
Deep Process Neural Network for Temporal Deep Learning

Wenhao Huang, Haikun Hong, Guojie Song, Kunqing Xie

Abstract— Process neural network is widely used in modeling
temporal process inputs in neural networks. Traditional process
neural network is usually limited in structure of single hidden
layer due to the unfavorable training strategies of neural
network with multiple hidden layers and complex temporal
weights in process neural network. Deep learning has emerged
as an effective pre-training method for neural network with
multiple hidden layers. Though deep learning is usually limited
in static inputs, it provided us a good solution for training
neural network with multiple hidden layers. In this paper,
we extended process neural network to deep process neural
network. Two basic structures of deep process neural network
are discussed. One is the accumulation first deep process neural
network and the other is accumulation last deep process neural
network. We could build any architecture of deep process neural
network based on those two structures. Temporal process inputs
are represented as sequences in this work for the purpose
of unsupervised feature learning with less prior knowledge.
Based on this, we proposed learning algorithms for two basic
structures inspired by the numerical learning approach for
process neural network and the auto-encoder in deep learning.
Finally, extensive experiments demonstrated that deep process
neural network is effective in tasks with temporal process
inputs. Accuracy of deep process neural network is higher than
traditional process neural network while time complexity is near
in the task of traffic flow prediction in highway system.

I. INTRODUCTION

Research of neural networks has been lasting for several
decades. Many different structures of neural networks such as
perceptron[17], feed-forward neural networks[1] and back-
propagation neural networks[16] have been proposed and
discussed in extensive researches. However, inputs for these
neural networks are independent of time. Outputs are usually
not only related with inputs in a static time but also related
with accumulation of inputs for a period of time. For
example, traffic flow (number of vehicles) on a road in a
specific time is related with traffic flow on nearby roads
in previous several time intervals. Inspired by biological
observations that a neuron is activated by the accumulation
of related input neurons for a time period, He et al. proposed
process neural network (PNN) to deal with temporal process
inputs in neural networks[5][6]. Inputs and weights between
two layers are represented as functions of time or time-
varying sequences in PNN. PNN has been applied in many
areas such as simulation of oil reservoir exploitation[5],
worm harm prediction[14] and churn prediction in mobile
communications[14].

As same as many other neural networks, traditional pro-
cess neural network is usually limited in the structure of

Wenhao Huang, Haikun Hong, Guojie Song, Kunqing Xie are with
the Department of Electronic Engineering and Computer Science, Peking
University, China.

Guojie Song is the corresponding author of this paper (corresponding
email:gjsong@pku.edu.cn).

single hidden layer. On the one hand, it is because of
the unfavorable training strategies of neural network with
multiple hidden layers as discussed in many researches[9].
Error back-propagation would stalk in the top layer in
training so that weights of other layer are nearly the same
as weights of random initialization[4]. Neural network with
multiple hidden layers was examined not as effective as
neural network with single hidden layer in many applications.
On the other hand, since weight is represented as a time-
varying function or a sequence, the structure of process
neural network would be very complex when extended to
multiple hidden layers. However, for complex systems with
temporal process inputs, one single hidden layer usually
would be not enough in describing complicated relations
between inputs and outputs.

To overcome two difficulties mentioned above, in this pa-
per, we proposed deep process neural network (DPNN) with
multiple hidden layers. Two basic structures of deep process
neural network: accumulation first DPNN and accumulation
last DPNN are presented and discussed. With the two basic
structures, we could build any architecture of deep process
neural networks. For training strategy of DPNN, emergence
of deep learning approaches provided a promising solution
of training multi-layer neural networks, though it is limited
in static inputs[8]. We proposed learning algorithms for two
basic structures based on numerical learning for process
neural network[20] and auto-encoder in deep learning[2]. In
this paper, temporal process inputs are represented as time-
varying sequences. In most of applications based on process
neural network, inputs are also represented as sequences
since it is very difficult to derive a time-varying function of
inputs with limited prior knowledge. From limited temporal
observations, we could only represent inputs as sequences. In
addition, deep learning advocates unsupervised feature learn-
ing with less prior knowledge. We have to make inputs as
sequences for this purpose. Finally, we conducted abundant
experiments on real highway data. Transportation system
is a typical system with temporal process inputs. Vehicles
arrived in an exit station are accumulations of cars from other
entrance stations in highway during several time periods.
Experimental results show that DPNN is more effective than
process neural network with single hidden layer (PNN-S)
and traditional multi-layer process neural network (MPNN)
in accuracy of traffic flow prediction. In addition, time
complexity of DPNN is nearly the same as PNN-S and
MPNN.

