
 
 

  
Abstract—This paper investigates the adaptive actuator 

failure compensation control for a class of uncertain multi input 
single out (MISO) discrete time systems with triangular forms. 
The systems contain the actuator faults of both loss of 
effectiveness and lock-in-place. With the help of radial basis 
function neural networks (RBFNN) to approximate the 
unknown nonlinear functions, an adaptive RBFNN 
fault-tolerant control (FTC) scheme is designed. Compared with 
some exist result in which solving linear matrix inequality (LMI) 
is required, we introduce the backstepping technique to achieve 
the FTC task. It is proved that the proposed control approach 
can guarantee that all the signals of the closed-loop system are 
bounded and that the output can successfully track a reference 
signal in the presence of the actuator failures. Finally, 
simulation results are provided to confirm the effectiveness of 
the control approach. 

I. INTRODUCTION 
N THE RECENT, the FTC technique has been obtained 

many applications and has been attracted much attention to 
researchers. Due to the growing demand for reliability, 

maintainability, and survivability in industrial processes, it is 
increasingly important to ensure their safety and reliability. 
As is well known, faults may cause control system 
performance deterioration, and lead to instability and even 
catastrophic accidents. This has motivated researchers to 
concentrate on FTC, which is capable in both of automatically 
compensating for the effects of faults and of maintaining the 
performance of the controlled system, at some acceptable 
level, even in the presence of faults. Generally speaking, fault 
tolerance can be achieved either passively by using feedback 
control laws that are robust to possible system faults, or 
actively by means of faults diagnosis and accommodation 
architecture. Survey papers [1] provided excellent overviews 
of the research work on FTC. 

To handle the problem of system with actuator or sensor 
faults, many FTC approaches had been developed. The 
authors in [2] presented adaptive fault-tolerant controllers for 
linear systems with both losses of effectiveness and 
lock-in-place actuator faults. Other FTC strategies for 
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nonlinear systems were developed in [3]-[4]. Adaptive 
fault-tolerant controllers for a class of single input single 
output (SISO) nonlinear systems were developed in [3] with 
the same actuator faults as in [2].  Adaptive actuator failure 
compensation for nonlinear multi input multi output (MIMO) 
systems was proposed in [4] and this compensator was 
successfully applied in an aircraft system.  One passive FTC 
law and two active FTC laws were designed in [5] to ensure 
the controlled synchronization of the complex interconnected 
neural networks in the presence of sensor faults. 

In the above results, the FTC approaches were obtained for 
nonlinear systems in the continuous time forms. It is well 
known that the discrete time systems can be more veritably to 
describe the practical problem in control systems than the 
continuous time systems. To this end, some researchers had 
devoted so many efforts to study the FTC problem of 
nonlinear discrete-time systems. In [6], the authors studied 
the stochastic stability and controller design for the nominal 
discrete time FTC system, and then, [7] extended the results 
to include norm bounded parameter uncertainties in the 
modeling of discrete time FTC system. Parameter 
uncertainties [8] and stochastic stability with state delays [9] 
were studied for a class of discrete time fault tolerant control 
system, respectively. By using a newly constructed Lyapunov 
functional and the average dwell time scheme, a FTC method 
for a class of discrete-time switched systems with 
time-varying delay and actuator saturation is investigated in 
[10]. However, these researches [6-10] carried the analysis 
utilizing a less unified approach that lead to stability results in 
terms of large matrix equations that are difficult to solve and 
to test. In addition to this, the above studies [6-10] did not 
centralized where the block triangular forms were needed.  

It is worth pointing out that the problems of actuator or 
sensor faults in the discrete time systems with triangular 
forms are more general and common. This dynamic will face 
more difficulties to arrive the FTC object. Some previous 
achievements were presented to overcome the control 
problems of nonlinear continues time systems with a 
triangular structure such as based on SISO continues time 
systems [11], based on MIMO continues time systems [12] 
and based on fault diagnosis [13]. This motivated us to extend 
the scheme in discrete time systems for this study. 

