

Abstract—Spiking neural systems can represent external
stimuli and internal states by means of sets of neurons firing
together, the so-called cell assemblies. Neural assembly
computing (NAC) is an approach that investigates how spiking
neural assemblies represent things and states of the world, how
interaction among assemblies results in information processing,
computation and behavior. Mainly, NAC deals with digital
assemblies in which all-or-none cell members are firing. The
notion of analog assemblies is introduced, describing sets of
neurons that represent something proportionally to their
driving stimuli. Interactions among digital and analog cell
assemblies create a rich computational environment. In this
paper a spiking neural network that compares the magnitude of
two analog assemblies is presented.

I. INTRODUCTION
YNCHRONICITY is a property ubiquitously found in
biological neural networks, such as the visual, olfactory

and auditory systems, as well as in thalamus and other neural
circuits. However, it remains unclear how neural synchrony
results in information processing and neural computation (see
[1] for review). For decades, it was thought that neurons
represent information and compute by means of neural firing
rate. Traditional artificial neural networks (ANN) are strongly
based on such assumptions [2]. But evidences from empirical
biology have shown that precise spike timing plays an
important role in representation and computation in brains. In
fact, “many behavioral responses are completed too quickly
for the underlying sensory processes to rely on estimation of
neural firing rates over extended time windows” [3]. As a
consequence, many researchers have focused on Spiking
Neural Networks (SNN), the third generation of ANN [4],
[5]. SNN takes advantage of individual spike timing for
encoding and processing information. The association of both
spike-timing and synchronism in SNN may lead to a rich
computational environment, capable of dealing with input
selection, consolidation and combination of learned
information, binding information in cell assemblies, among
others [6].

In 1982 Abeles proposed that neurons may play the role of
‘coincidence detectors’ instead of mean spike integrators [7].
This hypothesis put neurons in the scene as synchronous
detectors, an idea comparable to the ‘reader’ notion proposed
by Buzsáki [8]. Neurons operating in synchronism naturally
give rise to cell assemblies, an idea proposed by Hebb in 1949

The authors are with the Universidade Federal de Pernambuco, UFPE /

DES. Av Arquitetura SN 4th floor – Recife – Brazil. Phone: 55 81 2126
8217; e-mail: jranhel@ ieee.org.

 This work was partially supported by the Brazilian National Council for
Scientific and Technological Development (CNPq) and by the Federal
Agency for Support and Evaluation of Graduate Education (CAPES).

[9]. A feed-forward network with pools (sets) of neurons
working together was proposed by Abeles as ‘synfire chains’
[10]. In synchronous operation synfire chains have all
neurons firing at the same time. Afterwards, it was proposed
the notions of ‘synfire braid’ [11], and later ‘polychronous
groups’ [12]. These concepts consider that sets of spiking
neurons do not necessarily need to fire synchronously for
characterizing a cell assembly activity. Instead, they may fire
in a time-locked fashion.

These concepts tried to explain how sets of spiking neurons
compute. In this direction, the neural assembly computing
(NAC) approach was proposed [13]. NAC investigates how
neural assemblies represent things and states of the world,
how interactions among assemblies lead to information
processing, and how it results in computation and behavior.

NAC is strongly based on synchronicity among coalitions;
in such way that almost all NAC topologies rely on internal
rhythm generators, a bioinspired approach (see [8], [6]). So
far, NAC assemblies were treated as operating in ‘digital’
mode: either all members are firing or all members are silent.
By using the all-or-none operational mode it was shown that
neural assemblies can perform Boolean functions, realize
bistable memory without demanding any plasticity
mechanism, and sustain bistable rhythmic loops. Finally, by
associating these functions NAC can perform finite-state
automata (FSA) [14].

Nevertheless, it is important to note that external stimuli
may lead a set of spiking neurons to behave not as all-or-none
digital assembly. Instead, external stimuli may cause neurons
to fire ‘proportionally’ to its intensity, rate of change,
duration, etc. How neural assemblies can proportionally
represent external stimuli intensities? What results from
‘analog’ coalitions interacting with the digital ones? These
questions open new investigation fields on NAC.