The rest of this paper was organized as follows. Section
II introduces backgrounds of process neural network, deep
learning and traffic flow prediction. Section III presents
two structures and learning method of deep process neural

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 465

network. Experiments are reported in section IV. Conclusion
and future prospects are given in Section V.

II. BACKGROUNDS

Before introducing the deep process neural network, we
first review backgrounds of process neural network and deep
learning. The background of traffic flow prediction which is
the application situation in this study is also introduced in
this section.

A. Process Neural Network

Process neural network, also referred as procedure neural
network, is proposed by He and Liang[5][6]. PNN is a
generalized neural network in which the inputs are a serials
of values varying with a procedure while the output is a
static vector. A process neuron has the similar structure
with a neuron of traditional artificial neural network. It has
same operators such as weights multiplication, addition and
inspiration. A single process neuron is shown in Figure 1 as
an example.

Fig. 1. Illustration of a process neuron.

The process neuron is different with a traditional neuron
that inputs and weights in a process neuron could vary
with time which enables process neural network dealing
with process inputs. In addition, a process neuron has both
time accumulation and space aggregation operators while
traditional artificial neuron has only the space aggregation
operator. Relation between inputs and outputs in process
neural network could be formulated as follows:

y = f(
∑

(

∫
(W (t), X(t)) +B)) (1)

where X(t) is the temporal process inputs and W (t) is the
temporal process weights; y is the output; B is the bias
in neural network; f(·) is the excitation function such as
sigmoid function;

∫
is a time accumulation operator such as

integral;
∑

is a space aggregation operator such as sum.
Consider the most simple and familiar form where

∫
is

integral on time and
∑

is weight sum. It constructs the most
classical form of process neural network. A hidden process
neuron could be computed as follows:

hj = f(
n∑
i=1

(

∫
t∈T

wij(t)xi(t)dt+ b)) (2)

where xi(t) and wij(t) are the temporal process vectors.
They could be represented as time-varying function or tem-
poral sequences.

Base function learning (BFL) is the most general learning
approach for process neural network. Since wij(t) could be
any kind of time-varying functions, it is almost impossible
to obtain their analytic forms. According to BFL, wij(t) is
assumed to be composed of a series of base functions, i.e.
wij(t) =

∑L
l=1 w

(l)
ij bl(t) where bl(t) is a base function and L

is the number of base functions. Then (2) could be rewritten
as:

hj = f(
n∑
i=1

L∑
l=1

w
(l)
ij

∫
t∈T

bl(t)xi(t)dt+ b) (3)

With concrete form of base function,
∫
t∈T bl(t)xi(t)dt could

be computed and the network could be trained by error back-
propagation algorithm. However, it is difficult to choose ap-
propriate base functions and their parameters before knowing
concrete form of weight function in real application.

Numerical learning is proposed by Wu et.al based on the
assumption that temporal inputs could be modeled as discrete
numerical values[20]. In other words, temporal inputs are
represented as sequences of observation values instead of
time-varying functions. Weights are represented as temporal
sequences too. It is much easier to collet temporal sequence
of observations in real-world scenarios. Under this assump-
tion,

∫
t∈T wij(t)xi(t)dt could be computed by numerical in-

tegration in training, which can simplify the training process
to a large degree. In this study, we follow the assumption
that inputs are represented as temporal sequences used in
the numerical learning approach.

