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Abstract— In the stability analysis of recurrent neural net-
works, one of the tasks is to reduce the conservativeness of the
stability criterion. Along this routine, there are two ways to be
considered. One is how to construct the Lyapunov-Krasovskii
functional (LKF), and the other is how to use mathematical
skills to estimate the derivatives of the LKF. The purpose of
this paper is to present a brief review on the evolution on the
construction of LKF for recurrent neural networks with single
time-varying delay. By summarizing the observation, one can
find the core elements in the construction of LKF. Moreover,
one can find the evolution history on the delay-partitioning and
its applications in the construction of LKF.

I. INTRODUCTION

IN the past few decades, neural networks (NNs) have
received increasing interest owing to their applications

in a variety of areas, such as signal processing, pattern
recognition, static image processing, associative memory,
combinatorial optimization and scientific areas. Up to now,
stability of NNs with a time delay has been received attention
since time delay is frequently encountered in NNs, and it is
often a source of instability and oscillations in a system.
Therefore, the stability of delayed neural networks has been
investigated with considerable interest, and some stability
criteria have been reported in the literature [1]–[24].

The stability criteria obtained can be generally classified
into delay-independent and delay-dependent. Since the time
delays encountered in neural networks are usually not very
big, delay-dependent criteria, which include the information
of time delays, are less conservative. As most of such criteria
are derived via the Lyapunov theory, they all have a certain
degree of conservatism. Reducing the conservatism has been
the topic of much research [2], [3], [5], [6], [7].

With the Lyapunov stability theory, the reduction can be
achieved mainly from two phases: choosing the Lyapunov-
Krasovskii functional (LKF) and estimating its derivative
[5]. The choice of the LKF is crucial for deriving less
conservative criteria. Various types of the LKF have been
constructed to discuss the delayed neural networks and they
are reviewed as follows. 1) Discretized LKF: it reduces the
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conservatism of a simple type LKF, which uses one matrix in
the whole delay interval, by partitioning the whole interval of
the delay existing in the delayed neural networks into several
subintervals and using different matrices in different subinter-
vals. 2) Augmented LKF: it is constructed by augmenting the
terms of the simple type LKF using state vectors and delayed
state vectors of the delayed neural networks, the integral and
the derivative of the state vectors, and so on. This technique
introduces slack matrices (free-weighting matrices) into the
LKF and thus it can reduce the conservatism by optimizing
the combination of those matrices. 3) Delay-partitioning
LKF: after rewriting the original delayed neural networks by
the system with several additive delays, such LKF improves
the results by applying the ideas of the discretized and
augmented LKF together, i.e., partitioning the whole interval
of the time delay and augmenting the terms of the simple
LKF by the state vectors with subinterval delays. 4) LKF
based on other ideas, such as the LKF including the slope
of activation functions of the delayed neural networks] and
the LKF including triple integral terms. Those functionals
lead to less conservative results because of adding more
model information into the LKF. For the derivative of the
LKF, it is necessary to estimate the derivative for obtaining
the criteria in terms of linear matrix inequalities (LMIs).
Three main techniques, including the free-weighting matrix
(FWM) approach, Jensen inequality and convex optimization
approach, and their combinations, have been applied. The
enlargement of the derivative of the LKF is commonly
needed to deal with the integral terms of the derivative.
The time delay introduced in the neural networks is mainly
time-varying and bounded, for which the enlargement is
usually caused by replacing the time-varying delay and/or
its distance.

Motivated by above discussions, this paper will present
a brief review on the construction of LKF for a kind of
recurrent neural networks with single time-varying delay. By
observing the evolution of the LKF, one may find some useful
information in the construction of the LKF, which will help
the readers to choose the suitable functional in the stability
analysis of the delayed neural networks. These observations
may also be helpful to deal with the stability and stabilization
problems for nonlinear systems with delays.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Throughout this paper, we will consider the following
classical Hopfield-type recurrent neural networks with single
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time-varying delay,

�̇�𝑖(𝑡) =− 𝑎𝑖𝑥(𝑡) +
𝑛∑

𝑗=1

𝑤0𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))

