital assembly. Instead, external stimuli may cause neurons 
to fire ‘proportionally’ to its intensity, rate of change, 
duration, etc. How neural assemblies can proportionally 
represent external stimuli intensities? What results from 
‘analog’ coalitions interacting with the digital ones? These 
questions open new investigation fields on NAC.  

In this paper we address an important issue concerning the 
interactions among analog and digital assemblies: how can a 
spiking network compare two externally stimulated analog 
assemblies X and Y and generate digital responses indicating 
whether they are equal or whether one is greater than the 
other. Neural circuits performing such task may be basal for 
more complex decision-making systems. 

In section II a brief review of NAC concepts is presented. 
Then, the synchronization of external stimuli is evaluated, 
and a synchronizing circuit is presented. A network that 
solves the magnitude comparison problem is then introduced. 
In section III the simulations are described and the raster plots 
are interpreted. Section IV holds the discussions about the 
presented findings. Section V has the conclusions and the 
next steps in this line of investigation. 
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II. NAC AND MAGNITUDE COMPARATOR  
We use the term neuroid following Cruse’s denomination 

for artificial computational unities [15], whereas we use 
neuron for biological cells. As a consequence, action 
potential is related to neurons whereas the term spike is 
related to artificial signals generated by neuroids. 

Classical ANNs, such as multi-layer perceptrons and 
self-organizing map (SOM), heavily depend on single 
neuroids. For example, the SOM training algorithm may 
result in a specialized neuroid that is singly active when 
specific input patterns are presented to the network. Such 
dependency is less acceptable in biological neural networks 
and in SNN. Once a single spike lasts for one millisecond, it 
becomes necessary to devise a robust way for representing 
and processing information involving several unities. Single 
computational unities representing and processing 
information is an idea hardly accepted in biological terms, 
which resemble the idea of the Grandmother Cell [16]. 
Although in simple organisms single neurons may perform 
key computation, in complex animals representations are 
done sparsely, with many neurons participating in 
information retention [17], as well as realizing distributed 
parallel computation.  

The idea that information might be represented by groups 
of neurons firing together was proposed by Donald Hebb in 
his book "The organization of behavior" [9]. Since then, there 
have been discussions about the nature of such assemblies: 
how they come about, how they represent things, how it 
results in computation and behavior, among other issues. One 
concern is over the coalition spatiality: do neurons need to be 
physically close to each other for firing as assemblies? 
Sometimes this physical aggregation is implicitly suggested, 
although other scientists do not impose such physical 
restriction [8], [18]. 

One important issue is that action potential propagate with 
finite and variable velocity, depending on the neuron types, 
the regions in the nervous systems, the type of synapses, the 
axon properties (its diameter, whether it is myelinated or not), 
among other issues [19]. It means that action potentials are 
likely to reach different cells in different time intervals. 
Hence, they are more likely to reach neighboring neurons, but 
once action potentials may radially propagate in the medium, 
several regions may be reached simultaneously. This fact 
reinforces the idea that cell assemblies may occur with 
members firing in different spatial location in the nervous 
tissue. In this work, analog and digital assemblies will be 
considered, without regards to whether the unities are close to 
each other or not. 

Concerning the coalition response: must all members fire 
together or may some of them fail without taking the coalition 
apart? Sometimes it is considered that all members fire 
together because the cell members have mechanisms of 
triggering their neighbors [20], [10]. In this case, the 
all-or-none behavior suggests a ‘digital’ form of operation in 
which the assembly is ON (the event happens, it is ‘1’) or 
OFF (the event does not happen, it is ‘0’). However, when 

excited by external stimuli that vary in intensity, for instance, 
cell assemblies may behave differently.  In this sense, it might 
be useful to consider the idea of ‘analog’ assemblies, where a 
variable number of neurons or neuroids fire proportional to 
the intensity of the external stimuli.  

A. NAC Review 
As said before, NAC is an approach that tries to explain 

how computation is carried out by and in cell assemblies. 
Basically, when correctly excited, a set of neuroids might fire 
together, forming a coalition. Such assembly, in turn, might 
produce a stimulus strong enough to fire or inhibit other 
neuroid assemblies.  

The combination of firing and inhibition is the cornerstone 
of NAC. One can easily spot its similarities with digital logic 
computation. Indeed, it has been shown how logical functions 
can be implemented using NAC concepts. As an example, 
suppose an assembly A can trigger another assembly C alone 
(denoted C A, and read C is caused by A). It means that the 
spikes generated by the A neuroids will arrive at C after some 
milliseconds. Let us denote Δt this mean propagation delay. 
Consider the synaptic weight among all members from A to 
all members C calculated by:  

,ݓ  ՚ Θ/݇                                  (1) 
 

where w is the synaptic weight from neuroid k (pre-synaptic) 
to j (post-synaptic), k is the number of members in A, and Θ is 
the excitatory post-synaptic potential (EPSP) that makes a C 
member to fire. 

