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Abstract— Deep learning has attracted a lot of attention in
research and industry in recent years. Behind the success of
deep learning, there is much space for improvement. It is
difficult to identify if a testing sample can be represented by the
deep network effectively before we examining the final result. In
this paper, we proposed a dynamic boosting strategy according
to reconstruction error in deep networks. We use reconstruction
error to determine whether the result is reliable or not. From
the perspective of prediction interval, we demonstrated that
with the increase of reconstruction error, the prediction interval
would become bigger. Therefore, the classification result is
not reliable when the reconstruction error exceeds the pre-
determined threshold. Since we can record the reconstruction
error as well as the classification error for all training samples
in training set. We can learn an extra boosting model besides
the deep network in training set to improve the performance of
the model. An important factor in learning the boosting model
is to determine an appropriate threshold for selecting training
samples. In testing, we first examine whether the reconstruction
error of a testing sample exceeds the threshold to determine if
we should use the boosting model. If the boosting model is
used, the final result is the average of the output of the deep
network and the boosting model. We conducted experiments
on two widely used classification datasets and an air quality
dataset. From the experiments, we see that our boosting strategy
is effective in improving the performance of classification. We
tested several boosting models in this paper. They can all reduce
the test error to some extent under appropriate parameter
settings.

I. INTRODUCTION

Deep learning has attracted a lot of attention in research
and industry in recent years [10][1][13]. Due to its strong
ability of unsupervised feature learning, deep learning has
achieved several state-of-the-art results in image processing,
speech recognition and natural language processing. The
main claim behind the deep network can be summarized
as: several hidden layers of feature representation, stacked
on the top of each other, are effective in learning better
feature representation than single hidden layer [10]. Though
the compactness and expressiveness of deep architectures had
been known for decades, the bottleneck of training deep
architectures has been overcame in recent years through
layer-wise training in [9][2]. The deep learning approach
aims at greedy optimization of reconstruction error in pre-
training of each hidden layer to learn the most representative
features. It is claimed that the best feature representation
could reconstruct the original data with the least error.
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Behind the success of deep learning, there is much
space for improvement [6]. Like other machine learning
approaches, the feature representation obtained from deep
learning could only represent the majority of samples in
training data. Therefore, it is difficult to identify if a testing
sample can be represented by the model effectively before we
examining the final result. A common way is investigating
the data distribution to see if a testing sample is suitable for
the model. Reconstruction error in deep learning provided
us a promising way of determining whether the model is
suitable for representing a testing sample. The final result is
reliable if the reconstruction error is small since the model
could learn good feature representation for the testing sample
while the result is unreliable if the model could not represent
the data very well.

Another advantage of using reconstruction error is that
it is very convenient to obtain the reconstruction error and
the output error of the training data [16]. It is possible to
analysis the relationship between the reconstruction error and
the output error of training data to guide the supervised task
for a testing sample. With proper strategies, we could build
a boosting model according to the reconstruction error of the
training data.

In this paper, we first investigate the relationship be-
tween the reconstruction error and the error of supervised
learning. From the perspective of prediction interval, we
demonstrate that the prediction interval would be bigger with
the increase of the reconstruction error. In other words, the
result produced by the model becomes less reliable when the
reconstruction error increases. Then we propose a dynamic
boosting strategy to improve the performance of the model
based on reconstruction error. For a classification task, an
extra boosting model is used when the reconstruction error
exceeds the threshold. We first compute reconstruction error
and classification error for all training samples by the deep
network. Classification error is the differences of probability
of each class obtained by first deep network and real class
label. Then we select part of the training samples by the
threshold of overall reconstruction error as training set for
the boosting model. A number of existing classification
models are implemented as the boosting model. We also
built a dual deep network model for boosting. One deep
network uses the data as input and class label as output. The
other deep network uses the reconstruction error as input.
Finally, we conducted abundant experiments to validate the
effectiveness of the boosting strategy. Experimental results
demonstrate that using reconstruction error is effective in
improving performance of deep networks.

The rest of this paper is organized as follows. Section II
introduces backgrounds of deep learning and reconstruction
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error. Section III investigates the relationship of reconstruc-
tion error and classification error. The dynamic boosting
strategy is introduced in Section IV. Experiments are reported
in section V. Conclusion and future prospects are given in
Section VI.