+

𝑛∑

𝑗=1

𝑤1𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡− 𝜏(𝑡))), (1)

or in a compact matrix-vector form,

�̇�(𝑡) = −𝐴𝑥(𝑡) +𝑊0𝑓(𝑥(𝑡)) +𝑊1𝑓(𝑥(𝑡− 𝜏(𝑡))), (2)

where 𝐴 = diag(𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑛), 𝑎𝑖 > 0, 𝑊0 =
(𝑤0𝑖𝑗)𝑛×𝑛, 𝑊1 = (𝑤1𝑖𝑗)𝑛×𝑛, neuronal state
𝑥(𝑡) = (𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))𝑇 , activation function
𝑓(𝑥(𝑡)) = (𝑓1(𝑥1(𝑡)), ⋅ ⋅ ⋅ , 𝑓𝑛(𝑥𝑛(𝑡)))𝑇 . 𝜏(𝑡) is a time
varying delay. 𝑤0𝑖𝑗 denotes the constant connection weight
of the i-th neuron on the j-th neuron at time t, 𝑤1𝑖𝑗 denotes
the constant connection weight of the i-th neuron on the
j-th neuron at time 𝑡− 𝜏(𝑡), 𝑎𝑖 > 0 represents the rate with
which the i-th neuron will reset its potential to the resting
state in isolation when disconnected from the network
and external inputs. 𝜏(𝑡) is nonnegative, bounded, and
differentiable. The initial condition of (2) is supplemented
by 𝑥(𝜃) = 𝜑(𝜃), 𝜃 ∈ [−ℎ2, 0] with 𝜑 being an initial
function.

In model (2), self-feedback matrix 𝐴, interconnection
matrix 𝑊0 and 𝑊1 are usually known, which can be directly
used in the construction of LKF and estimation of derivative
of LKF. Therefore, there is no much space to be exploited
in the interconnection matrices. However, different kind of
activation function 𝑓(𝑥(𝑡)) and different kind of requirement
on the time-varying delay may have significant influence
on the stability analysis of the model (2). Therefore, in the
following, we will give some assumption on the activation
function and time varying delay.

Assumption D0: 𝜏(𝑡) is nonnegative, bounded, and dif-
ferentiable with 0 ≤ 𝜏(𝑡) ≤ ℎ and 𝜏(𝑡) ≤ 𝜇, ℎ > 0, 𝜇 ≥ 0
are positive known constants.

Assumption D1: 𝜏(𝑡) is nonnegative, bounded, and differ-
entiable with 0 ≤ ℎ1 ≤ 𝜏(𝑡) ≤ ℎ2, 𝜏(𝑡) ≤ 𝜇, ℎ > 0, 𝜇 ≥ 0
are positive known constants.

Assumption A0: Activation function is a global Lipschitz
function, i.e.

∣𝑓𝑖(𝑠1)− 𝑓𝑖(𝑠2)∣ ≤ 𝑙𝑖∣𝑠1 − 𝑠2∣, (3)

where 𝑙𝑖 > 0 is a known constant.
Assumption A1: Activation function satisfies

0 ≤ 𝑓𝑖(𝑠1)− 𝑓𝑖(𝑠2)
𝑠1 − 𝑠2 ≤ 𝑙𝑖, (4)

where 𝑙𝑖 > 0 is a known constant.
Assumption A2: Activation function satisfies

𝑙−𝑖 ≤
𝑓𝑖(𝑠1)− 𝑓𝑖(𝑠2)

𝑠1 − 𝑠2 ≤ 𝑙+𝑖 , (5)

where 𝑙−𝑖 and 𝑙+𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) are known real scalars and
they may be positive, negative, or zero, which means that the
resulting activation functions may be non-monotonic [8].

Based on above assumptions, we will analyze and compare
the different construction of LKF in the literature.

III. DIFFERENT CONSTRUCTION OF LKF BASED ON

DIFFERENT ASSUMPTION

In the following, 4 cases will be discussed for the con-
struction of LKF for model (2).