B. Deep Learning
Recent works on deep learning have demonstrated that

deep sigmoidal networks could be trained layer-wise to
produce good results for many tasks such as image and
audio classification[11][8][13]. Idea of deep learning is first
using large amount of unlabeled data to learn feature by
pre-training a multi-layer neural network in an unsupervised
way and then using labeled data for supervised fine-tuning
to adjust learned features slightly for better prediction.

Deep Belief Network is the most common and effective
approach among all deep learning models. It is a stack of
Restricted Boltzmann Machines each having only one hidden
layer. The learned units activations of one RBM are used
as the “data” for the next RBM in the stack. Hinton et al.
proposed a way to perform fast greedy learning of the deep
network in [8].

Another frequently used deep neural network is deep
auto-encoder[2][19][12]. Stacked auto-encoders uses an auto-
encoder instead of the RBM as a layer building block. An
auto-encoder is composed of two parts: encoder and decoder.

Encoder: The encoder transforms an input vector x into
hidden representation x.

h = fθ(x) = sigm(Wx+ b) (4)

where θ = {W , b} is the parameter set of the encoder.
Decoder: The decoder maps the hidden representation h

back to a reconstructed input vector x′.

x′ = gθ′(h) = sigm(W ′h+ b′) (5)

466

where W ′ = WT and b′ is the bias for the decoder. The
objective function of auto-encoder could be formulated as
loss function between input vector x and reconstruction
vector z, i.e., L(x,x′) = |x − x′|2. For greedy layer-
wise training, hidden representation h could be computed
by optimizing the objective function of one layer. Then h
is used as input vector for the next layer of stacked deep
auto-encoders.

In this study, we uses auto-encoder in each layer when
constructing deep process neural network since auto-encoder
is effective in modeling real-valued inputs.

C. Traffic Flow Prediction

Transportation system is a typical system with temporal
process inputs[20]. Vehicles arriving at a specific location
are from nearby locations. Therefore, traffic flow (number
of vehicles) of a location is the accumulation of traffic
flow on related locations in several previous time intervals.
Transportation data is used in the experiment section to
examine the effectiveness of proposed deep process neural
network. The task in the experiment is traffic flow prediction.
Here, we give a brief introduction of traffic flow prediction.

Traffic flow prediction, which aims at estimating number
of vehicles in specific areas such as roads and stations in
several future time intervals, is an important work in trans-
portation management. Traffic flow prediction approaches
differ largely from one another in many different aspects
including data source (inductive loops, toll stations, surveil-
lance cameras), prediction methods, scale of prediction (a
fixed location or a whole network) and types of transportation
system (urban network, freeway or highway)[10]. In very
general terms, it can be formulated as:

ytj = G(xt
′

i , θ), t− k ≤ t′ ≤ t− 1, i ∈ O (6)

where ytj output traffic flow of location j at time t, xt
′

i is the
traffic flow of all locations in the set of observation points
O from time period t− k to t− 1, k is the time step, G is
a prediction model and θ is the parameter set of the model.

Toll data of highway system is used in our study. One
record is produced when a car entering or leaving the
highway from a toll station. The observation set O consists
all the in and out stations in the highway system. Task we
focusing on is predicting volume of vehicles in a station j
at time period t.

A second preliminary is the measurement for traffic flow
prediction. Two most commonly used measurements are
mean absolute percentage error (MAPE) and root mean
square error (RMSE)[10]. MAPE is used in our study as
reported in section of experiments. It is computed as follows:

MAPE(y, y′) =
1

n

n∑
i=1

|yi − y′i|
yi

(7)

III. DEEP PROCESS NEURAL NETWORK

In this section, we first propose two basic types of deep
process neural network. Then we introduce how to construct
a general type of DPNN via the basic types of DPNN.

We would have two choices when extending process neural
network to deep process neural network. The neurons in the
extended deep layers could be traditional neurons or process
neurons. Therefore, we could build two basic structures ac-
cording to the position of process neurons. Accumulation first
DPNN is in the structure that only the hidden neurons in the
first layer are process neurons. Neurons in other layers are all
static neurons as same as the neurons in traditional artificial
neural networks. The first layer is referred as accumulation
layer according to definition of process neurons. With that, it
is easy to define the accumulation last DPNN. All the hidden
neurons are process neurons in accumulation last DPNN. The
general type of DPNN could be defined as a DPNN in which
the hidden units in first m layers are process neurons and the
hidden units in other n layers are static neurons.