 Now consider that two assemblies A and B are connected 
to C by w/2 (half of the synaptic strength necessary for firing 
any neuroid in C), meaning that neither A nor B firing alone 
can trigger C. In this case, consider that A and B fire 
simultaneously and that the propagation delay Δt is equal for 
both; consequently, all spikes reach C coincidently. It is 
necessary that A AND B contribute with spikes for the EPSP 
in C be high enough for triggering its neuroids. In other 
words, the event A and the event B are necessary for 
triggering C, which is equivalent to the logical function AND. 
On the other hand, suppose A and B both connected to C with 
synaptic weights w. It means A can trigger C singly, but B can 
also do it. In other words, A OR B can trigger C, performing 
the OR logic function. All logical functions can be 
implemented in NAC [13]. 

Reverberating assemblies in NAC can perform bistable 
memories as well as pacemakers or internal rhythm (clock 
signals). A loop of reverberating assemblies is implemented 
when an assembly D triggers an assembly E that triggers an 
assembly F that triggers back the assembly D (denoted by 
D E F D). This loop can be active (ON) or inactive 
(OFF), so a loop memorizes one bit of information, which is 
equivalent to an electronic flip-flop circuit. Bistable 
assemblies may be dismantled by inhibitory coalitions 
performing NOT, NOR, or NAND functions. 

These are the main components used for constructing 
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computers. NAC can also implement FSA [14], the 
entry-level for computing machines. 

B. External Stimuli 
In real world, external stimuli cannot be predicted in terms 

of synchronism or in intensity. It means that outside stimuli 
may not occur synchronously to internal rhythms. But 
stimulus intensity may carry important information that 
cannot be unvalued by the nervous system. Thus, let us 
consider that assemblies may fire not only for representing an 
active (coalition=‘1’) or inactive stimulus (coalition=‘0’). It 
becomes necessary to come up with new ways for 
representing external stimuli attributes, perhaps reflected into 
the assemblies’ behavior.    

In neuroscience literature, synchronism and timing on real 
neurons have been analyzed by many [21], [3], [6], [1]. 
Intensity, for instance, can be represented by the number of 
assembly’s active members, which may be somehow 
proportional to the external stimuli. Coalitions that behave 
this way are called ‘analog’ assemblies. 

In this work, two analog assemblies (X and Y) are deployed 
to mimic the neural response to two different input stimuli. 
Each assembly varies independently in its own pace. The goal 
is to devise a neural assembly magnitude comparator whose 
output indicates which input stimulus is stronger. In other 
words, a NAC network is constructed that outputs three 
digital assemblies: one firing only when X >Y, another one 
firing when X<Y, and the last one firing only when X ≅ Y. 

C. Topology 
A spiking network that realizes magnitude comparison was 

developed. Fig. 1 shows the topology used for the comparator 
network. The Izhikevich’s simple model of neuroid was 
chosen due to its capabilities on mimicking different types of 
real neurons, combining plausibility with computational 
efficiency. We have changed the parameters {a, b, c, d} in 
order to simulate different neuron types (see [22]).  

The network has worked well with several neurons types 
even under severe noise situation. The results are described 
below and are presented in the Table 1. 

The topology can be roughly divided in three blocks. One 
is responsible for the system rhythm, represented by the A3, 
A4, and A5 digital assemblies. Another block simulates analog 
input stimuli, represented by the X and Y assemblies. Finally, 
there is a block that compares the number of firing members 
in X and Y. This block generates digital events as outputs, 
represented in the diagram by A7, A8 and A9 digital 
assemblies. 

1) Pacemaker: The rhythm is created with A3 triggering A4 
that triggers A5 that triggers A3 back. The sequence defines 
how the assemblies are connected: all A3 neuroids 
(pre-synaptic) are connected to all A4 neuroids 
(post-synaptic); all A4 neuroids are connected to all A5 
neuroids; and all A5 neuroids are connected to all A3 neuroids. 

The synaptic weights (w) are calculated by (1). These 
assemblies create a time base ensuring synchronization.  