This paper focuses on the adaptive actuator failure 
compensation control for a class of uncertain MISO discrete 
time systems with triangular forms. The actuator faults of 
both loss of effectiveness and lock-in-place are presented in 
the systems. By utilizing RBFNN to approximate the 
unknown nonlinear functions, an adaptive FTC scheme is 
designed. In contrast to some exist result in which solving 
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LMI is needed, we make full use of the backstepping 
technique to achieve the FTC object. It is proved that the 
proposed control approach can guarantee that the output can 
successfully track a reference signal in the presence of the 
actuator failures and that all the signals of the closed-loop 
system are bounded. Finally, in order to confirm the 
effectiveness of the control approach, a simulation study is 
given. 

II.  PROBLEM AND FORMULATION 

A.  System description 
Consider the following nonlinear MISO discrete time 

systems in block-triangular forms which may be subject to 
actuator faults described as 

            

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
( )

1

1

1

1

1, , 1

1

i i i i i i

n n n m

k

x k f x k g x k x k

i n

x k f x k b u k d k

y x k

+⎧ + = +
⎪

= −⎪
⎨ + = + +⎪
⎪ =⎩

…
          (1) 

where ( ) ( ) ( )1 , , , 1, , ,
T i

i ix k x k x k R i n= ∈ =⎡ ⎤⎣ ⎦" "  ( )u k =  

[ 1u , ]2 , , T m
mu u R∈"   and ky R∈  are the state variables, 

the inputs and the output of the systems, respectively; 
( )( )i if x k  and ( )( ) , 1, , 1i ig x k i n= −"  are unknown 

nonlinear dynamics; mb  [ ]1 2, , , m
mb b b R= ∈"  are positive 

constant vectors. ( )1d k  is the unknown but bounded 

disturbance with 1 Md d≤ .  
The actuator faults considered in this paper are either 

lock-in-place or loss of effectiveness, which are described in 
[14-15] in detail such as 

Lock-in-place model:  

                         
( )
{ } { }1 2

, ,

, , , 1, 2, ,

F
j j j

p

u k u k k

j j j j m

= ≥

∈ ⊂" "
                (2) 

where ju  stands for the place, where the j th−  actuator in 
the systems is stuck. jk  is the time instant at which the 
lock-in-place fault occurs.  
   Loss of effectiveness model: 

   
( ) ( ) ( )
{ } { }1 2

,

, , , 1, 2, ,

F
l l l l

p

u k k v k k k

l j j j m

η= ≥

∈ ∩" "
               (3) 

where ( )lv k  is the l th−  applied control input of the systems, 

{ }1 2, , , pj j j"  is the complementary set of the 

{ }1 2, , , pj j j" , and lk  is the time instant at which the loss of 

effectiveness fault takes place. ( ) , 1l lkη η⎡ ⎤∈ ⎣ ⎦  is the 

effectiveness factor of the corresponding actuator ( )F
lu k , 

and 0 1lη< ≤  is the lower bound of ( )l kη . Generally 

speaking, the l th−  applied control input is free of the 

actuator failures if  =1lη . Thus, taking (2) and (3) into 

account, the control input , 1,2, ,su s m= "  can be described 
as 

 ( ) ( ) ( ) ( )1s s s s s su k k v k uδ η δ= − +                         (4) 

where sδ  is the lock factor described as follows: 

 
1

0
s

if the s th actuator
in the system is stuck
otherwise

δ
−⎧

⎪= ⎨
⎪
⎩

  (5) 

Remark 1: The uniqueness of ik  indicates that a failure 
occurs only once on the i th−  actuator. Hence there exists a 
finite rK  denoting the time instant of the last failure. Such an 
assumption on the finite number of actuator failures can be 
found in many previous literature, see for example, [16-17]. 

B. Preliminaries and control objective 
For the system  (1) and the actuator failures (4), it needs to 

make the assumptions as follows. 
Assumption 1: The signs of ( )( ) , 1, ,i ig x k i n= …  are 

known and there exist the known constants , 0i ig g >  such 

that ig ≤  ( )( ) ( ), .n
i i i ng x k g x k R≤ ∀ ∈ Ω ⊂  

Assumption 2: The desired trajectory ( ) , 0d yy k k∈ Ω ∀ >  
is smooth and known where yΩ  is a bounded compact set. 
  Assumption 3 ([16]): The system (1) is so constructed that 

when any up to 1p −  actuators stuck at some unknown 
places, the other(s) may lose effectiveness as (3), the 
closed-loop system can still be driven to achieve the 
following control objective. 