A. Accumulation First DPNN

With the definition of accumulation first DPNN, it is
easy to build the architecture of the network as shown in
Figure 2. Oval nodes in the figure are process neurons as
defined in traditional process neural network while circle
nodes are static neurons as in traditional neural networks.
From the perspective of feature learning, we can view the first
layer (accumulation layer) as the temporal process feature
representation which learns accumulation characteristics of
temporal process inputs and other layers as feature transfor-
mation layers as in deep learning.

Fig. 2. The accumulation first deep process neural network.

Learning algorithm of the accumulation first DPNN is
mainly focusing on the accumulation layer. The challenge
is how to learn weights in the first layer in an unsupervised
way without knowing hidden units in other layers. Inspired
by the auto-encoder, we could build a process auto-encoder
as shown in Figure 3.

From the process neural network , we can derive that
hidden unit could be written as equation (2). Since we assume
inputs and weights are represented as temporal sequences, for
each temporal process input xi(t), the reconstruction of the
input can be computed by:

x′i(t) = g(

m∑
j=1

w′ij(t)hj + b′i) (8)

For convenience, denote uj =
∑n
i=1

∫
wij(t)xi(t)dt + b,

z(t) =
∑m
j=1 w

′
ij(t)f(uj) + b′. Then the objective function

467

Fig. 3. Illustration of the process auto-encoder.

could be written as:

L(x(t),x′(t))

=
n∑
i=1

(g(
m∑
j=1

w′ij(t)hj + b′i)− xi(t)))2

=
n∑
i=1

(g(
m∑
j=1

w′ij(t)f(uj) + b′i)− xi(t)))2

=

n∑
i=1

(g(z(t))− xi(t))2

(9)

We could apply gradient descent in learning of parameter
set {wij(t), bj , b′i}. Gradient of each parameter could be
computed as follows:

∆wij(t) = −
∂L

∂wij(t)

= −2
n∑

i=1

(g(z(t)− xi(t))g
′(z(t))(f(uj) + wij(t)f

′(uj)

∫
xi(t)dt))

∆b = −
∂L

∂b
= −2

n∑
i=1

(g(z(t)− xi(t))f
′(uj))

∆b′ = −
∂L

∂b′
= −2

n∑
i=1

(g(z(t)− xi(t)))

(10)
where

∫
xi(t)dt could be computed by numerical integration.

If excitation function f and g are the most widely used
sigmoid functions, f(x) = (1 + e−x)−1 then f ′(x) =
f(x)(1 − f(x)). Weight wij(t) and bias b, b′ could be
computed by above equations in unsupervised training.

Since other hidden nodes are all static neurons, learning
algorithm is as same as learning algorithm of traditional deep
auto-encoders as in [2].

B. Accumulation Last DPNN

Since one layer of process neurons may be insufficient
to learn temporal process feature representation, we propose
accumulation last DPNN here. Architecture of an accumula-
tion last DPNN is shown in Figure 4. All the hidden layers
are composed of process neurons. We use Hi(t) to denote
process hidden layer i.

Learning algorithm of accumulation last DPNN would
be more complex than accumulation first DPNN since all

Fig. 4. Illustration of accumulation last deep process neural network.

the hidden layers are temporal process layers. However,
under the assumption that temporal inputs are represented
as sequences, we could simplify learning process to a large
degree. The learning algorithm is proposed based on the
assumption. Some structure rearrangements are required in
the learning process. We give an illustration of learning
structure for accumulation last DPNN in Figure 5.