In this paper we address an important issue concerning the
interactions among analog and digital assemblies: how can a
spiking network compare two externally stimulated analog
assemblies X and Y and generate digital responses indicating
whether they are equal or whether one is greater than the
other. Neural circuits performing such task may be basal for
more complex decision-making systems.

In section II a brief review of NAC concepts is presented.
Then, the synchronization of external stimuli is evaluated,
and a synchronizing circuit is presented. A network that
solves the magnitude comparison problem is then introduced.
In section III the simulations are described and the raster plots
are interpreted. Section IV holds the discussions about the
presented findings. Section V has the conclusions and the
next steps in this line of investigation.

Magnitude Comparison in Analog Spiking Neural Assemblies
José Rodrigues de Oliveira-Neto, Felipe Duque Belfort, Rafael Cavalcanti-Neto, and João Ranhel

S

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3186

II. NAC AND MAGNITUDE COMPARATOR
We use the term neuroid following Cruse’s denomination

for artificial computational unities [15], whereas we use
neuron for biological cells. As a consequence, action
potential is related to neurons whereas the term spike is
related to artificial signals generated by neuroids.

Classical ANNs, such as multi-layer perceptrons and
self-organizing map (SOM), heavily depend on single
neuroids. For example, the SOM training algorithm may
result in a specialized neuroid that is singly active when
specific input patterns are presented to the network. Such
dependency is less acceptable in biological neural networks
and in SNN. Once a single spike lasts for one millisecond, it
becomes necessary to devise a robust way for representing
and processing information involving several unities. Single
computational unities representing and processing
information is an idea hardly accepted in biological terms,
which resemble the idea of the Grandmother Cell [16].
Although in simple organisms single neurons may perform
key computation, in complex animals representations are
done sparsely, with many neurons participating in
information retention [17], as well as realizing distributed
parallel computation.

The idea that information might be represented by groups
of neurons firing together was proposed by Donald Hebb in
his book "The organization of behavior" [9]. Since then, there
have been discussions about the nature of such assemblies:
how they come about, how they represent things, how it
results in computation and behavior, among other issues. One
concern is over the coalition spatiality: do neurons need to be
physically close to each other for firing as assemblies?
Sometimes this physical aggregation is implicitly suggested,
although other scientists do not impose such physical
restriction [8], [18].

One important issue is that action potential propagate with
finite and variable velocity, depending on the neuron types,
the regions in the nervous systems, the type of synapses, the
axon properties (its diameter, whether it is myelinated or not),
among other issues [19]. It means that action potentials are
likely to reach different cells in different time intervals.
Hence, they are more likely to reach neighboring neurons, but
once action potentials may radially propagate in the medium,
several regions may be reached simultaneously. This fact
reinforces the idea that cell assemblies may occur with
members firing in different spatial location in the nervous
tissue. In this work, analog and digital assemblies will be
considered, without regards to whether the unities are close to
each other or not.

Concerning the coalition response: must all members fire
together or may some of them fail without taking the coalition
apart? Sometimes it is considered that all members fire
together because the cell members have mechanisms of
triggering their neighbors [20], [10]. In this case, the
all-or-none behavior suggests a ‘digital’ form of operation in
which the assembly is ON (the event happens, it is ‘1’) or
OFF (the event does not happen, it is ‘0’). However, when

excited by external stimuli that vary in intensity, for instance,
cell assemblies may behave differently. In this sense, it might
be useful to consider the idea of ‘analog’ assemblies, where a
variable number of neurons or neuroids fire proportional to
the intensity of the external stimuli.

A. NAC Review
As said before, NAC is an approach that tries to explain

how computation is carried out by and in cell assemblies.
Basically, when correctly excited, a set of neuroids might fire
together, forming a coalition. Such assembly, in turn, might
produce a stimulus strong enough to fire or inhibit other
neuroid assemblies.

The combination of firing and inhibition is the cornerstone
of NAC. One can easily spot its similarities with digital logic
computation. Indeed, it has been shown how logical functions
can be implemented using NAC concepts. As an example,
suppose an assembly A can trigger another assembly C alone
(denoted C A, and read C is caused by A). It means that the
spikes generated by the A neuroids will arrive at C after some
milliseconds. Let us denote Δt this mean propagation delay.
Consider the synaptic weight among all members from A to
all members C calculated by:

,ݓ ՚ Θ/݇ (1)

where w is the synaptic weight from neuroid k (pre-synaptic)
to j (post-synaptic), k is the number of members in A, and Θ is
the excitatory post-synaptic potential (EPSP) that makes a C
member to fire.