Case 1) Assumption D0 and Assumption A0 hold.
This kind of combination is the classical assumption in the

early study on the stability of recurrent neural networks with
delays. In this Case 1, some M-matrix based stability results
are established in [1], in which the following functional were
established respectively,

𝑉𝑐1(𝑡) =

𝑛∑

𝑖=1

𝑟𝑖

(
∣𝑥𝑖(𝑡)∣+

𝑛∑

𝑗=1

∣𝑤1𝑖𝑗 ∣𝑙𝑗
∫ 𝑡

𝑡−𝜏(𝑡)
𝑥𝑗(𝑠)𝑑𝑠

)
,

(6)

with 𝜏(𝑡) ≤ 0, and

𝑉𝑐2(𝑡) =

𝑛∑

𝑖=1

𝑟𝑖

(
∣𝑥𝑖(𝑡)∣+

𝑛∑

𝑗=1

∣𝑤1𝑖𝑗 ∣𝑙𝑗
∫ 𝜎(𝑡)

𝑡

𝑥𝑗(𝑠− 𝜏(𝑠))𝑑𝑠
)
,

(7)

with 𝜏(𝑡) is differential function with 𝜏(0) = 0, 0 ≤ 𝜏(𝑡) <
1, and 𝜎(𝑡) is a differential inverse function of 𝑡− 𝜏(𝑡).

It should be pointed out that the assumption of 0 ≤ 𝜏(𝑡) <
1 stems from the need to bound the growth of variations in
the delay factor as a function of time in the viewpoint of
mathematics. Moreover, because the M-matrix based stability
results have no more variants in the expressions, therefore,
it has been replaced by the LMI-based stability results in
recent years.

In general case, if the activation function is in the form as
that in (3), the corresponding stability results are usually in
the M-matrix form or algebraic inequality form.

Observing the LKF (6) and (7), one can see that the second
term in (6) and (7) is used to compensate the effect of delayed
term in the estimation of the derivative of LKF (6) and (7).
Coefficients 𝑟𝑖 are used to satisfy the requirements of M-
matrix, and no more slack variables can be inserted in the
M-matrix based stability results.

Case 2 Assumption D0 and Assumption A1 hold.
This kind of combination is also the classical assumption

in the early study on the stability of recurrent neural networks
with delays. For example, using the Lyapunov diagonal
stability method and conventional Lyapunov stability theory,
Assumption A1 is always required.

In this Case 2, for the neural network (2), reference [2]
gave the following LKF,

𝑉𝐻𝐷𝐷(𝑡) =𝑉ℎ1(𝑡) + 𝑉ℎ2(𝑡) + 𝑉ℎ3(𝑡),

𝑉ℎ1(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) + 2

𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

𝑓𝑖(𝑠)𝑑𝑠
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𝑉ℎ2(𝑡) =

∫ 𝑡

𝑡−𝜏(𝑡)
[𝑥𝑇 (𝑠)𝑄1𝑥(𝑠) + 𝑓

𝑇 (𝑥(𝑠))𝑄2𝑓(𝑥(𝑠))]𝑑𝑠

+

∫ 𝑡

𝑡−ℎ2

𝑥𝑇 (𝑠)𝑄3𝑥(𝑠)𝑑𝑠,

𝑉ℎ3(𝑡) =

∫ 0

−ℎ2

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃, (8)

and a novel global asymptotic stability criterion
was derived. In the estimation of the derivative
of LKF (8), the main contribution of [2] is to
compute the term

∫ 0

−ℎ2

∫ 𝑡
𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃
purposely, in which its derivative is often estimated as
ℎ2�̇�

𝑇 (𝑡)𝑍1�̇�(𝑡) −
∫ 𝑡
𝑡−𝜏(𝑡) 𝑥

𝑇 (𝑠)𝑄3𝑥(𝑠)𝑑𝑠, and the term

− ∫ 𝑡−𝜏(𝑡)
𝑡−ℎ2

𝑥𝑇 (𝑠)𝑄3𝑥(𝑠)𝑑𝑠 is ignored. This treatment may
lead to considerable conservativeness.