The control objective is to design an adaptive FTC scheme 
for the plant (1) with actuator faults so that: 1) all the signals 
in the closed-loop system are bounded and 2) the system 
output tracks the desired reference signal ( )dy k  to a small 
compact set. 

C. RBFNN Approximation Property 
As we all known, RBFNN has been frequently used as 

function approximators. In this paper, RBFNNs is used to 
approximate the continuous function ( )NNf y   

 ( ) ( ),NN Tf y yθ φ θ=  (6) 

where qy R∈  is the input variable of the RBFNNs, 

[ ]1, , T
lθ θ θ= "  is the weight vector with the RBFNNs node 

number l , ( )yφ  is the smooth basis vector to be 

( ) ( ) ( )1 , ,
T

ly y yφ φ φ= ⎡ ⎤⎣ ⎦"  and  ( )i yφ is chosen as the 
commonly used Gaussion functions 

 ( ) ( ) ( )
2exp , 1, ,
T

i i
i

i

y y
y i l

μ μ
φ

τ

⎡ ⎤− − −
= =⎢ ⎥

⎢ ⎥⎣ ⎦
"  (7) 

where 1, ,
T

i i iqμ μ μ⎡ ⎤= ⎣ ⎦"  and iτ  are the center and the width 
of the Gaussion functions, respectively. 
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III. ADAPTIVE LAW NN CONTROLLER DESIGNS 
Consider the strict-feedback MISO nonlinear discrete-time 

system described in (1). Because Assumption 1 is only valid 
on the compact set Ω , it needs to guarantee the system states 
remaining in Ω  for all time. 

With the help of the transformation process in [18], the 
original strict feedback from (1) is equivalent to  

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

( )

1 1 1 2

1 1 1

1
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1
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⎧ + = + + −
⎪
⎪
⎪
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+ = + +⎪
⎪ =⎩
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c c
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For convenience in analysis and discussion, let 
( ) ( )( )i i nF k F x k= , ( ) ( )( )i i nG k G x k= , ( )nf k =  

( )( )n nf x k   and ( ) ( )( )n n ng k g x k= , 1, , 1i n= −… . It is 

clear that the value of ( )( ) , 1, , 1i nG x k i n= −"  satisfy 

( )( )i ni
g G x k≤  ig≤  , ( )nx k∀ ∈ Ω  under Assumption 1. 

Step 1: Define ( ) ( ) ( )1 1 dz k x k y k= −  and its thn  
difference is 

( ) ( )1 1( ) dz k n x k n y k n+ = + − +  

    ( ) ( ) ( ) ( )1 1 2 1 dF k G k x k n y k n= + + − − +  (9) 

By viewing ( )2 1x k n+ −  as a virtual control input in  (9) 
and choosing 

( ) ( ) ( ) ( ) ( )2 1 1
1

11 dx k n k F k y k n
G k

α ∗+ − = = − − +⎡ ⎤⎣ ⎦  (10) 

It can be known that ( )1 0k nη + = . But ( )1F k  and ( )1G k  

are unknown, ( )1 kα ∗  can not be implemented. Therefore, 
with the aid of the approximation property of RBFNNs, 

( )1 kα ∗  can be approximated as follows 

 ( ) ( )( ) ( )( )1 1 1 1 1 1
Tk S k S kα θ ε∗ ∗= Φ +  (11) 

where ( ) ( ) ( ) 1
1 1,

TT n
n dS k x k y k n R +⎡ ⎤= + ∈ Ω ⊂⎣ ⎦ . 

Construct the adaptive virtual control input as follows 
( ) ( ) ( )2 1 21 1x k n k z k nα+ − = + + −  

    ( )( ) ( ) ( )1 1 1 2
ˆ 1T S k k z k nθ= Φ + + −  (12) 

Choose the following adaptation law for ( )1̂ kθ  

( ) ( )1 1 1 1
ˆ ˆ1k mθ θ+ = − Γ  

( )( ) ( ) ( )1 1 1 1 1 1 1
ˆ1S m z k mσ θ⎡ ⎤× Φ + +⎣ ⎦  (13) 

with 1 1m k n= − +  and 1 1 0TΓ = Γ >  being diagonal constant 
matrix and 1 0σ >  is the design parameter.  