One temporal process input xi(t) is a serial of inputs
{xt−k+1

i , xt−k+2
i , . . . , xt−1i , xti} where superscript denotes a

specific time interval and k is the length of the sequence.
The first step is rearranging these inputs according to time
intervals instead of features. For a specific time interval t,
we could get a sequence of inputs Xt = {xt1, xt2, . . . , xtn}
where n is the number of features. The hidden nodes are
also rearranged according to time. Then we could use the
sequence of inputs in time interval t to produce the first
hidden layer Ht

1 = {ht1,1, ht1,2, . . . , ht1,n1
} in time interval t

where n1 is the number of hidden neurons in first hidden
layer. After hidden nodes for all time intervals are estab-
lished, we could further arrange hidden neurons according to
nodes as H1(t) = {h1,1(t), h1,2(t), . . . , h1,n1(t)}. Or we can
just leave it alone since we have to rearrange it according to
time intervals when building the next hidden layer. Suppose
there are m + 1 hidden layers in the whole structure. The
first m layers could be built by the same way as the process
of building first hidden layer H1(t).

We can use a traditional auto-encoder to describe relations
between input Xt and hidden layer Ht

1 at a specific time
interval t. Similarly, it could be viewed as a traditional auto-
encoder between two consecutive layers Hi(t) and Hi+1(t).
For a specific time interval ti, it formulates a deep auto-
encoder. On the whole, there are k independent deep auto-
encoders for each time interval tk. Each auto-encoder could
be learned as same as learning algorithm of traditional auto-
encoder separately. To now, we have given unsupervised
learning algorithm for the first m hidden layers.

It is different between last two hidden layers. Hidden
layer m is produced as described above. Then we rearrange
these hidden neurons in different time intervals according
to features, i.e., Hm(t) = {hm,1(t), hm,2(t), . . . , hm,nm(t)}.
These nodes are arranged as process neurons which are
represented as black nodes in Figure 5. Consider the structure
of hidden layer m, hidden layer m+1 and output layer y. It
is a classical process neural network with one hidden layer if
we view hidden layer m as input layer. Learning algorithm

468

Fig. 5. Learning structure for accumulation last deep process neural network.

is the same as learning algorithm of the accumulation layer
of accumulation first DPNN which has been introduced in
previous subsection.

In conclusion, the whole learning procedure consists two
parts. The first part is learning t separate deep auto-encoders
for first m hidden layers. The second part is learning one
hidden layer process neural network by process auto-encoder
in an unsupervised fashion.

C. General Type of DPNN

After introducing two basic structures of the deep process
neural network, we give an illustration of how to build a
general type of DPNN based on that.

Suppose a general DPNN has m layers where the first m1

layers are temporal process layers and the last m2 layers are
static layers where m = m1 +m2. Figure 6 is an example
of a general type of DPNN. The first m1 layers are actually
an accumulation last DPNN. The m1 layer and the last m2

hidden layers form an accumulation first DPNN. Therefore,
any type of deep process neural network could be built by
two basic DPNNs.

Fig. 6. Illustration of a general type of deep process neural network.

Since a general DPNN is composed of one accumulation
last DPNN and one accumulation first DPNN. The learning
algorithm of a general DPNN is learning an accumulation last
DPNN first and then learning an accumulation first DPNN.

IV. EXPERIMENTS

A. Experimental Settings

Dataset. One dataset we employed is from highway sys-
tem of a province in China. There are total 284 entrance and
exit stations in the province. In each entrance and exit of
highway, there is a toll station for charging and recording
related information. Data are collected in each station for 24
hours each day and aggregated into 15 minutes periods. Our
task is predicting number of vehicles arriving at each exit toll
station in next time interval (15 minutes) from traffic flow
of entrance stations in previous several time intervals. It is a
typical example of a complex system with temporal process
inputs. Vehicles arriving at an exit toll station are all from
other entrance stations in previous several time intervals.
One time interval is setting at 15 minutes as suggested by
Highway Capacity Manual.