II. BACKGROUNDS

Before introducing our approach, we first review back-
grounds of deep learning and reconstruction error in this
section.

A. Deep Learning

Recent works on deep learning have demonstrated that
deep sigmoidal networks could be trained layer-wise to
produce good results for many tasks such as image and audio
classification [13][9][15].

Deep Belief Network is the most effective approach among
all deep learning models. It is a stack of Restricted Boltz-
mann Machines each having only one hidden layer. The
learned units activations of one RBM are used as the “data”
for the next RBM in the stack. Hinton et al. proposed a way
to perform fast greedy learning of the deep network [9].

An RBM is a particular type of Markov Random Fields
(MRF). It is an undirected graphical model in which visible
variables (v) are connected to stochastic hidden units (h) us-
ing undirected weighted connections [21]. They are restricted
that there are no connections within hidden variables or
visible variables. The model defines a probability distribution
over v,h via an energy function. Suppose it is a binary RBM,
it could be written as:

− logP (v,h) ∝ E(v,h; θ)

= −
|V |∑
i=1

|H|∑
j=1

wijvihj −
|V |∑
i=1

bivi −
|H|∑
j=1

ajhj
(1)

where θ = (w, b,a) are parameters, wij is the symmetric
weight between visible unit i and hidden unit j while bi
and aj are their bias. Number of visible and hidden units is
represented as |V | and |H|. This configuration makes it easy
to compute the conditional probability distributions, when v
or h is fixed.

p(hj |v; θ) = sigm(

|V |∑
i=1

wijvi + aj)

p(vi|h; θ) = sigm(

|H|∑
j=1

wijhj + bi)

(2)

where sigm(x) = 1
1+e−x is a sigmoid function. The param-

eters of the model θ = (w, b,a) could be learned using
contrastive divergence [8] effectively.

Then we could stack several RBMs together into a DBN.
The key idea behind training a DBN by training a series
of RBMs is that parameters θ learned by an RBM define
both p(v|h, θ) and prior distribution p(h|θ) [17]. Therefore,

probability of generating visible variables could be written
as:

p(v) =
∑
h

p(h|θ)p(v|h, θ) (3)

After θ is learned from an RBM, p(v|h, θ) is kept. In
addition, p(h|θ) could be replaced by consecutive RBM
which treats hidden layer of previous RBM as visible data.
By this way, it could improve a variational lower bound on
the probability of the training data as introduced in [9].

Another frequently used deep neural network is deep
auto-encoder [3][22][14]. Stacked auto-encoders use an auto-
encoder instead of the RBM as a layer building block. An
auto-encoder is composed of two parts: encoder and decoder.

Encoder: The encoder transforms an input vector x into
hidden representation x.

h = fθ(x) = sigm(Wx+ b) (4)

where θ =W , b is the parameter set of the encoder.
Decoder: The decoder maps the hidden representation h

back to a reconstructed input vector x′.

x′ = gθ′(h) = sigm(W ′h+ b′) (5)

where W ′ = WT and b′ is the bias for the decoder.
The objective function of auto-encoder could be formulated
as loss function between input vector x and reconstruction
vector x′, i.e. L(x,x′) = |x − x′|2. For greedy layer-
wise training, hidden representation h could be computed
by optimizing the objective function of one layer. Then h is
used as input vector for the next layer of the stacked deep
auto-encoders.

B. Reconstruction Error

Here, we give an illustration of reconstruction error in
deep networks in Figure 1. From a raw input data, the
encoder from bottom to up is used to learn a good feature
representation. The top feature representation (h3 in the
figure) is used for detail classification or regression task (Y).
Meanwhile, the decoder from top to bottom can reconstruct
the raw input data. The difference between the raw input data
and the reconstruction data is referred to as reconstruction
error. The objective function of auto-encoder is actually to
minimize the reconstruction error to learn the most repre-
sentative features in the top layer. As introduced above, we
can learn an auto-encoder between two layers and then stack
them together to a deep network.

It is worth to notice that the reconstruction error is at the
same dimension as the input data. For each input data, we can
obtain the reconstruction of the data from the deep network
before we use the features learned from the model for
classification task. Therefore, we can record reconstruction
error of each sample in training data. Since we know the real
class label (Y) for each sample in training data, we can obtain
classification error as well. In deep network for classification,
class label is represented as a vector Y = {y1, y2, . . . , ym}
where m is the number of classes. In the real class vector,
yi = 1 if the label is class i and the others yj = 0, j ̸= i. The
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Fig. 1: Illustration of reconstruction error.

result from the model is also a vector Y ′ = {y′1, y′2, . . . , y′m}.
The classification error is represented as Y − Y ′.