Observing LKF (8), one can see that the time-varying
delay 𝜏(𝑡) and its upper bound ℎ2, and the activation function
form are simultaneously used, while the maximum upper
bound of change rate of activation function 𝑙𝑖 is not involved
in the LKF (8).

Reference [3] proposed the following LKF to study the
stability of (2) in the case,

𝑉𝑍𝐷𝐷(𝑡) =𝑉𝑧1(𝑡) + 𝑉𝑧2(𝑡) + 𝑉𝑧3(𝑡),

𝑉𝑧1(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) + 2

𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

𝑓𝑖(𝑠)𝑑𝑠

+ 2
𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

(𝑙𝑖𝑠− 𝑓𝑖(𝑠))𝑑𝑠

𝑉𝑧2(𝑡) =

∫ 𝑡

𝑡−𝜏(𝑡)
[𝑥𝑇 (𝑠)𝑄1𝑥(𝑠) + 𝑓

𝑇 (𝑥(𝑠))𝑄2𝑓(𝑥(𝑠))]𝑑𝑠

+

∫ 𝑡

𝑡−ℎ2

𝑥𝑇 (𝑠)𝑄4𝑥(𝑠)𝑑𝑠

𝑉𝑧3(𝑡) =

∫ 0

−ℎ2

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃, (9)

By using the Jensens integral inequality and the Projection
lemma, some global asymptotic stability criteria were estab-
lished. Obviously, the delay information and the activation
function information are simultaneously used, especially the
maximum upper bound of change rate of activation function
𝑙𝑖 is involved in the LKF (9).

Reference [4] proposed the following LKF to study the
stability of (2 in the case 2) with 𝜏(𝑡) = 0,

𝑉𝑆𝐴𝐷𝐷(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) + 2𝛼

𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

𝑓𝑖(𝑠)𝑑𝑠

+ 2(𝛼𝛾 + 𝛽)
𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑡

𝑡−𝜏
𝑓2𝑖 (𝑥𝑖(𝑠))𝑑𝑠 (10)

By using some inequalities to estimate the derivative of
𝑉𝑆𝐴𝐷𝐷(𝑡), some less conservative global asymptotical sta-
bility results were established.

It is clear that LKF (10) is a special case of LKF (8) and
LKF (9), which means that LKF (10) is the core element in
the construction of effective LKF.

For the neural network (2), reference [5] gave the follow-
ing LKF,

𝑉𝑍𝐷𝐷(𝑡)∣𝑘 :=𝑉 (𝑥(𝑡))∣𝜏(𝑡)∈[𝜏𝑘−1,𝜏𝑘],

𝑉𝑍𝐷𝐷(𝑡)∣𝑘 =𝑉𝑍1(𝑡) + 𝑉𝑍2(𝑡) + 𝑉𝑍3(𝑡) + 𝑉𝑍4(𝑡),

𝑉𝑍1(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) + 2

𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

𝑓𝑖(𝑠)𝑑𝑠,

𝑉𝑍2(𝑡) =

𝑚∑

𝑗=1

∫ 𝑡−𝜏𝑗−1

𝑡−𝜏𝑗
[𝑥𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑅𝑗 [𝑥

𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑇 𝑑𝑠,

𝑉𝑍3(𝑡) =
𝑚∑

𝑗=1

𝛿𝑗

∫ −𝜏𝑗−1

−𝜏𝑗

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑍𝑗 �̇�(𝑠)𝑑𝑠𝑑𝜃,

𝑉𝑍4(𝑡) =
𝑘−1∑

𝑗=1

∫ 𝑡−𝜏𝑗−1

𝑡−𝜏𝑗
[𝑥𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑄𝑗 [𝑥

𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑇 𝑑𝑠

+

∫ 𝑡−𝜏𝑘−1

𝑡−𝜏(𝑡)
[𝑥𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑄𝑗 [𝑥

𝑇 (𝑠), 𝑓𝑇 (𝑥(𝑠))]𝑇 𝑑𝑠,

(11)

where 0 = 𝜏0 < 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑚 = ℎ2, then the
delay interval [0, ℎ2] is decomposed into 𝑚 segments, 𝛿𝑗 =
𝜏𝑗 − 𝜏𝑗−1. For any 𝑡 ≥ 0, there should exist an integer 𝑘 ∈
{1, 2, ⋅ ⋅ ⋅ ,𝑚} such that 𝜏(𝑡) ∈ [𝜏𝑘−1, 𝜏𝑘].