 

 
 
Fig. 1.  Topology: X and Y are input analog assemblies excited by external 
stimuli. In response, they vary the number of firing members proportionally 
to the external stimuli. A3, A4, and A5 form a loop responsible for 
synchronizing the process. A7 compares if X is greater than Y whereas A8 
compares if Y is greater than X. The assembly A9 detects when neither A7 nor 
A8 is firing, therefore X ≅ Y. 

 
As A3 fires, its spikes take Δt1 milliseconds to reach A4. 

Afterwards, A4 fires and it takes Δt2 ms for its spikes to reach 
A5. Subsequently, A5 fires and it takes Δt3 ms for its spikes to 
reach A3. The cycle repeats indefinitely. The total propagation 
delay is obtained by the sum of all delays in the network: 

ݐ  ൌ  Δݐଵ  Δݐଶ  Δݐଷ                               (2) 
 
For simplicity, consider the delays are equal. It means the 

network has three well-determined events that cyclically 
repeat at regular time interval, which can be used to determine 
when information is processed. By doing so, different phase 
shifted operations may occur in NAC. Functions and 
information processing occur when ‘events’ are triggered in 
NAC, and such events happen only when A3, A4, and A5 fire. 
Note that assemblies are brief and ephemeral events, and 
most of the time information is travelling along axons.  

2) Formulas: As stated before, each neuroid (j) in a 
post-synaptic assembly F needs a perturbation ΘF in order to 
fire. Once a spike only assumes the values ‘1’ (the 
pre-synaptic neuron fired) or ‘0’ (it did not fired), such 
perturbation is expected to come from k connections to a 
triggered pre-synaptic coalition A. This can be denoted as: 

 
Θி  ՚  ∑ 1 . ,ಲୀଵݓ                               (3) 

 
Note that this formula do not denote an equality, and the ‘ ’ 
symbol indicates a causality, which means Θி  is caused by 
the formula right hand term. Θி  is the EPSP received by a 
neuroid (j) in F, i is the pre-synaptic neuroid index, kA is the 
number or neuroids in pre-synaptic assemblies, and wi,j is the 
synaptic weight between a neuroid i and j. 

Let us consider that all synaptic weights w are equal among 
all neurons from A to F, thus, the formula reduces to: 

 
Θி  ՚ ݇ .  (4)                                   ݓ

 
The stimulus that an assembly A induces in each neuroid of 

F after a delay Δt is given by (4). The same calculation can be 

3188



 
 

 

used by inhibitory assemblies just considering to change the 
synaptic weight signal. For simplicity, all synaptic weights 
among coalition member are equal, as well as all propagation 
delays among the assemblies in the pacemaker. These 
assumptions make easy to calculate the strength connections 
as well as the network timing. 

However, external stimuli are independent from such 
rhythmic events. In order to guarantee that information from 
X and Y are processed synchronous to the pacemaker, it was 
created a biased-gate input circuit, which is inspired in 
biological oscillation-gating functions (see [6]).  

3) Analog Input Synchronization: Consider two coalitions 
Z and X with equal number of members. Each i member in Z 
(zi) is connected to a single paired i neuroid in X. The synaptic 
weight for such connection is w/2, therefore, each neuroid in 
Z cannot fire its correspondent neuroid in X by itself. From (1) 
it is possible to see that each neuroid from Z can only cause 
half of the perturbation Θ required for firing X neuroids. 
However, if another signal simultaneously contributes with 
Θ/2, neurons in X are able to fire. In fact, this additional signal 
is acting as an enabler, which allows X to fire only when it is 
active. This enable signal is provided by assembly A3 in the 
network. By using (1) it is also possible to calculate the 
synaptic weight from A3 to X. 

 

 
 
Fig. 2 Enabled-gated circuit: each input neuroid Z is connected to a single 
paired neuroid in X, and each neuroid in W is connected to a single paired 
neuroid in Y. Neuroids from A3 are fully connected to both X and Y neuroids 
by half of the necessary synaptic weight. A3 enables firing neuroids in Z and 
W to trigger their correspondent inter-neuroids in X and Y respectively. 
 

In summary, the contribution of all neuroids firing in A3 
causes an excitatory bias in all X neuroids, but this 
perturbation is not enough for triggering X neuroids. Exactly 
when spikes from A3 are reaching X neuroids, the spikes from 
Z can contribute with Θ/2 to its correspondent X neuroid pair. 
It results that the only triggered neuroids in X are those whose 
equivalent neuroid in Z is firing when A3 is active. The same 
reasoning can be applied to W and Y neurons. 

It means that the network samples X and Y every 3Δt. The 
enabled-gate circuit that synchronizes the analog inputs to A3 
is shown in Fig. 2. In Fig. 1, only the connections from A3 to X 
and Y are represented by the dashed lines.  