III. PREDICTION INTERVAL OF DEEP NETWORK

In this section, we first give definition and computing
method of prediction interval of neural networks. Since deep
network is a special kind of neural network, the definition is
almost the same. Then we analyze the relationship between
the prediction interval of a deep network and the reconstruc-
tion error.

A. Prediction Interval of Neural Network

Concept of prediction interval used in this study is the
same as the concept used in Shrestha et.al [20]. Figure
2 schematically demonstrated the definition of prediction
interval [20]. For most of the models, it could give the
prediction interval besides the model output from distribution
of training data. From the prediction interval, we could
estimate the reliability of the model output. If the prediction
interval is big, the probability of the model output being
unreliable is big as well. In other words, it is risky to use the
model output as the result, though it is still possible that the
error of model output is small while the prediction interval
is big.

Fig. 2: Concept of prediction interval.

There are a lot of works focusing on prediction interval
of neural networks [12][11]. Existing approaches can be
divided into four categories: delta method [11][5], Bayesian
method [4], mean-variance estimation (MVE) method [18],
and bootstrap method [7]. Actually, the results obtained from
these methods are similar. In this study, we use delta method
to compute prediction interval in deep networks.

Here, we give a brief introduction of delta method. It is
often assumed that targets can be modeled by:

ti = yi + ϵi (6)

where ti is the ith measured target, ϵi is the noise with a zero
expectation, and yi is the true regression value. Suppose the
model output is ŷi, we have:

ti − ŷi = (yi − ŷi) + ϵi (7)

Consider that w∗ is the set of the optimal parameters for the
neural network, i.e., yi = f(xi, w

∗). In a small neighborhood
of the optimal parameter set, the neural network model can
be linearized as:

ŷ0 = f(x0, w
∗) + gT0 (ŵ − w∗) (8)

where x0 is the input of a sample, ŷ0 is the model output, gT0
is the output gradient against the network parameters w∗, and
ŵ is the parameter set of the model. gT0 can be formulated
as:

gT0 = [
∂f(x0, w

∗)

∂w∗1
,
∂f(x0, w

∗)

∂w∗2
, . . . ,

∂f(x0, w
∗)

∂w∗p
] (9)

where p is the number of parameters. According to this, we
have:

t0 − ŷ0 ≃ (y0 + ϵ0)− (f(x0, w
∗) + gT0 (ŵ − w∗))

= ϵ0 + gT0 (ŵ − w∗)
(10)

and

var(t0 − ŷ0) = var(ϵ0) + var(gT0 (ŵ − w∗)) (11)

Assuming that the error terms are normally distributed, i.e.,
ϵ ≈ N(0, σ2

ϵ ). We can have:

var(gT0 (ŵ − w∗)) = σ2
ϵ g
T
0 (F

TF )−1g0 (12)

where σ indicates the variance, and F is the Jacobian matrix
of the neural network model. It can be computed from
training samples as follows:

F =


∂f(x1,ŵ)
∂(ŵ1)

∂f(x1,ŵ)
∂(ŵ2)

. . . ∂f(x1,ŵ)
∂(ŵp)

∂f(x2,ŵ)
∂(ŵ1)

∂f(x2,ŵ)
∂(ŵ2)

. . . ∂f(x2,ŵ)
∂(ŵp)

...
...

...
...

∂f(xn,ŵ)
∂(ŵ1)

∂f(xn,ŵ)
∂(ŵ2)

. . . ∂f(xn,ŵ)
∂(ŵp)

 (13)

The total variance can be formulated as:

σ2
0 = σ2

ϵ (1 + gT0 (F
TF )−1g0) (14)

An unbiased estimate of σ2
ϵ can be obtained by:

s2ϵ =
1

n− 1

∑
i=1

n(ti − ŷi)2 (15)
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Finally, the prediction interval of (1 − α)% for ŷ0 can be
computed as:

ŷ0 ± t
1−α

2
n−p sϵ

√
1 + gT0 (F

TF )−1g0 (16)

where t
1−α

2
n−p is the (α/2) quantile of a cumulative t-

distribution function with n− p degrees of freedom.