Substituting (10)-(12) into (9) yields 
( ) ( ) ( )( ) ( )1 1 1 1 1

Tz k n G k S k kθ+ = Φ �  

( ) ( ) ( )( )1 2 1 11G k z k n S kε⎡ ⎤+ + − −⎣ ⎦  (14) 
From (14), we have 

( ) ( ) ( )( ) ( )1 1 1 1 1 1 1 11 Tz k G m S m mθ+ = Φ �  

 ( ) ( ) ( )( )1 1 2 1 1 1G m z k S mε⎡ ⎤+ −⎣ ⎦  (15) 
Thus, it can be obtained from (15) that 

( )( ) ( ) ( ) ( )1 1 1 1 1 1 1 11 /T S m m z k G mθΦ = +�  

          ( ) ( )( )2 1 1 1z k S mε− +  (16) 
Choose the Lyapunov function candidate 

 ( ) ( ) ( ) ( )
1

2 1
1 1 1 1 1 1 1

01

1 n
T

j

V k z k m j m j
g

θ θ
−

−

=

= + + Γ +∑ � �  (17) 

The first difference of  (17) is  

( ) ( ) ( )2 2 1
1 1 1 1 1

1

1 1 1TV z k z k k
g

θ −⎡ ⎤Δ = + − + + Γ⎣ ⎦
�  

 ( ) ( ) ( )1
1 1 1 1 1 11 Tk m mθ θ θ−× + − Γ� � �  (18) 

Substituting (16) into (18), the above equation becomes 

( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( )( ) ( )
( )( ) ( ) ( )

2
1 1 2 1

1

2
1 1 1 1 1

1

2
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 2 1

1 2 1

1
ˆ2 1

T

T

V z k z k z k
g

z k S m z k
g

S m S m z k

S m m z k

ε

σ θ

Δ ≤ − + + +

− − +

+ Φ Γ Φ +

+ Φ Γ +

 

( ) ( ) ( )
22

1 1 1 1 1 1 1 1 1
ˆ ˆ2 T m m mσ θ θ σ θ− + Γ�  (19) 

( )( )1 1 1z mΦ  is a vector which is composed of Gaussian 

functions. It is obvious that  ( )( ) ( )( )1 1 1 1 1 1 1
T S m S m lΦ Φ ≤  

where  1l  is the node number of the RBFNNs. Then, one has 

  ( )( ) ( )( ) ( ) ( )2 * 2
1 1 1 1 1 1 1 1 1 1 11 1T S m S m z k l z kλΦ Γ Φ + ≤ +   

where *
1λ  is the maximum eigenvalue of the matrix 1Γ . 

Using the Young’s inequality, we have 

( )( ) ( ) ( )* 2 2
1 1 1 1

1 1 1 1 *
1 1

1
2 1

z k g
S m z k

g
λ εε

λ
+

− + ≤ +   

( ) ( ) ( ) ( )* 2 2
1 1 1 2

2 1 *
1 1

1
2 1

z k g z k
z k z k

g
λ

λ
+

+ ≤ +   

( )( ) ( ) ( )1 1 1 1 1 1 1 1
ˆ2 1T S m m z kσ θΦ Γ +  

                       
( ) ( )

* 2 21 1 1 2 *
1 1 1 1 1

1

1 ˆl z k
g m

g
λ

σ λ θ
+

≤ +   
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( ) ( ) ( ) ( )( )22 2*
1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ2 T m m m mσ θ θ σ θ θ θ= + −� �   

Based on the above facts, (19) can be rewritten as 

( ) ( ) ( ) ( )
2

1 22 21
1 1 1 1*

1 11

11
g z k

V k z k z k
g g
ρ β

λ
Δ ≤ − + + + −  

            ( ) ( )
2* *

1 1 1 1 1 1 1 1
ˆ1 g mσ σ λ σ λ θ− − −  (20) 

where * * *
1 1 1 1 1 1 11 2 l g lρ λ λ λ= − − − ,

2 2*1 1
1 1 1*

1

g εβ σ θ
λ

= + .  