It is noted that a novel term 𝑉𝑍4(𝑡) that is continuous at
𝜏(𝑡) = 𝜏𝑘 is included in the Lyapunov-Krasovskii functional
(11), which plays an important role in reducing conserva-
tiveness of the derived result. In the Lyapunov-Krasovskii
functional (11), the different matrix pairs (𝑄𝑗 , 𝑅𝑗 , 𝑍𝑗) can
be chosen on the different delay intervals [𝜏𝑗−1, 𝜏𝑗 ].

In previous works, considerable attention has been paid
to the case that the derivative of the time-varying delay
𝜏(𝑡) satisfies 𝜏(𝑡) ≤ 𝜇. In fact, 𝜏(𝑡) may have different
upper bounds in various delay intervals, 𝜏(𝑡) ≤ 𝜇𝑘, 𝜏(𝑡) ∈
[𝜏𝑘−1, 𝜏𝑘], 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝑚. In this case, the traditional
treatment in the estimation of the derivative of time varying
delay is 𝜏(𝑡) ≤ 𝜇 = max{𝜇1, ⋅ ⋅ ⋅ , 𝜇𝑚}, which may lead
to conservativeness inevitably. However, the case above can
be taken fully into account by employing the Lyapunov-
Krasovskii functional (11).

Observing the LKF (11), one can see that the LKF is a
sum of a set of sub-LKF on the piece of time delay or fractal
delay. That is, the global LKF is divided into many fractal
local LKF, which may make good use of the information
in different segment of time delay. This treatment is very
similar with the sampling control in the control community.
Correspondingly, many slack variables can be inserted into
the solution space.

Note that, in the previous references before the end of
2007 [6], time delay 𝜏(𝑡) satisfies the interval [0, ℎ2], and in
the treatment of [0, 𝜏(𝑡)], it is usually enlarged as ℎ2. In fact,
another term ℎ2−𝜏(𝑡) was also regarded as ℎ2. Therefore, the
practical interval delay 𝜏(𝑡) ∈ [0, ℎ2] was enlarged as [0, 2ℎ2]
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in the estimation of the derivative of LKF, which may lead to
a conservative result. In fact, due to the continuous of time
varying delay, ℎ2 = 𝜏(𝑡) + (ℎ2 − 𝜏(𝑡)) holds. Then in the
estimation of the derivative of LKF, ℎ2 can be decomposed
into the sum of 𝜏(𝑡) and (ℎ2 − 𝜏(𝑡)), which may decrease
the conservativeness. On the other hand, the range of time-
varying delay for NNs considered in previous references is
from 0 to an upper bound. In practice, a time-varying interval
delay is often encountered, that is, the range of delay varies
in an interval for which the lower bound is not restricted to 0.
In this case, the stability criteria for NNs with time-varying
delay in previous references are conservative because they
do not take into account the information of the lower bound
of delay [6]. This is the following Case 3 to be discussed.

Case 3 Assumption D1 and Assumption A1 hold.
In the real world, time-varying delay is a positive and

bounded function. Therefore, a usual way to describe the
delay is to restrict the delay in a interval. In theory, the delay
may attenuate to zero, which can incorporate the case of
no delay. In fact, system with or without delay is different
in essence. Therefore, different problem has different way.
Based on these understanding, it is reasonable to make the
Assumption D1 hold.