B. Prediction Interval of Deep Network

As a special kind of neural network, we could formulate
the prediction interval of deep network using the general
form. The Jacobian matrix F and the unbiased estimate of σ2

ϵ

(s2ϵ in (15)) are all computed from training data. Therefore,
for a sample in testing set {x0, y0}, the only relative term in
the prediction interval is g0.

From previous works of Hinton and Bengio, we can get
that minimizing the reconstruction error in training a deep
network would tight the variational lower bound on the log-
probability of the testing data to ensure better performance in
classification task. With that claim, we can get the following:

g0 ∝ ∂

∂θ
(log

∑
h

exp[−E(x0, h|θ)]− log
∑
x

∑
h

exp[−E(x, h|θ)])

= (<
∂(−E(x0, h|θ))

∂θ
>P (h|x0) − <

∂(−E(x, h|θ))
∂θ

>P (x,h|θ))

=< x0 >data − < x0 >reconstruction

≈ x0 − x′
0(reconstruction error)

(17)

where θ is the parameters in the deep network and < · >P
is the expectation of the distribution P . The final step in the
equation is approximated by contrastive divergence. By now,
we can get that the prediction interval (PIx0 ) of a testing
sample x0 is proportional to the reconstruction error of the
sample (x0 − x′0).

PIx0 ∝ (x0 − x′0) (18)

From the analysis above, we can see that reconstruction
error is related with prediction interval. Small reconstruction
error means a very tight prediction interval. It can ensure
accurate classification result. The prediction interval is wide
when the reconstruction error is big. Under this situation, it is
possible that the final classification error is small. However,
the probability of the classification error being big also
increases. In other words, the result is not reliable when the
reconstruction error is big. Therefore, we can tell whether the
final result is reliable enough from the reconstruction error. It
is also worth to notice that we can obtain the reconstruction
error at the same time when we obtain the model output.
So that we can use boosting strategies on model output
to make it more reliable. Meanwhile, we can also obtain
reconstruction error and classification error of all training
samples as an extra dataset to train and learn an effective
boosting strategy.

IV. DYNAMIC BOOSTING STRATEGY

In this section, we would introduce our dynamic boosting
strategy. A boosting model is proposed for those samples
whose reconstruction error exceeds the threshold. The boost-
ing model is trained using part of the training samples
selecting by the threshold.

A. Overview

We give an overview of the dynamic boosting strategy
in Figure 3. The deep network can be a stacked Restricted
Boltzmann Machine or a stacked auto-encoders. It can be
trained using the traditional deep learning approach as in-
troduced in [9][15]. We first train a deep network and then
obtain reconstruction error of all the samples in the training
set. The reconstruction error set is used to train the boosting
model to produce another classification result.

Fig. 3: Overview of the dynamic boosting strategy.

B. Deep Network

We first briefly introduce the deep network for classifi-
cation. The architecture of the deep network is illustrated in
Figure 4. The raw data is used as the input data X here. Then
a deep network in the bottom is used to learn a feature rep-
resentation in an unsupervised way. Using the deep network
in the bottom, we can also obtain the reconstruction error
re = X −X ′. The top layer is for supervised classification.
The result is represented as a probability vector of each
class, i.e., Y ′ = {y′1, y′2, . . . , y′m} where m is the number
of classes. For supervised training, we are able to obtain the
supervised classification error se = Y − Y ′.

C. Boosting Model

An important factor to the boosting model is the filter cri-
terion. As demonstrated in the section of prediction interval,
we can see that the result is reliable when the reconstruction
error is small. Therefore, the dynamic boosting strategy only
pay attention to those samples whose reconstruction error is
bigger than others. Since we can obtain reconstruction error
of all training samples, we use a threshold δ to determine
which part of the samples need to be retrained by the
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Fig. 4: Architecture of the deep network.

boosting model. There are some ways to define the value
of overall reconstruction error. The first one ζ1 is the sum of
reconstruction error, denoted as:

ζ1 =
n∑
i=1

|xi − x′i| (19)

This definition uses the sum of the reconstruction error to
measure the reliability of the result.

The second one ζ2 only takes the features with big
reconstruction error into account.