Step ( )2 ≤i i < n :  Define ( ) ( ) ( )1 1i i i iz k x k mα − −= −  

with 1im k n− = − 1i+ −  and its ( )1n i th− +  difference can be 
expressed as 

( ) ( ) ( )1i i iz k n i F k G k+ − + = +   

( ) ( )1 1i ix k n i kα+ −× + − −  (21) 
Similar to the procedure of step 1, designing the following 

virtual control  
 ( ) ( )( ) ( )ˆT

i i i ik S k kα θ= Φ   (22) 

Then, one get  
( )( ) ( ) ( ) ( )1 /T

i i i i i i i iS m m z k G mθΦ = +�   

                    ( ) ( )( )1i i i iz k z mε+− +  (23) 

Choose the following adaptation law for ( )î kθ  

( ) ( )ˆ ˆ1i i ik mθ θ+ =  

( )( ) ( ) ( )ˆ1i i i i i i i iS m z k mσ θ⎡ ⎤−Γ × Φ + +⎣ ⎦  (24)  

where im k n i= − + , 0T
i iΓ = Γ > is a diagonal constant 

matrix and 0iσ >  is the design parameter. 
Choose the Lyapunov function candidate 

( ) ( ) ( ) ( )2 1

0

1 n i
T

i i i i i i i
ji

V k z k m j m j
g

θ θ
−

−

=

= + + Γ +∑ � �  (25) 

The first difference of  (25) is  

( ) ( )2 21 1i i i
i

V z k z k
g
⎡ ⎤Δ = + −⎣ ⎦  

 ( ) ( ) ( ) ( )1 11 1T T
i i i i i i i ik k m mθ θ θ θ− −+ + Γ + − Γ� � � �  (26) 

Using the Young’s inequality, one has 
    ( )( ) ( )( ) ( ) ( )2 * 21 1T

i i i i i i i i i i iS m S m z k l z kλΦ Γ Φ + ≤ +   

( )( ) ( ) ( )* 2 2

*

1
2 1 i i i i

i i i i
i i

z k g
S m z k

g
λ εε

λ
+

− + ≤ +   

( ) ( ) ( ) ( )* 2 2
1

1 *

1
2 1 i i i i

i i
i i

z k g z k
z k z k

g
λ

λ
+

+

+
+ ≤ +   

( )( ) ( ) ( )ˆ2 1T
i i i i i i i iS m m z kσ θΦ Γ +  

                          
( ) ( )

* 2 22 *1 ˆi i i
i i i i i

i

l z k
g m

g
λ

σ λ θ
+

≤ +   

( ) ( ) ( ) ( )( )22 2*ˆ ˆ2 T
i i i i i i i i i i im m m mσ θ θ σ θ θ θ= + −� �   

where *
iλ  is the maximum eigenvalue of the matrix iΓ . 

Based on the above facts, one gets 

( ) ( ) ( ) ( )2 2 2 *
1

11 /i
i i i i i i

i i

V k z k z k g z k
g g
ρ λ+Δ ≤ − + − +  

  ( ) ( )
2* * ˆ1i i i i i i i i ig mβ σ σ λ σ λ θ+ − − −  (27) 

where * * *1 2i i i i i i il g lρ λ λ λ= − − − ,
2

2*
*

i i
i i i

i

g εβ σ θ
λ

= + . 

Step :n  Define ( ) ( ) ( )1 1n n nz k x k kα −= − −  and its first 
difference is 

( ) ( )( ) ( ) ( ) ( )1 11 +n n n n mz k f x k d k k b u kα −+ = + −  (28) 
Similar to the scheme adopted in [4, 17], we utilize the 

proportional-actuation method as  
                                     ( ) 0s s sv x uω=                          (29) 

where ( )0 s s s sxω ω ω< ≤ ≤ , { }1, ,s m∈ " . sω  and sω  are 

the lower and upper bounds of  ( )s sxω , respectively.  
Thus, one obtains 

 
( ) ( )

( ) ( )
1

1

1 , ,

0
, ,

p

p

m

m s s s s
s s j j

s s s s
s j j

b u k b u k b u

b k x uη ω
= =

≠

= =

+

∑ ∑

∑
"

"

  (30) 

Denote ideal control input as 

( ) ( )( ) ( )
1

1*
0 1

, , p

s n n n s s
s j j

u g f x k k b uα−
−

=

⎛ ⎞
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑
"

  (31) 

where ( ) ( )
1 , ,

0
p

s s s s s
s j j

g b k xη ω
≠

= >∑
"

.  