 Now consider that two assemblies A and B are connected
to C by w/2 (half of the synaptic strength necessary for firing
any neuroid in C), meaning that neither A nor B firing alone
can trigger C. In this case, consider that A and B fire
simultaneously and that the propagation delay Δt is equal for
both; consequently, all spikes reach C coincidently. It is
necessary that A AND B contribute with spikes for the EPSP
in C be high enough for triggering its neuroids. In other
words, the event A and the event B are necessary for
triggering C, which is equivalent to the logical function AND.
On the other hand, suppose A and B both connected to C with
synaptic weights w. It means A can trigger C singly, but B can
also do it. In other words, A OR B can trigger C, performing
the OR logic function. All logical functions can be
implemented in NAC [13].

Reverberating assemblies in NAC can perform bistable
memories as well as pacemakers or internal rhythm (clock
signals). A loop of reverberating assemblies is implemented
when an assembly D triggers an assembly E that triggers an
assembly F that triggers back the assembly D (denoted by
D E F D). This loop can be active (ON) or inactive
(OFF), so a loop memorizes one bit of information, which is
equivalent to an electronic flip-flop circuit. Bistable
assemblies may be dismantled by inhibitory coalitions
performing NOT, NOR, or NAND functions.

These are the main components used for constructing

3187

computers. NAC can also implement FSA [14], the
entry-level for computing machines.

B. External Stimuli
In real world, external stimuli cannot be predicted in terms

of synchronism or in intensity. It means that outside stimuli
may not occur synchronously to internal rhythms. But
stimulus intensity may carry important information that
cannot be unvalued by the nervous system. Thus, let us
consider that assemblies may fire not only for representing an
active (coalition=‘1’) or inactive stimulus (coalition=‘0’). It
becomes necessary to come up with new ways for
representing external stimuli attributes, perhaps reflected into
the assemblies’ behavior.

In neuroscience literature, synchronism and timing on real
neurons have been analyzed by many [21], [3], [6], [1].
Intensity, for instance, can be represented by the number of
assembly’s active members, which may be somehow
proportional to the external stimuli. Coalitions that behave
this way are called ‘analog’ assemblies.

In this work, two analog assemblies (X and Y) are deployed
to mimic the neural response to two different input stimuli.
Each assembly varies independently in its own pace. The goal
is to devise a neural assembly magnitude comparator whose
output indicates which input stimulus is stronger. In other
words, a NAC network is constructed that outputs three
digital assemblies: one firing only when X >Y, another one
firing when X<Y, and the last one firing only when X ≅ Y.

C. Topology
A spiking network that realizes magnitude comparison was

developed. Fig. 1 shows the topology used for the comparator
network. The Izhikevich’s simple model of neuroid was
chosen due to its capabilities on mimicking different types of
real neurons, combining plausibility with computational
efficiency. We have changed the parameters {a, b, c, d} in
order to simulate different neuron types (see [22]).

The network has worked well with several neurons types
even under severe noise situation. The results are described
below and are presented in the Table 1.

The topology can be roughly divided in three blocks. One
is responsible for the system rhythm, represented by the A3,
A4, and A5 digital assemblies. Another block simulates analog
input stimuli, represented by the X and Y assemblies. Finally,
there is a block that compares the number of firing members
in X and Y. This block generates digital events as outputs,
represented in the diagram by A7, A8 and A9 digital
assemblies.

1) Pacemaker: The rhythm is created with A3 triggering A4
that triggers A5 that triggers A3 back. The sequence defines
how the assemblies are connected: all A3 neuroids
(pre-synaptic) are connected to all A4 neuroids
(post-synaptic); all A4 neuroids are connected to all A5
neuroids; and all A5 neuroids are connected to all A3 neuroids.

The synaptic weights (w) are calculated by (1). These
assemblies create a time base ensuring synchronization.