Comparison Methods. In the experiments, we imple-
mented three models for comparison: process neural network
with single hidden layer (PNN-S), process neural network
with multiple hidden layers but training with traditional
learning methods (MPNN), deep neural network with full
inputs (DNN). DNN expands MPNN by k times where k
is the number of time intervals in a temporal process input,
i.e. length of the sequence. All the nodes in hidden layers
are static nodes and they are fully connected. For deep
process neural network, we designed three structures: DPNN-
1, DPNN-2 and DPNN-3. They are all with three hidden

469

layers. Only the first hidden layer is temporal process layer
in DPNN-1 which is an example of accumulation first DPNN.
First two hidden layers are temporal process layers in DPNN-
2 and the last layer is the same as hidden layer in traditional
artificial neural network. DPNN-2 is a general type of DPNN.
All the three hidden layers are temporal process layers in
DPNN-3 which is an example of accumulation last DPNN.
MPNN is also setting at three hidden layers. Actually, the
structures of MPNN and DPNN-3 are exactly the same. The
only difference is the training algorithm.

Inputs and Outputs. Input (feature vector) in the model
is the traffic flow of entrance stations in previous k time
intervals. Traffic flow of one station i is viewed as one
input xi. It is represented as a sequence of k time intervals
xi(k) = {xi(t1), xi(t2), . . . , xi(tk)}. Length of time inter-
vals k is fixed at 8 from experimental results as reported
in later section. Outputs are traffic flow of all exit toll
stations in next time interval, i.e. Y = {y1, y2, . . . , yn} where
n is the number stations in the highway system (142 in
our experiments). Reported results are the average of these
stations.

Training and Testing Data. Highway dataset contains
data of totally 12 months in 2011 while we use data of first
10 months as training set and later 2 months as testing set.

Though deep learning and process neural network cost a
lot in storage and computation, most of the experiments could
be finished in less than 1 hour in a single machine with Core
i3 CPU, 4G memory and 512MB GPU memory.

B. Architecture of neural networks

One important issue in neural network is selecting ap-
propriate number of hidden nodes in each hidden layer. In
the experiments, only PNN-S is designed with only one
single hidden layer. We tested number of hidden nodes
from {100, 200, 300, 400, 500}. Accuracy on training set and
training time are reported in Table 1.

TABLE I
EFFECT OF NUMBER OF NODES IN HIDDEN LAYER.

Number of nodes MAPE Training time
100 0.172 33s
200 0.161 65s
300 0.155 102s
400 0.154 135s
500 0.153 175s

From the results, we could see that training time increases
linearly with the increase of hidden nodes. However, the
MAPE dose not improve a lot when size of hidden nodes
is over 300. The PNN-S is setting at 300 hidden neurons in
later experiments.

For MPNN and DPNN, we fixed the number of neurons
in each hidden layer to be equal for the convenience of
computing. The number of hidden neurons is selected from
{50, 100, 150, 200, 300}. The results of MAPE and training
time are reported in Table 2.

From MAPE on training set, we could see that more
nodes in hidden layers does not provide improvements on

TABLE II
EFFECT OF NUMBER OF NODES IN ONE HIDDEN LAYER FOR NEURAL

NETWORKS WITH MULTIPLE HIDDEN LAYERS.

MPNN DPNN-3
Number of nodes MAPE Training time MAPE Training time

50 0.163 153s 0.149 199s
100 0.152 311s 0.143 383s
150 0.152 464s 0.143 567s
200 0.151 620s 0.143 748s
250 0.151 770s 0.143 936s
300 0.151 923s 0.143 1112s

performance when number of nodes exceeds 100. However,
training time is continuously increasing with the growth of
size of the network. Hence, MPNN and DPNN are designed
with 100 hidden neurons in each hidden layers. Notice that
PNN-S and MPNN are training in supervised way while
DPNN is training in unsupervised way. Training time of
DPNN does not increase a lot. One reason maybe that
time complexity of training a process neural network and
training a deep auto-encoder is similar. We would make detail
comparisons on training time in later section.

C. Experimental Results

In this section, we report experimental results and com-
parisons of several process neural network related models.