ζ2 =
∑

i∈top(|xi−x′
i|)

|xi − x′i| (20)

where top(|xi−x′i|) selects the features with the top-k biggest
reconstruction error. We may need another parameter k to
measure the number of features. Actually, ζ1 is a special
case of ζ2 where k = n.

The third one ζ3 uses another threshold δ′ to measure the
reconstruction error of each feature xi. It can be formulated
as:

ζ3 =

n∑
i=1

I(xi − x′i, δ′) (21)

where I(xi − x′i, δ′) is an indicator function.

I(|xi − x′i|, δ′) =

{
1, |xi − x′i| > δ′

0, |xi − x′i| < δ′
(22)

The final threshold δ could be chosen by percentage
criterion on the value of overall reconstruction error. It is
determined by the value of the array of reconstruction error
ordered in descent at a given percentage.

Once the threshold δ is determined, we could select part
of the training set, in which the reconstruction error exceeds
δ, as the training set for the boosting model. The boosting
model can be implemented by many existing classification
approaches, such as Decision Tree (DT), Support Vector
Machine (SVM), and Single hidden layer Neural Network
(SNN). It is also feasible to use another deep network as the
boosting model.

The boosting model is trained by samples whose recon-
struction error exceeds the threshold δ. The training set for

the boosting model is a subset of the training set for the
deep network. It can produce another output vector Y ′′ =
{y′′1 , y′′2 , . . . , y′′m}.

D. Result Averaging

The last step in the dynamic boosting strategy is to average
the result output by the deep network model and the alter-
native model. For the testing samples whose reconstruction
error do not exceeds the threshold, the result output by
the deep network is the final result, i.e., Yo = Y ′. For
other testing samples, the final result is the average result
as Yo = (Y ′ + Y ′′)/2. We could also use the output of the
boosting model as the result.

The boosting strategy is some kind of similar with the
traditional Bagging strategy [19]. In Bagging, different mod-
els are trained on different random selections of cases from
the training set and all models are given equal weight in the
combination. The difference between our boosting strategy
and Bagging is that the dataset for boosting is determined
by the reconstruction error instead of random selection.

The boosting strategy is dynamic because we rely on
reconstruction error of each testing sample to determine
whether we need to use the boosting model or not. The
reconstruction error is produced in real time with the output
of the classification model.

It is also worth to notice that the dimension of reconstruc-
tion error is as the same as the input vector X . If we use the
deep network as the boosting model, we can stack several
deep networks together, each relies on the reconstruction
error produced by the previous deep network.

V. EXPERIMENTAL RESULTS

A. Experiment Settings

Datasets used. Three datasets are used in the experiments
to test our approach, namely: MNIST: the well-known digit
classification problem and CIFAR: the CIFAR-10 image-
classification task. Air quality dataset: hourly reported air
quality index of a middle sized city in China of two months
is collected in the dataset. The air quality index includes
index of six main pollutants in the air. Our task is predicting
index of a pollutant would exceed the threshold in the next
several hours.

Threshold δ. We tested the threshold δ for reconstruction
error from 10%-100% value of overall reconstruction error
of the training sample with 10% as a gap. All the training
samples are used to train the boosting model when δ =
100%. The best threshold for each comparing model may
be different due to the nature of the boosting model.

Comparing methods. In our experiments, we compared
two deep networks and several boosting models as follows:
• RBM: only one deep network implemented as Stacked

Restricted Boltzmann Machine.
• RBM+DT: RBM as the deep network and Decision Tree

as the boosting model.
• RBM+KNN: RBM as the deep network and K-Nearest

Neighbors as the boosting model.
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• RBM+SVM: RBM as the deep network and Support
Vector Machine as the boosting model.

• RBM+SNN: RBM as the deep network and single
hidden layer Neural Network as the boosting model.

• RBM+RBM: RBM as the deep network and another
RBM as the boosting model.

• AE: only one deep network implemented as basic
Stacked Auto Encoders.

• AE+DT: AE as the deep network and DT as the boosting
model.

• AE+KNN: AE as the deep network and KNN as the
boosting model.

• AE+SVM: AE as the deep network and SVM as the
boosting model.

• AE+SNN: AE as the deep network and SNN as the
boosting model.

• AE+AE: AE as the deep network and another AE as
the boosting model.