Fig. 1. Topology: X and Y are input analog assemblies excited by external
stimuli. In response, they vary the number of firing members proportionally
to the external stimuli. A3, A4, and A5 form a loop responsible for
synchronizing the process. A7 compares if X is greater than Y whereas A8
compares if Y is greater than X. The assembly A9 detects when neither A7 nor
A8 is firing, therefore X ≅ Y.

As A3 fires, its spikes take Δt1 milliseconds to reach A4.

Afterwards, A4 fires and it takes Δt2 ms for its spikes to reach
A5. Subsequently, A5 fires and it takes Δt3 ms for its spikes to
reach A3. The cycle repeats indefinitely. The total propagation
delay is obtained by the sum of all delays in the network:

ݐ ൌ Δݐଵ Δݐଶ Δݐଷ (2)

For simplicity, consider the delays are equal. It means the

network has three well-determined events that cyclically
repeat at regular time interval, which can be used to determine
when information is processed. By doing so, different phase
shifted operations may occur in NAC. Functions and
information processing occur when ‘events’ are triggered in
NAC, and such events happen only when A3, A4, and A5 fire.
Note that assemblies are brief and ephemeral events, and
most of the time information is travelling along axons.

2) Formulas: As stated before, each neuroid (j) in a
post-synaptic assembly F needs a perturbation ΘF in order to
fire. Once a spike only assumes the values ‘1’ (the
pre-synaptic neuron fired) or ‘0’ (it did not fired), such
perturbation is expected to come from k connections to a
triggered pre-synaptic coalition A. This can be denoted as:

Θி ՚ ∑ 1 . ,ಲୀଵݓ (3)

Note that this formula do not denote an equality, and the ‘ ’
symbol indicates a causality, which means Θி is caused by
the formula right hand term. Θி is the EPSP received by a
neuroid (j) in F, i is the pre-synaptic neuroid index, kA is the
number or neuroids in pre-synaptic assemblies, and wi,j is the
synaptic weight between a neuroid i and j.

Let us consider that all synaptic weights w are equal among
all neurons from A to F, thus, the formula reduces to:

Θி ՚ ݇ . (4) ݓ

The stimulus that an assembly A induces in each neuroid of

F after a delay Δt is given by (4). The same calculation can be

3188

used by inhibitory assemblies just considering to change the
synaptic weight signal. For simplicity, all synaptic weights
among coalition member are equal, as well as all propagation
delays among the assemblies in the pacemaker. These
assumptions make easy to calculate the strength connections
as well as the network timing.

However, external stimuli are independent from such
rhythmic events. In order to guarantee that information from
X and Y are processed synchronous to the pacemaker, it was
created a biased-gate input circuit, which is inspired in
biological oscillation-gating functions (see [6]).

3) Analog Input Synchronization: Consider two coalitions
Z and X with equal number of members. Each i member in Z
(zi) is connected to a single paired i neuroid in X. The synaptic
weight for such connection is w/2, therefore, each neuroid in
Z cannot fire its correspondent neuroid in X by itself. From (1)
it is possible to see that each neuroid from Z can only cause
half of the perturbation Θ required for firing X neuroids.
However, if another signal simultaneously contributes with
Θ/2, neurons in X are able to fire. In fact, this additional signal
is acting as an enabler, which allows X to fire only when it is
active. This enable signal is provided by assembly A3 in the
network. By using (1) it is also possible to calculate the
synaptic weight from A3 to X.

Fig. 2 Enabled-gated circuit: each input neuroid Z is connected to a single
paired neuroid in X, and each neuroid in W is connected to a single paired
neuroid in Y. Neuroids from A3 are fully connected to both X and Y neuroids
by half of the necessary synaptic weight. A3 enables firing neuroids in Z and
W to trigger their correspondent inter-neuroids in X and Y respectively.

In summary, the contribution of all neuroids firing in A3
causes an excitatory bias in all X neuroids, but this
perturbation is not enough for triggering X neuroids. Exactly
when spikes from A3 are reaching X neuroids, the spikes from
Z can contribute with Θ/2 to its correspondent X neuroid pair.
It results that the only triggered neuroids in X are those whose
equivalent neuroid in Z is firing when A3 is active. The same
reasoning can be applied to W and Y neurons.