Note that the ideal control input in (31) is unavailable and it 
can be approximated as 
 ( ) ( )( ) ( )( )0

T
n n n n nu k S k S kθ ε∗ ∗= Φ +            (32) 

where ( ) ( ) ( ) 1
1,

TT n
n n n nS k x k k Rα +

−⎡ ⎤= ∈ Ω ⊂⎣ ⎦ .   

Define ( ) ( )ˆ
n n nk kθ θ θ ∗= −� . Construct the adaptation law 

as 
( ) ( )ˆ ˆ1n n nk kθ θ+ = − Γ  

( )( ) ( ) ( )ˆ1n n n n nS k z k kσ θ⎡ ⎤× Φ + +⎣ ⎦       (33)  

where 0T
n nΓ = Γ >  is a diagonal constant matrix and 0nσ >  

is a design parameter. 
Construct the following control law 

                              ( )( ) ( )0
ˆT

n n nu S k kθ= Φ                   (34) 
Thus, (28) becomes 

( ) ( )( ) ( )( ) ( )11 T
n s n n n n nz k g S k S k d kθ ε⎡ ⎤+ = Φ − +⎣ ⎦

�  (35) 
Then, it follows that 

( )( ) ( ) ( )
( ) ( )( )1

1 /T
n n n n s

s n n

S k k z k g

d k g S k

θ

ε

Φ = +

− +

�
 (36) 

Choose the Lyapunov function candidate 

( ) ( ) ( ) ( )2 11 T
n n n n n

s

V k z k k k
g

θ θ−= + Γ� �               (37) 

Its first difference is 
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( ) ( )2 21 1n n n
s

V z k z k
g

⎡ ⎤Δ = + −⎣ ⎦  

          ( ) ( ) ( ) ( )1 11 1T T
n n n n n nk k k kθ θ θ θ− −+ + Γ + − Γ� � � �         (38) 

From (33), it can be obtained 
( ) ( )1n n nk kθ θ+ = − Γ� �  

( )( ) ( ) ( )ˆ1n n n n nS k z k kσ θ⎡ ⎤× Φ + +⎣ ⎦       (39) 

Substituting (36) and(39) into (38)  leads to 

( ) ( )

( ) ( ) ( )
( )( ) ( )( ) ( )

( )( ) ( ) ( )

2 2

1

2

1 11

2 1 2 1 /

1
ˆ2 1

n n n
s s

n n n s

T
n n n n n n

T
n n n n n n

V z k z k
g g

z k d k z k g

S k S k z k

S k k z k

ε

σ θ

Δ = − + −

− + + +

+ Φ Γ Φ +

+ Φ Γ +

                   

( ) ( ) ( ) ( )2ˆ ˆ ˆ2 TT
n n n n n n nk k k kσ θ θ σ θ θ− + Γ�      (40) 

Obviously, ( )( ) ( )( )T
n n n n nS k S k lΦ Φ ≤  where nl  is the 

node number of the RBFNN. 
Using the Young’s inequality as 

    ( )( ) ( )( ) ( ) ( )2 * 21 1T
n n n n n n n n nS k S k z k l z kλΦ Γ Φ + ≤ +   

( ) ( )* 2 2

*

1
2 1 n n s n

n n
s n

z k g
z k

g
λ εε

λ
+

− + ≤ +  

( )( ) ( ) ( )ˆ2 1T
n n n n n nS k k z kσ θΦ Γ +  

                         
( ) ( )

* 2 22 *1 ˆn n n
n s n n

s

l z k
g k

g
λ

σ λ θ
+

≤ +   

( ) ( ) ( ) ( )( )22 2*ˆ ˆ2 T
n n k n n n nk k k kσ θ θ σ θ θ θ− = − + −� �   

( ) ( ) ( )* 22
1

*

2 1 1n n nM

s sn s

d k z k z kd
g gg

λ
λ

+ +
≤ +  

where *
nλ  is the maximum eigenvalue of the matrix nΓ . 