B. Reconstruction Error vs Classification Error

In this section, we show the relationship between recon-
struction error and classification error to validate our claim
that the prediction interval becomes bigger with the increase
of classification error. Notice that predicted classification
result is a vector. We compute the classification error by the
following:

e = yi − y′i, yi = 1 (23)

where yi = 1 is the real class label. If e < 0.5, the
classification result is correct. It is still possible that the
result is correct when e > 0.5. For example, if y′1 =
0.4, y′2 = 0.3, y′3 = 0.3 and y1 = 1, the error is 0.6 while
the classification result is correct.

We recorded the classification error and reconstruction
error on all 60, 000 training samples in MNIST dataset. Three
different ways (ζ1, ζ2, ζ3) are tried to computed the overall
reconstruction error as introduced in previous section. The
top-k for ζ2 is set at 100 while there are 28 × 28 = 784
inputs. The threshold δ′ for ζ3 is set at 0.2. The results are
reported in Figure 5. From the figure, we can see that most
of the samples are with small reconstruction error. The points

with small overall reconstruction error are dense while the
points with big reconstruction error are sparse in the figure.
For those samples with small overall reconstruction error, the
classification error is small either. It supports our analysis on
prediction interval of deep learning and its relationship with
reconstruction error and classification error. Though not all
the samples with big reconstruction error are misclassified,
the average prediction interval is bigger for those samples.

Figure 5 (a) and Figure 5 (b) are actually very similar. As
mentioned, ζ1 is a special case of ζ2 when the top-k inputs
are all the inputs. The top-100 reconstruction error is more
than half in overall reconstruction error from the figure while
it is only 100/784 ≈ 13% in amount of inputs. It implies
that most of the input features can be reconstructed with
small error while only part of the features are reconstructed
incorrectly. These inaccurately reconstructed features are the
key to the final results since the distributions of Figure 5 (a)
and Figure 5 (b) are similar. It also supports the claim that
reconstruction error is highly correlated with classification
error.

C. Performance Comparison

In this section, we give comparisons of performance of
considered models on two datasets. For the network param-
eter of the basic RBM and AE we refer to the setting in the
work of Hinton and Bengio [9][2]. The final performance
is related with the threshold δ. The threshold δ determines
which part of the training samples are used to train the
boosting model and how many testing samples in the testing
set should be reclassified.

We give the test error of considered methods on MNIST
dataset under different setting of δ in Table 1. Two most
widely used deep networks: RBM and AE, are used for
the deep network model. Several models are implemented
as the boosting model. Here, the threshold δ is the level of
reconstruction error in training samples. Value of overall re-
construction error equals the top 10%th value when ordering
the reconstruction error of training samples in descent when
δ = 0.1. No boosting strategy is used when δ = 0 and
all the samples are used to train the boosting model when
δ = 1. From the table, we can see that no matter what the

(a) (b) (c)

Fig. 5: Relationship between reconstruction error and classification error.
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TABLE I: Performance comparison of the considered models on MNIST with the variation of the threshold. Test error is
reported. Best performer in each model is in bold.

Method Threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RBM 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
RBM+DT 1.52 1.48 1.46 1.4 1.41 1.43 1.43 1.45 1.48 1.52 1.54

RBM+KNN 1.52 1.47 1.45 1.39 1.38 1.4 1.42 1.44 1.47 1.51 1.53
RBM+SVM 1.52 1.47 1.44 1.37 1.4 1.41 1.41 1.45 1.48 1.52 1.53
RBM+SNN 1.52 1.51 1.49 1.45 1.41 1.4 1.42 1.44 1.48 1.5 1.52
RBM+RBM 1.52 1.52 1.49 1.43 1.38 1.37 1.41 1.43 1.46 1.49 1.52

AE 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97
AE+DT 1.97 1.93 1.88 1.82 1.82 1.83 1.86 1.9 1.94 1.97 2