It means that the network samples X and Y every 3Δt. The
enabled-gate circuit that synchronizes the analog inputs to A3
is shown in Fig. 2. In Fig. 1, only the connections from A3 to X
and Y are represented by the dashed lines.

4) Magnitude Comparator: The previously presented
formulas make it possible to determine the perturbation in the
assemblies A7 and A8. Fig. 1 shows that these assemblies are

connected by reciprocal excitatory +w and inhibitory -w
connections. It can be denoted as:

Θ ՚ ሺ݇ . ݓ െ ݇. ሻ (5)ݓ
Θ଼ ՚ ሺ݇ . ݓ െ ݇. ሻ (6)ݓ

These formulas can be reduced to:

Θ ՚ ሺ݇ െ ݇ሻ. (7) ݓ
Θ଼ ՚ ሺ݇ െ ݇ሻ. (8) ݓ

 It means that perturbations on A7 neuroids depend on the

difference between the number of excitatory firing member in
X and the number of inhibitory firing members in Y. The
opposite occurs in A8. Consider multiplying w by a constant α
(with 2 ≤ α ≤ 10). The factor α allows us to control how large
the difference between X and Y must be. A small difference
multiplied by a great α may cause the necessary perturbation
Θ7 or Θ8. We have experimented some values for α and, in
the described simulation we have used α=4. As
aforementioned, A7 and A8 are digital assemblies and they fire
all or none of their members. Therefore, A7 may fire when X is
slightly greater than Y, and A8 may fire when Y is slightly
greater than X.

The coalition A9 must fire when the difference of firing
members in X and Y is not enough for triggering A7 or A8. In
other words, if neither X is greater than Y nor Y is greater than
X, then neither A7 nor A8 are active, so A9 must fire.

The simplest way to create a network to solve this problem
is to use A7 and A8 as inhibitory stimuli for a circuit that is
always active. But it takes some time to obtain A7 and A8
responses. More precisely, after A3 firing (sampling X and Y)
the network spends Δt for X and Y spikes to reach A7 and A8.
Then, it takes another Δt for spikes from A7 and A8 to reach A9.
Simultaneously, in the pacemaker, A3 triggers A4, and since A4
is connected to A9, then spikes from A4 reach A9 at the same
time that spikes from A7 and A8 do. It can be denoted:

Θଽ ՚ ሺ݇ସ. ସݓ െ ݇. ݓ െ ݇. ሻ (9)ݓ

This is how the equality indicator works: A4 is always

triggering A9 but whether A7 or A8 are firing they inhibit the
excitatory spikes from A4 and the assembly A9 becomes silent.
Therefore, A9 only fires when neither A7 nor A8 are active.

III. METHODS AND SIMULATIONS
In order to simulate the proposed topology we used Matlab

(the codes can be obtained from the author upon request). The
results can be seen in Fig. 3, which shows a raster plot with
the distribution of spiking neuroids in time domain. Each dot
means that the neuroid n fired at time t ms, where n is in
Y-axis and t is in X-axis. As a mean to facilitate visualization,
each assembly has their members assigned sequentially, e.g.
neuroids from 1 to k belong to A0 assembly, from k+1 to 2k
belong to A1, and so on.

3189

Fig. 3 Raster plot. Each assembly has k=20 neuroid members. A3, A4, and A5 form pacemaker for the spiking network: A3 triggers A4 that triggers A5 that triggers
A3, closing the loop. The assemblies X and Y has 2k variable firing members each, both excited by external stimuli. A7 neuroids fire when X is greater than Y
whereas A8 neuroids fire when Y is greater than X. A9 only fires when there is no winner, therefore X ≅ Y.

In this simulation, the assemblies were composed by
twenty neuroids each. The exceptions were the analog
assemblies X and Y, with forty neuroids each. Assemblies
operate in synfire mode. The synfire chain is a feed-forward
network with multiple layers where spikes mainly propagate
synchronously between layers [10]. In Fig. 3 the synfire effect
can easily be observed because the neuroids of each assembly
fire at the same time.

Back to the simulation, the assembly A0 merely triggers the
spiking neural network, A1 and A2 are not used. As A0 fires, it
starts the pacemaker loop formed by the assemblies A3, A4 and
A5. As mentioned before, this pacemaker is responsible for
synchronizing the other processes, and this bistable loop fires
indefinitely.