In this case, reference [6] gave the following LKF for the
neural network (2),

𝑉𝐻ℎ𝐷𝐷(𝑡) = 𝑉ℎℎ1(𝑡) + 𝑉ℎℎ2(𝑡) + 𝑉ℎℎ3(𝑡),

𝑉ℎℎ1(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) + 2

𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑥𝑖(𝑡)

0

𝑓𝑖(𝑠)𝑑𝑠

𝑉ℎℎ2(𝑡) =

∫ 𝑡

𝑡−𝜏(𝑡)
[𝑥𝑇 (𝑠)𝑄1𝑥(𝑠) + 𝑓

𝑇 (𝑥(𝑠))𝑄2𝑓(𝑥(𝑠))]𝑑𝑠

+

∫ 𝑡

𝑡−ℎ1

𝑥𝑇 (𝑠)𝑄3𝑥(𝑠)𝑑𝑠+

∫ 𝑡

𝑡−ℎ2

𝑥𝑇 (𝑠)𝑄4𝑥(𝑠)𝑑𝑠,

𝑉ℎℎ3(𝑡) =

∫ 0

−ℎ2

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃

+

∫ −ℎ1

−ℎ2

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑍2�̇�(𝑠)𝑑𝑠𝑑𝜃, (12)

and a novel global asymptotic stability criterion was derived.
In this Case 3, reference [7] considered the neural network

(2) with two additive time-varying delay components, i.e.,
𝜏(𝑡) = 𝜏1(𝑡)+ 𝜏2(𝑡), and constructed a general LKF. In fact,
if the two additive time-varying delay 𝜏1(𝑡) + 𝜏2(𝑡) is re-
garded as a single time varying delay 𝜏(𝑡), the corresponding
LKF in [7] is just the same (12). for ,

Observing the LKF (12) [6] and in [7], the common feature
is that the interval delay information is involved in the LKF
(12), and the conventional term of activation function is also
involved in (12). Obviously, the core in (12) is also the first
functional 𝑉ℎℎ1(𝑡).

Traditionally, the activation functions are assumed to
be continuous, differentiable, monotonically increasing and
bounded, such as the function of sigmoid-type. However,
in many electronic circuits, the input-output functions of
amplifiers may be neither monotonically increasing nor con-

tinuously differentiable, hence non-monotonic functions can
be more appropriate to describe the neuron activation in
designing and implementing an artificial neural network [8].
In the following, the general activation function will be
discussed.

Case 4 Assumption D1 and Assumption A2 hold.
In Assumption (5), 𝑙−𝑖 and 𝑙+𝑖 are allowed to be positive,

negative or zero. Hence, the resulting activation functions
could be non-monotonic, and more general than the usual
sigmoid functions, and Assumption (4) is a special case of
Assumption (5).

Since Assumption (5) may assume neither differentiability
nor strict monotonicity, then Assumption (5) improves the
Assumption (4). At the same time, Assumption (5) can be
equivalent to the Assumption (3), in which both activation
function may be non-monotonic. It is the Assumption (5) that
may bridge the stability results of delayed neural networks
in different kind of expression form.

Generally speaking, Assumption (3) is mainly suitable
for the stability results in the M-matrix form and algebraic
inequality dorm, while Assumption (4) and Assumption (5)
are suitable for the stability results in the matrix inequality
form, especially the linear matrix inequality form.

In the case of constant delay, reference [8] constructed
the following LKF to study the global exponential stability
of model (2),

𝑉𝐿𝐷𝐷(𝑡) =𝑒
2𝑘𝑡𝑥𝑇 (𝑡)𝑃𝑥(𝑡) + 𝑒2𝑘𝑡

∫ 𝑡

𝑡−𝜏
𝑓𝑇 (𝑥(𝑠))𝑄1𝑓(𝑥(𝑠))𝑑𝑠

+ 𝑒2𝑘𝑡
∫ 𝜏

0

∫ 𝑡

𝑡−𝜃
𝑓𝑇 (𝑥(𝑠))𝑍1𝑓(𝑥(𝑠))𝑑𝑠𝑑𝜃.

(13)

Obviously, the main elements in (13) are the same as those
in LKF (8) and LKF (9) and LKF (10).