4) Magnitude Comparator: The previously presented 
formulas make it possible to determine the perturbation in the 
assemblies A7 and A8. Fig. 1 shows that these assemblies are 

connected by reciprocal excitatory +w and inhibitory -w 
connections. It can be denoted as:  

 
Θ  ՚ ሺ݇ . ݓ െ ݇.  ሻ                       (5)ݓ
Θ଼  ՚ ሺ݇ . ݓ െ ݇.  ሻ                       (6)ݓ

 
These formulas can be reduced to: 
 

Θ  ՚ ሺ݇ െ ݇ሻ.  (7)                            ݓ
Θ଼  ՚ ሺ݇ െ ݇ሻ.  (8)                            ݓ

 
 It means that perturbations on A7 neuroids depend on the 

difference between the number of excitatory firing member in 
X and the number of inhibitory firing members in Y. The 
opposite occurs in A8. Consider multiplying w by a constant α 
(with 2 ≤ α ≤ 10). The factor α allows us to control how large 
the difference between X and Y must be. A small difference 
multiplied by a great α may cause the necessary perturbation 
Θ7 or Θ8. We have experimented some values for α  and, in 
the described simulation we have used α=4. As 
aforementioned, A7 and A8 are digital assemblies and they fire 
all or none of their members. Therefore, A7 may fire when X is 
slightly greater than Y, and A8 may fire when Y is slightly 
greater than X. 

The coalition A9 must fire when the difference of firing 
members in X and Y is not enough for triggering A7 or A8. In 
other words, if neither X is greater than Y nor Y is greater than 
X, then neither A7 nor A8 are active, so A9 must fire.  

The simplest way to create a network to solve this problem 
is to use A7 and A8 as inhibitory stimuli for a circuit that is 
always active.  But it takes some time to obtain A7 and A8 
responses. More precisely, after A3 firing (sampling X and Y) 
the network spends Δt for X and Y spikes to reach A7 and A8. 
Then, it takes another Δt for spikes from A7 and A8 to reach A9. 
Simultaneously, in the pacemaker, A3 triggers A4, and since A4 
is connected to A9, then spikes from A4 reach A9 at the same 
time that spikes from A7 and A8 do. It can be denoted: 

 
Θଽ  ՚ ሺ݇ସ. ସݓ െ ݇. ݓ െ ݇.  ሻ                       (9)ݓ

 
This is how the equality indicator works: A4 is always 

triggering A9 but whether A7 or A8 are firing they inhibit the 
excitatory spikes from A4 and the assembly A9 becomes silent. 
Therefore, A9 only fires when neither A7 nor A8 are active. 

III. METHODS AND SIMULATIONS 
In order to simulate the proposed topology we used Matlab 

(the codes can be obtained from the author upon request). The 
results can be seen in Fig. 3, which shows a raster plot with 
the distribution of spiking neuroids in time domain. Each dot 
means that the neuroid n fired at time t ms, where n is in 
Y-axis and t is in X-axis. As a mean to facilitate visualization, 
each assembly has their members assigned sequentially, e.g. 
neuroids from 1 to k belong to A0 assembly, from k+1 to 2k 
belong to A1, and so on.  
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Fig. 3  Raster plot. Each assembly has k=20 neuroid members. A3, A4, and A5 form pacemaker for the spiking network: A3 triggers A4 that triggers A5 that triggers 
A3, closing the loop. The assemblies X and Y has 2k variable firing members each, both excited by external stimuli. A7 neuroids fire when X is greater than Y 
whereas A8 neuroids fire when Y is greater than X. A9 only fires when there is no winner, therefore X  ≅ Y. 

In this simulation, the assemblies were composed by 
twenty neuroids each. The exceptions were the analog 
assemblies X and Y, with forty neuroids each. Assemblies 
operate in synfire mode. The synfire chain is a feed-forward 
network with multiple layers where spikes mainly propagate 
synchronously between layers [10]. In Fig. 3 the synfire effect 
can easily be observed because the neuroids of each assembly 
fire at the same time. 

Back to the simulation, the assembly A0 merely triggers the 
spiking neural network, A1 and A2 are not used. As A0 fires, it 
starts the pacemaker loop formed by the assemblies A3, A4 and 
A5. As mentioned before, this pacemaker is responsible for 
synchronizing the other processes, and this bistable loop fires 
indefinitely. 

At the top of Fig. 3 it is possible to see the assemblies X and 
Y. They vary the number of firing members as time increases. 
Note that X and Y vary in different pace in order to cover all 
possible outcomes from the comparator.  