At the top of Fig. 3 it is possible to see the assemblies X and
Y. They vary the number of firing members as time increases.
Note that X and Y vary in different pace in order to cover all
possible outcomes from the comparator.

When X is greater than Y, it is possible to observe that only
the coalition A7 fires. On the other hand, only the assembly A8
fires when Y is greater than X. There is a ‘gap’ in which the
circuit does not respond for X>Y or for Y>X. Such interval can
be acceptable and, sometimes, desirable. It shows that the
network only indicates majority with a degree of certainty.
The equality is indicated by the assembly A9, which is
expected to fire only when neither A7 nor A8 are firing.

Because NAC has a synchronous operational mode some
events are triggered but its response comes with certain delay.
That is why sometimes an overlapping situation may occur,
when A9 may firing indicating equality and at the same time
A8 or A7 may fire indicating majority. Such behavior can be
seen once in Fig. 3 around 8500 milliseconds.

A. Performance Under Noise
Several simulations were performed with different neuroid

types under different noise situation.
Noise (ε) is injected through all pre-synaptic connections,

generated by the function randn() in Matlab. When no noise
is injected (ε=0) the membrane potential (signal) measured in
all neuroids is the resting potential (e.g. −65 mV). As noise is
injected neuroids may occasionally fire or be inhibited. Table
1 shows the network response for some chosen neuroid types
under certain noise conditions.

Firstly, perturbation Θ is adjusted for each neuroid type in
such way that, in absence of noise, the network performs the
function shown in Fig. 3. Then, noise is injected and the
network is tested for two conditions: (i) it is checked whether
the comparator works well with a 3.52 dB noise (1.5 times the
amplitude of resting membrane), (ii) it is checked whether the
comparison function is no longer executed with 6 dB of noise
(the noise with the double of amplitude compared to the
resting potential).

It is possible to observe that the comparison function may
be performed in NAC even in noisy networks. Only one of the
chosen neuroid types did not work when 3.52 dB of noise is
applied to the network. These chosen neuroids still worked
with 6 dB noise. It was chosen neuroid types that respond for
excitatory inputs, avoiding those that respond with bursts.

TABLE I
RESULTS FOR DIFFERENT NEUROID TYPES UNDER NOISE

Neuron
Type

 Θ
min

No Failures
ε (dB)

Total Failure
ε (dB)

Tonic spiking 21.5 < 3.52 > 6
Phasic spiking 13.2 < 3.52 > 6
Mixed Mode 22.1 < 3.52 > 6
Class 2 5.5 < 2.00 > 6
Spike Latency 27.2 < 3.52 > 6
Regular Spiking 22.5 < 3.52 > 6
Fast Spiking 18.6 < 3.52 > 6

Θ min – minimal perturbation for stable comparison operation.

No Failures – obtained by using ε = 3.52 dB without any failure.
Total Failures – obtained after seven tries in which none of them the
network presented successful comparison.

3190

IV. DISCUSSIONS
Magnitude comparators play a key role in intelligent

agents, for instance, an animal might face a situation in which
it must compare the color coming from two nearby fruits in
order to decide which one is better for eating. Moreover, such
agent may put together results from different comparisons:
which fruit smells more intensively, for instance. By
associating the results of magnitude comparators it is possible
to create sophisticated decision-making systems. In other
words, despite being a simple decision making tool, it is
worth to study and to implement this magnitude comparison
network in order to build much larger and complex decision
making systems in a bottom-up approach.

Some pendent issues on magnitude comparison in NAC
include: can assemblies represent proportional (analog)
stimuli by means other than the number of firing members? In
this case, how could a network realize the comparison task in
such new representation forms? Concerning this circuit, we
shall now try to associate this comparator in more complex
constructions, for instance, by associating this ‘block’ and
FSA. By doing so we believe that it is possible to construct
very complex algorithms.

V. CONCLUSION
The neural assembly computing approach is used in this

work to create a spiking network that compares two variable
and independent stimuli and determine whether they are
equal or which one is the greatest. The notion of analog
assemblies is introduced. Analog coalitions are synchronized
to an internal pacemaker. Such pacemaker creates a rhythm
for the spiking neural assembly network.