AE+KNN 1.97 1.91 1.86 1.79 1.82 1.81 1.85 1.89 1.92 1.96 1.99
AE+SVM 1.97 1.91 1.85 1.78 1.8 1.83 1.86 1.9 1.93 1.97 1.98
AE+SNN 1.97 1.96 1.93 1.9 1.86 1.85 1.87 1.89 1.93 1.95 1.97
AE+AE 1.97 1.95 1.92 1.84 1.78 1.77 1.81 1.84 1.88 1.92 1.97

boosting model is, our boosting strategy is effective. Only in
some situations when the threshold is near 1, the performance
of the boosting model is worse than the raw deep model.
When the threshold is setting at 1, all the training samples
are used to train the boosting model. Therefore, the result
is the averaging of two classification models. As reported
in existing work of deep learning, deep network is more
effective than traditional classification models such as DT
and KNN. The average result is worse than the single deep
network. The boosting strategy is useful in other situations.
Most of the boosting models obtain the best performance
when δ ∈ [0.3, 0.4]. When δ is small, only limited number
of testing samples are reclassified using the boosting model.
Many misclassified testing samples are not boosted because
of the small δ. When δ is big, the boosting model can not
take full advantage of reconstruction error because many
samples with small reconstruction error are also included
in the training set of the boosting model. For the testing
samples, many samples are correctly classified by the deep
network would be reclassified by the boosting model again
due to the big δ. It may lead some correctly classified samples
being misclassified when considering the average results of
the deep network and the boosting model. Hence, the best
performance is obtained when δ is around 0.3 to 0.4. It is
a little bit different when the deep network is used as the
boosting model. As we know, the deep network as well as
the neural network requires large amount of samples to reach
good performance because its complex structure. Therefore,
the best δ is around 0.5 for the deep network as the boosting
model. The improvements for different models are similar.
The boosting strategy can reduce the testing error about 0.15.

The comparison of performance on CIFAR dataset is
reported in Figure 6. The results on CIFAR are similar with
the results on MNIST as demonstrated in the figure. All the
boosting models are effective in classification. It implies that
we can use reconstruction error to improve the performance
of the model with appropriate parameter settings. The best
threshold is around 0.3 for approaches using DT, KNN, SVM
as the boosting model while it is 0.5 for dual deep networks.
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Fig. 6: Performance comparison of the considered models on
CIFAR.

Finally, we report the experimental result on air quality
dataset in Figure 7. The task of predicting whether the index
would exceed the threshold is a binary classification task.
We use the data of the first 18 months as the training data
and the data of the rest 6 months as the testing set. Input
data is the index of six pollutants in previous 24 hours (144
in dimension). The predicting time step ranges from 1 hour
to 24 hours. For the sake of simplicity, we only report the
result comparison of AE and AE+AE. The threshold is set at
0.5. From the figure, we can see that our boosting strategy
is effective in predicting. It could reduce the classification
error over 1%. With the increase of predicting time step, the
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classification error increases as well. However, the advantage
of the boosting method is more obvious with the increase
of predicting time step. When the predicting time step is
small, the reconstruction error is small as well. The boosting
strategy would not take effect in this situation.

5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r o
f c

la
ss

ifi
ca

tio
n

Predicting time step

 AE
 AE+AE

Fig. 7: Classification error on air quality dataset.

In conclusion, from the experiments, we validated that we
could use reconstruction error to improve the performance of
the classification using our boosting strategies. In addition,
appropriate threshold δ is the key to the good performance of
the final results. We can determine the value of the threshold
from the cross-validation of boosting strategies in training
set.

VI. CONCLUSION

In this paper, we proposed a dynamic boosting strategy
according to reconstruction error in deep networks. We
first analyzed the relationship between reconstruction error
and classification error. From the perspective of predic-
tion interval, we demonstrated that with the increase of
reconstruction error, the prediction interval would become
bigger. Therefore, the classification result is not reliable
when the reconstruction error is big. Then we proposed a
boosting strategy based on the reconstruction error and the
classification error in the training set. With an appropriate
threshold δ, we could select part of the training set to learn
a boosting model. We can record the reconstruction error
of the selected training samples and use them as inputs for
the boosting model. From experiments on two widely used
classification datasets, we validated that our boosting strategy
is effective in improving the performance of classification.

There are still many potential works to do of boosting
using reconstruction error in deep learning. It is ideal that
we can directly modify the structure of the deep network
to improve the performance instead of relying on an extra
boosting model. Reconstruction error may provide us useful
information about the parameter we learned. So it is possible
to directly modify the weight in the deep network according
to reconstruction error. Another interesting direction is ex-
ploring the theoretical bound of the boosting strategy. It may
rely on the theoretical bound of deep learning. We also want

to test the dynamic boosting strategy for other tasks such as
regression. The boosting strategy is data driven so that it is
valuable to real-time tasks such as regression in time series
data.
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