0 2 4 6 8 10 12 14 16 18
0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

M
AP

E

Time intervals

 PNN-S
 MPNN
 DNN
 DPNN-1
 DPNN-2
 DPNN-3

Fig. 7. MAPE on testing set of all comparison methods under different
length of input sequence.

Prediction accuracy is the most important evaluation met-
ric for traffic flow prediction. MAPE is used for measurement
of accuracy. It is related with length of temporal process
inputs, i.e. number of time intervals k. We give results
of MAPE on testing set of all comparison methods under
different length of input sequence in Figure 6. From the
result, all the methods obtain best performance when k is
at 8 and 10. Average traveling time of cars on the highway
is about two hours (8 time intervals) from the data. Length
of temporal accumulation should be similar with average
traveling time to ensure best performance of temporal process
neural networks. DPNNs perform better than other methods

470

on MAPE when length of time intervals (k) is over 4.
DPNN could improve accuracy over 3% than traditional
PNN. MPNN is worse than PNN-S due to the unfavorable
training algorithm as introduced in previous sections. This
also explains why process neural network with only single
hidden layer is preferred in previous studies. Another in-
teresting finding is that testing error (Figure 6) is bigger
than training error (Table 1 and Table 2, k = 8 in those
experiments). All the models are over fitted or under fitted
on training set to a certain extent. Difference of performance
on training set and testing set is smaller in DPNN (about
1%) than PNN-S (about 4%) and MPNN (about 5%). It
demonstrates that DPNN is more robust than other models.
DPNN-3 is generally better than DPNN-1 and DPNN-2 when
k is over 8. With the increasing of time intervals, temporal
feature representation would be more important. Therefore,
more temporal process layers would lead better performance.
This also supports the fact that performance of DPNN is over
PNN.

PNN-S MPNN DNN DPNN-1 DPNN-2 DPNN-3
0

500

1000

1500

2000

2500

3000

Tr
ai

ni
ng

 ti
m

e
(s

)

Model

Fig. 8. Comparison of time complexity.

Another factor we concern about is time complexity of
model training. Though the neural network models would
not be updated very frequently, training time should still be
acceptable. Training time of different models is reported in
Figure 8. PNN is the fastest since it is with the simplest
structure of single hidden layer. For deep networks, training
time of DPNN and MPNN is similar. It implies that training
temporal process neural network and deep auto-encoders
are with similar time complexity. DNN is expanded from
DPNN. It connects several separate anto-encoders together
which leads to high computational complexity. Actually,
from Figure 5, we could see that spatial and time complexity
of DPNN is O(nmk) and complexity of DNN is O(nmk2)
where n is number of inputs, m is number hidden neurons
and k is length of time intervals. Though DNN is with a
more complex structure, co of DPNN is better than DNN.
This implies that many unrelated connections in DNN would
cause negative effect on final results.

Finally, we make comparison on converging speed and
effect. Gradient descent would be performed several itera-

0 10 20 30 40 50
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

M
AP

E
on

 te
st

in
g

se
t

Iterations

 PNN-S
 MPNN
 DNN
 DPNN-1
 DPNN-2
 DPNN-3

Fig. 9. Comparison on converging speed and effect.

tions during training of each model. We recorded the model
after each iteration and tested it on the testing set. The result
is demonstrated in Figure 9. DPNN is faster on converging
speed than other methods. It could reach convergence in
less than 10 iterations while PNN needs about 30 iterations
and MPNN requires about 15 iterations. It is interesting that
more iterations after convergence would make performance
of PNN-S and MPNN on testing set worse. This is a typical
phenomenon of local minima in training. The result shows
that deep learning method could avoid sticking in local
minima effectively. Or deep learning approaches could find
a better local minima than traditional error back-propagation
as presented in [3].

From these experimental results, we could find that DPNN
is effective in traffic flow prediction. More layers in process
neural network could capture better temporal feature repre-
sentation. Training algorithm based on deep learning is also
much more effective than traditional error back-propagation.