Reference [9] discussed the exponential stability for the
neural network (2), and the following LKF was proposed,

𝑉𝑊𝐷𝐷(𝑡) = 𝑉𝑤1(𝑡) + 𝑉𝑤2(𝑡) + 𝑉𝑤3(𝑡),

𝑉𝑤1(𝑡) = 𝑥
𝑇 (𝑡)𝑃𝑥(𝑡)

𝑉𝑤2(𝑡)

=

∫ 𝑡

𝑡−𝜏(𝑡)
𝑒𝛼(𝑠−𝑡)(𝑥𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑄1(𝑥

𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑇 𝑑𝑠

+

∫ 𝑡

𝑡−𝜎
𝑒𝛼(𝑠−𝑡)(𝑥𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑄2(𝑥

𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑇 𝑑𝑠

+

∫ 𝑡

𝑡−ℎ2

𝑒𝛼(𝑠−𝑡)(𝑥𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑄3(𝑥
𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑇 𝑑𝑠

+

∫ 𝑡

𝑡−ℎ1

𝑒𝛼(𝑠−𝑡)(𝑥𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑄4(𝑥
𝑇 (𝑠) 𝑓𝑇 (𝑥(𝑠)))𝑇 𝑑𝑠

𝑉𝑤3(𝑡) =

∫ 0

−𝜎

∫ 𝑡

𝑡+𝜃

𝑒𝛼(𝑠−𝑡)�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃

+

∫ −ℎ1

−𝜎

∫ 𝑡

𝑡+𝜃

𝑒𝛼(𝑠−𝑡)�̇�𝑇 (𝑠)𝑍2�̇�(𝑠)𝑑𝑠𝑑𝜃, (14)

where 𝜎 = (ℎ1 + ℎ2)/2.
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Comparing the LKF (14) with LKF (8)-LKF (13), the
mean value of subinterval of delay was involved in the LKF
(14), which meant that more delay information was used in
the LKF.

Reference [10] studied the following recurrent neural
networks with time delay,

�̇�(𝑡) = −𝐴𝑥(𝑡) +𝑊0𝑓(𝑊2𝑥(𝑡)) +𝑊1𝑓(𝑊2𝑥(𝑡− 𝜏(𝑡))),
(15)

which has combined the local field model and static model
in a unified framework. In the delay-independent stability
analysis, by introducing more information on the activa-
tion functions of the neurons into the chosen Lyapunov-
Krasovskii functional (LKF), a new delay-independent sta-
bility criterion is obtained in terms of a simple linear matrix
inequality (LMI). In the delay-dependent stability analysis,
by employing an integral inequality and convex combination
technique, some novel delay-dependent stability criteria are
derived.

Specially, in reference [10], the following LKFs were
proposed, respectively,

𝑉𝐻𝐷𝐼(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) +

∫ 𝑡

𝑡−𝜏(𝑡)
𝑥𝑇 (𝑠)𝑄𝑥(𝑠)𝑑𝑠

+ 2
𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑊2𝑖𝑥(𝑡)

0

[𝑓𝑖(𝑠)− 𝑙−𝑖 ]𝑑𝑠

+ 2
𝑛∑

𝑖=1

𝛿𝑖

∫ 𝑊2𝑖𝑥(𝑡)

0

[𝑙+𝑖 − 𝑓𝑖(𝑠)]𝑑𝑠, (16)

and

𝑉𝐻𝐷𝐷(𝑡) =𝑉ℎ1(𝑡) + 𝑉ℎ2(𝑡) + 𝑉ℎ3(𝑡),

𝑉ℎ1(𝑡) =𝑥
𝑇 (𝑡)𝑃𝑥(𝑡) +

∫ 𝑡−ℎ1

𝑡−𝜏(𝑡)
𝑥𝑇 (𝑠)𝑄𝑥(𝑠)𝑑𝑠

+ 2
𝑛∑

𝑖=1

𝜌𝑖

∫ 𝑊2𝑖𝑥(𝑡)

0

[𝑓𝑖(𝑠)− 𝑙−𝑖 ]𝑑𝑠

+ 2
𝑛∑

𝑖=1

𝛿𝑖

∫ 𝑊2𝑖𝑥(𝑡)