Combining the above inequation with (40) results in 

( ) ( )

( ) (

2

2 *

1

1 1

n
n n n

s

n n n n
s

V k k
g

k
g

ρ η β

η σ σ λ

Δ ≤ − + +

− − −
 

                    ) ( )
2* ˆ

s n n ng kσ λ θ−                             (41) 

where  
* * *1 2n n n n s n nl g lρ λ λ λ= − − −  

and  
2 22*

* *
s n M

n n n
n n s

g d
g

εβ σ θ
λ λ

= + + . 

Theorem 1: Consider the system (1) subject to actuator 
faults. Under Assumptions 1-3, by designing the virtual 
control (12), (22) and the actual control input (34), and 
constructing the adaptation laws (13), (24) and (33), the 
presented methods guarantees that all the signals in the closed 
loop system is bounded and the system output tracks the 
reference signal to a compact set. 

IV. SIMULATION EXAMPLE 
To verify the effectiveness of the proposed approach, 

consider a class of nonlinear MISO systems as 

  

( ) ( )
( ) ( )( )( ) ( )

( ) ( )
( ) ( ) ( )

( )

2
1

1 1 22
1

1
2 2 2

1 2

1

1.4
1 0.1 0.005cos

1

1 0.2
1 m

k

x k
x k x k x k

x k

x k
x k b u k

x k x k

y x k

+ = + +
+

+ = + +
+ +

=

  (42) 

where 2m = , [ ] [ ]2 1 2, 0.8, 0.8b b b= = , ( ) [ ]1 2, Tu k u u= .   

 
Fig.1.The curves of ( ).1x k  (blue) and dy  (red) 

The FTC objective is to make the output ky  follow a 

desired reference signal ( ) 10.05sindy k x=  and all the 
signals of the closed-loop system are bounded.   

 
Fig.2.The curves of  1u  and 2u  

In the simulation, the actuator faults are chosen as 1u =  

1 0 0 20.7 , 1.2u u uω = = , when 3000k s≥ .   The basis vector 
of the neural networks is chosen as the commonly used 
Gaussion functions. The RBFNN ( )( ) ( )1 1 1̂

T S k kθΦ  contains 

25 nodes, with centers 1, 1, , 25i iμ = "  evenly spaced in 

[ ] [ ] [ ]5,5 5,5 5,5− × − × − , and width 1 2iτ = .The RBFNN 
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( )( ) ( )2 2 2̂
T S k kθΦ  contains 25 nodes, with centers 
2 , 1, , 25i iμ = "  evenly spaced in [ ] [ ] [ ]4,4 4,4 4,4− × − × − , 

and widths 2 1.5iτ = . The design parameters of the proposed 
control approach are chosen as 1 0.03IΓ = , 1 0.02σ = , 

2 0.01IΓ = , 2 0.5σ = . The initial values for 1θ  and 2θ  are 
given as 1 2 0.5θ θ= = , and the initial condition for the 

system states is chosen as ( ) ( )1 20 0.2, 0 0.5x x= = − .  

 
Fig.3. The curves of 0u  

Figs. 1-3 illustrate the simulation results which are 
obtained by applying the proposed FTC approach. The 
tracking performance is given in Fig. 1 and it can be seen that 
a good tracking trajectory is achieved. Figs. 2 shows the 
trajectories of the control inputs 1u   and 2u . The trajectories 
of  0u  is described in Fig. 3.  It can be observed from Figs. 
1-3 that these variables are bounded.  

V. CONCLUSION 
In this paper, an adaptive FTC scheme was developed to 

solve the tracking problem for a class of uncertain nonlinear 
MISO discrete time systems in the presence of triangular 
forms. RBF neural networks are used to approximate the 
unknown functions. Backstepping design procedure is 
employed to construct the control input and the adaptation 
laws. Based on Lyapunov stability theory, it is proven that all 
the signals of the resulting closed-loop system are stale and 
the tracking error can be reduced to a small compact set. A 
simulation example is studied to verify the effectiveness of 
the proposed approach. 
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