V. CONCLUSION

In this paper, we extended traditional process neural net-
work into deep process neural network. We proposed two
basic structures to build a deep architecture of process neural
network with multiple hidden temporal process layers. Ac-
cumulation first DPNN advocates learning temporal feature
representation in first process layer and then performing
static feature transformation in other hidden layers. Accu-
mulation last DPNN prefers more hidden process layers for
temporal feature representation. Any general type of DPNN
could be built with these two basic structures. Then we
proposed learning algorithm for accumulation first DPNN
and accumulation last DPNN. The learning algorithm is
inspired by deep auto-encoders for effective learning of deep
static neural networks and numerical learning for process
neural network. Finally, we conducted extensive experiments
on the scenario of traffic flow prediction, which is a typical
system with temporal process inputs. The results demon-
strated that DPNN is better in comparison of prediction
accuracy. Learning algorithm we proposed could also reduce

471

computational complexity of DPNN to make it close to other
comparison methods.

There are still many potential works to do along this
direction. One is using time-varying functions instead of
sequences of temporal process inputs. The key may be how
to bring the idea of unsupervised deep learning into base
function learning for process neural network. Another work
we have to do is examining DPNN on more scenarios such
as climate prediction and worm harm prediction. Finally,
it is interesting to investigate temporal accumulation effect
between different features. The process itself may contain
useful information. Inputs in different time intervals are
actually related with each other. Finding these connection
explicitly would be a great help for building the architecture
of deep process neural network.

REFERENCES

[1] George Bebis and Michael Georgiopoulos. Feed-forward neural
networks. Potentials, IEEE, 13(4):27–31, 1994.

[2] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy layer-wise training of deep networks. Advances in neural
information processing systems, 19:153, 2007.

[3] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised
pre-training help deep learning? The Journal of Machine Learning
Research, 11:625–660, 2010.

[4] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Ben-
gio, and Pascal Vincent. The difficulty of training deep architectures
and the effect of unsupervised pre-training. In International Confer-
ence on Artificial Intelligence and Statistics, pages 153–160, 2009.

[5] Xin-Gui He and Shao-Hua Xu. Process neural network with time-
varied input and output functions and its applications. Journal of
software, 14(4):764–769, 2003.

[6] Xingui He and Shaohua Xu. Process neural networks. Process Neural
Networks: Theory and Applications, Advanced Topics in Science
and Technology in China, ISBN 978-3-540-73761-2. Springer-Verlag
Berlin Heidelberg, 2010, 1, 2010.

[7] Geoffrey E Hinton. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–1800, 2002.

[8] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-
ing algorithm for deep belief nets. Neural computation, 18(7):1527–
1554, 2006.

[9] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science, 313(5786):504–
507, 2006.

[10] SHAN HUANG and ADEL W SADEK. Artificial intelligence and mi-
croscopic traffic simulation models. Artificial Intelligence Applications
to Critical Transportation Issues, page 65, 2012.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25, pages 1106–1114, 2012.

[12] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural
networks in reinforcement learning. In Neural Networks (IJCNN),
The 2010 International Joint Conference on, pages 1–8. IEEE, 2010.

[13] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal
Lamblin. Exploring strategies for training deep neural networks. The
Journal of Machine Learning Research, 10:1–40, 2009.

[14] Jiuzhen Liang and Xiaohong Wu. Worm harm prediction based on
segment procedure neural networks. In Rough Sets and Knowledge
Technology, pages 383–388. Springer, 2006.

[15] Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. Deep
belief networks for phone recognition. In NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications, 2009.

[16] Fernando J Pineda. Generalization of back-propagation to recurrent
neural networks. Physical review letters, 59(19):2229–2232, 1987.

[17] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[18] Yee Whye Teh and Geoffrey E Hinton. Rate-coded restricted boltz-
mann machines for face recognition. Advances in neural information
processing systems, pages 908–914, 2001.

[19] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising
criterion. The Journal of Machine Learning Research, 9999:3371–
3408, 2010.

[20] Tianshu Wu, Kunqing Xie, Guojie Song, and Xingui He. Numerical
learning method for process neural network. In Advances in Neural
Networks–ISNN 2009, pages 670–678. Springer, 2009.

472