0

[𝑙+𝑖 − 𝑓𝑖(𝑠)]𝑑𝑠,

𝑉ℎ2(𝑡) =

∫ 𝑡

𝑡−ℎ1

𝑥𝑇 (𝑠)𝑄1𝑥(𝑠)𝑑𝑠+

∫ 𝑡−ℎ1

𝑡−ℎ2

𝑥𝑇 (𝑠)𝑄2𝑥(𝑠)𝑑𝑠,

𝑉ℎ3(𝑡) =

∫ 0

−ℎ1

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑅1�̇�(𝑠)𝑑𝑠𝑑𝜃

+

∫ −ℎ1

−ℎ2

∫ 𝑡

𝑡+𝜃

�̇�𝑇 (𝑠)𝑅2�̇�(𝑠)𝑑𝑠𝑑𝜃, (17)

which are designed for delay-independent stability criterion
and delay-dependent stability criterion, respectively.

The LKF (16) is different from the ones in [12] and [13].
Both 𝑙+𝑖 and 𝑙−𝑖 are taken into account in (16), while only
𝑙−𝑖 is considered in [12] and [13]. Therefore, the LKF (16)
is more general than the ones in [12] and [13].

The chosen LKF in (17) is different from that ex-
isting in [6] since there are some redundancies exist
in the LKF in [6]. In fact, LKF in [6] includes such

two terms ℒ1 =
∫ 0

−ℎ2

∫ 𝑡
𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃 and ℒ2 =
∫ −ℎ1

−ℎ2

∫ 𝑡
𝑡+𝜃

�̇�𝑇 (𝑠)𝑍2�̇�(𝑠)𝑑𝑠𝑑𝜃, where 𝑍1 > 0, 𝑍2 > 0.
Clearly, ℒ1 can be decomposed into ℒ1 = ℒ11 + ℒ12,
where ℒ11 =

∫ −ℎ1

−ℎ2

∫ 𝑡
𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃 and ℒ12 =
∫ 0

−ℎ1

∫ 𝑡
𝑡+𝜃

�̇�𝑇 (𝑠)𝑍1�̇�(𝑠)𝑑𝑠𝑑𝜃. Obviously, ℒ11 is redundant
because it can be absorbed by ℒ2 with 𝑍2. Nevertheless,
such redundancies do not exist in the LKF (17).

Summarizing up above 4 cases, the construction of LKF
is mainly concerned with the types of activation function
and the restriction of time-varying delay. In general, more
information about the recurrent neural network or the system
model are involved in the LKF, the derived the stability
results may be less conservative at the expense of the
computational complexity and the complicated expression
form. While if the core information of the system is involved
in the LKF, the obtained stability results may also be effective
with less computational complexity. Therefore, for different
purpose of the design, one may choose different level of
LKF. Pursuing the optimal performance of the quantitative
stability, it seem no a limit, while the expense of the devotion
may increase sharply. If we only want to find a satisfactory
performance, it is better to construct a LKF involving the
core elements of the system. No free lunch.

Another topic is to estimate the derivative of the LKF,
despite the construction of the LKF is compact. This aspect
includes many mathematical skills and mathematical tool,
such as Jensens integral inequality, the projection lemma, free
weight matrix method, integral inequality and convex combi-
nation technique. Altogether, a suitable LKF can significantly
decrease the conservativeness of the stability criterion if some
suitable mathematical estimation methods are used in the
derivative of LKF.

IV. CONCLUSIONS

In this paper, a brief review on the construction of
Lyapunov-Krasovskii functional in the stability proof of
recurrent neural networks with single time-varying delay
was presented. The emphasis is placed on the combination
of the time delay information and the activation function
information. Different combination of time delay and activa-
tion function, the stability result for the concerned delayed
neural networks may be different. No a general method can
cover all the case. Even for the case of constant delay,
it is not reasonable to expect that the stability result of
neural networks with constant delay is a special case of
stability result of neural networks with time-varying delay,
because different case may construct different LKF and adopt
different estimation method to compute the derivative of
LKF. This brief review will be helpful to the construction
of LKF in the stability analysis of recurrent neural networks
with delay, and good performance can be expected to obtain.
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