In order to represent the magnitude of the external stimuli,
we choose to proportionally vary the quantity of firing
members in analog coalitions. These inputs are applied to the
network that correctly indicates when one assembly is greater
than the other or when they are equal. This magnitude
comparator may be used as a basal circuit (a block) for more
complex decision-making systems.

REFERENCES
[1] R. Brette, “Computing with neural synchrony,” PLoS Comput Biol,

vol. 8, no. 6, p. e1002561, 06 2012.
[2] R. Rojas, Neural Networks: a Systematic Introduction. Berlin:

Springer, 1996.
[3] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make

sense,” Trends in Neurosciences, vol. 28, no. 1, pp. 1–4, 2005.

[4] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,”
International Journal of Neural Systems, vol. 19, no. 04, pp. 295–308,
2009.

[5] H. Paugam-Moisy and S. Bohte, “Computing with spiking neuron
networks,” in Handbook of Natural Computing. 1st Edition,
G. Rozenberg, T. Bäck, and J. N. Kok, Eds. Heidelberg, Germany:
Springer-Verlag, 2010, vol. 1, pp. 1–47.

[6] G. Buzsáki and A. Draguhn, “Neuronal oscillations in cortical
networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004.

[7] P. König, A. K. Engel, W. Singer “Integrator or coincidence detector?
the role of the cortical neuron revisited.” Trends in Neurosciences,
vol. 19, no. 4, pp. 130 – 137, 1996.

[8] G. Buzsáki, “Neural syntax: Cell assemblies, synapsembles, and
readers,” Neuron, vol. 68, no. 3, pp. 362–385, 2010.

[9] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. Mahwah, NJ: Lawrence Erlbaum Associated, Inc, 2002,
originally published: New York: Wiley, 1949.

[10] M. Abeles, “Synfire chains,” Scholarpedia, vol. 4, no. 7, p. 1441, 2009.
[Online]: http://www.scholarpedia.org/article/Synfire_chains
(accessed: 2014/16/01).

[11] E. Bienenstock, “A model of neocortex,” Network: Computation in
Neural Systems, vol. 6, no. 1, pp. 179–224, 1995.

[12] E. M. Izhikevich, “Polychronization: computation with spikes,” Neural
Computation, vol. 18, no. 2, pp. 245–282, 2006.

[13] J. Ranhel, “Neural assembly computing,” Neural Networks and
Learning Systems, IEEE Transactions on, vol. 23, no. 6, pp. 916–927,
2012.

[14] J. Ranhel, “Neural assemblies and finite state automata,” in
Proceedings of 1st BRICS Countries Congress (BRICS-CCI) and 11th
Brazilian Congress (CBIC) on Computational Intelligence, vol. 1,
2013, pp. 1–6. [Online]. http://www.neuralassembly.org/download/-
NAC_Finite_State_Automata_BRICS-CCI-2013.pdf (accessed:
2014/16/01).

[15] H. Cruse, Neural Networks as Cybernetic Systems. 3rd and revised
edition. Bielefeld, Germany: Brains, Minds & Media, 2009.

[16] C. G. Gross, “Genealogy of the grandmother cell,” The Neuroscientist,
vol. 8, no. 5, pp. 512–518, 2002.

[17] P. Foldiak and D. Endres, “Sparse coding,” Scholarpedia, vol. 3, no. 1,
p. 2984, 2008.

[18] A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions:
oscillations and synchrony in top-down processing,” Nature Reviews
Neuroscience, vol. 2, no. 10, pp. 704–716, 2001.

[19] E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Principles of Neural
Science. 4th ed. New York, NY: McGrall-Hill Health Prof. Division,
2000.

[20] J. Wickens and R. Miller, “A formalisation of the neural assembly
concept 1.constraints on neural assembly size,” Biological Cybernetics,
vol. 77, no. 5, pp. 351–358, 1997.

[21] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso, and
G. B. Stanley, “Temporal precision in the neural code and the
timescales of natural vision,” Nature, vol. 449, no. 7158, pp. 92–95,
2007.

[22] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE
Transactions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

3191