When X is greater than Y, it is possible to observe that only 
the coalition A7 fires. On the other hand, only the assembly A8 
fires when Y is greater than X. There is a ‘gap’ in which the 
circuit does not respond for X>Y or for Y>X. Such interval can 
be acceptable and, sometimes, desirable. It shows that the 
network only indicates majority with a degree of certainty. 
The equality is indicated by the assembly A9, which is 
expected to fire only when neither A7 nor A8 are firing.  

Because NAC has a synchronous operational mode some 
events are triggered but its response comes with certain delay. 
That is why sometimes an overlapping situation may occur, 
when A9 may firing indicating equality and at the same time 
A8 or A7 may fire indicating majority. Such behavior can be 
seen once in Fig. 3 around 8500 milliseconds.  

A. Performance Under Noise 
Several simulations were performed with different neuroid 

types under different noise situation.  
Noise (ε) is injected through all pre-synaptic connections, 

generated by the function randn() in Matlab. When no noise 
is injected (ε=0) the membrane potential (signal) measured in 
all neuroids is the resting potential (e.g. −65 mV). As noise is 
injected neuroids may occasionally fire or be inhibited. Table 
1 shows the network response for some chosen neuroid types 
under certain noise conditions.  

Firstly, perturbation Θ is adjusted for each neuroid type in 
such way that, in absence of noise, the network performs the 
function shown in Fig. 3. Then, noise is injected and the 
network is tested for two conditions: (i) it is checked whether 
the comparator works well with a 3.52 dB noise (1.5 times the 
amplitude of resting membrane), (ii) it is checked whether the 
comparison function is no longer executed with 6 dB of noise 
(the noise with the double of amplitude compared to the 
resting potential). 

It is possible to observe that the comparison function may 
be performed in NAC even in noisy networks. Only one of the 
chosen neuroid types did not work when 3.52 dB of noise is 
applied to the network. These chosen neuroids still worked 
with 6 dB noise. It was chosen neuroid types that respond for 
excitatory inputs, avoiding those that respond with bursts. 

TABLE I 
RESULTS FOR DIFFERENT NEUROID TYPES UNDER NOISE 

Neuron 
Type 

         Θ   
min 

No Failures  
ε (dB) 

Total Failure  
ε (dB) 

Tonic spiking 21.5 < 3.52 > 6 
Phasic spiking 13.2 < 3.52 > 6 
Mixed Mode 22.1 < 3.52 > 6 
Class 2 5.5 < 2.00 > 6 
Spike Latency 27.2 < 3.52 > 6 
Regular Spiking 22.5 < 3.52 > 6 
Fast Spiking 18.6 < 3.52 > 6 

 

Θ min – minimal perturbation for stable comparison operation. 

No Failures – obtained by using ε = 3.52 dB without any failure. 
Total Failures – obtained after seven tries in which none of them the 
network presented successful comparison. 
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IV.  DISCUSSIONS  
Magnitude comparators play a key role in intelligent 

agents, for instance, an animal might face a situation in which 
it must compare the color coming from two nearby fruits in 
order to decide which one is better for eating. Moreover, such 
agent may put together results from different comparisons: 
which fruit smells more intensively, for instance. By 
associating the results of magnitude comparators it is possible 
to create sophisticated decision-making systems. In other 
words, despite being a simple decision making tool, it is 
worth to study and to implement this magnitude comparison 
network in order to build much larger and complex decision 
making systems in a bottom-up approach. 

Some pendent issues on magnitude comparison in NAC 
include: can assemblies represent proportional (analog) 
stimuli by means other than the number of firing members? In 
this case, how could a network realize the comparison task in 
such new representation forms? Concerning this circuit, we 
shall now try to associate this comparator in more complex 
constructions, for instance, by associating this ‘block’ and 
FSA. By doing so we believe that it is possible to construct 
very complex algorithms.    

V. CONCLUSION 
The neural assembly computing approach is used in this 

work to create a spiking network that compares two variable 
and independent stimuli and determine whether they are 
equal or which one is the greatest. The notion of analog 
assemblies is introduced. Analog coalitions are synchronized 
to an internal pacemaker. Such pacemaker creates a rhythm 
for the spiking neural assembly network.  

In order to represent the magnitude of the external stimuli, 
we choose to proportionally vary the quantity of firing 
members in analog coalitions. These inputs are applied to the 
network that correctly indicates when one assembly is greater 
than the other or when they are equal. This magnitude 
comparator may be used as a basal circuit (a block) for more 
complex decision-making systems. 
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