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 Abstract—Brain computer interface (BCI) is known as a good 

way to communicate between brain and computer or other 
device. There are many kinds of physiological signal can operate 
BCI systems. Motor imagery (MI) has been demonstrated to be a 
good way to operate a BCI system. In some recent studies about 
MI based BCI systems, low accuracy rate and time consuming 
are common problems. In this thesis, a novel motor imagery 
algorithm is proposed to improve the accuracy rate and 
computational efficiency at the same time. The architecture of 
many BCI system is quite complex and they involve time 
consuming processing.  The electroencephalography (EEG) 
signal is the most commonly used inputs for BCI applications but 
EEG is often contaminated with noise.  To overcome such 
drawbacks, in this paper we use the common spatial pattern 
(CSP) for feature extraction from EEG and the linear 
discriminant analysis (LDA) for motor imagery classification. In 
this study, CSP and LDA have been used to reduce the artifact 
and classify MI-based EEG signal. We have used two-level cross 
validation scheme to determine the subject specific best time 
window and number of CSP features.  We have compared the 
performance of our system with BCI competition results. This 
novel algorithm with high accuracy rate and efficiency can be 
applied to real time BCI system in real-life applications.  

Keywords—Brain-Computer Interface (BCI); Motor imagery 
(MI); electroencephalography (EEG); common spatial pattern 
(CSP); linear discriminant analysis (LDA); 

I.  INTRODUCTION 
There are lots of neurons active in our brain continuously 

day by day; neuron activity can cause electrical waves which 
we called electroencephalography (EEG). EEG is the 
recording of electrical activity along the scalp. EEG measures 
voltage fluctuations resulting from ionic current flows within 
the neurons of the brain. In other words, EEG has something 
to do with the conscious and thought in our brain. 

A brain-computer interface (BCI) system tries to 
understand one’s intention primarily based on 
electroencephalography (EEG) signal and it provides human 
being a new way to communicate or control [1] . Research on 
BCI system has become more popular in recent years [2] . 
Motor imagery (MI) means mental simulation of movement 
and it has been demonstrated to be a good way to operate a 
BCI system [3] . Mental imagery of movement can produce 
EEG patterns over primary sensorimotor area, which is often 
very similar to execution of actual movement. The state-of-the 

art literature reveals that it is possible to distinguish between 
imagined right hand and left hand movements based on single-
trial EEG signals [4] . 

In recent studies on MI, there are many ways to classify 
different kinds of MI such as auto regression (AR) [5]. There 
are many ways to extract useful features for MI recognition 
[6]; for example, Fast Furrier Transform (FFT) and Common 
spatial pattern (CSP) [7]. There are some methods which 
observe the difference in power between the bilateral sides of 
hemisphere during the imagery, which is a well-known 
phenomenon of MI. Some of these methods have good result 
but are too complex [8] or demand too much computing time 
[9], which is hard to apply in  real-time applications. In [7] 
authors use wavelet packet-based independent component 
analysis for feature extraction from MI EEG for recognition of 
complex movements. For BCI application, we need to 
recognize the fact that different subjects may have different 
mental conditions and hence, a general classification model is 
not suitable for all subjects. As a result, we need to develop 
subject specific classification systems to achieve that to find 
out a desirable system for the task at hand and that is what we 
use here. In this thesis, CSP has been used to extract useful 
features for classification of MI EEG data. 

In this study, CSP has been used to extract useful features 
for classification of MI EEG data and the Linear discriminant 
analysis (LDA) [10] has been used to classify EEG data. In 
addition, machine learning [11] method has also been used to 
improve the feature extraction process. The maximum 
classification accuracy obtained is 80%. In addition, we have 
also done an independent component analysis (ICA) [12] to 
check whether there are distinct sources for the left motor 
imagery and right motor actions. Our answer is affirmative 
indicating that the results obtained are quite reliable as well. 
Because of its high classification rate and simplified 
computation, we think that the proposed system has the 
potential to be used in real-time MI-based BCI system [13]. 

II. METHODS 
 The experiment data from our laboratory is all recorded in 

a shielded room. When recording, the subject sits on a 
comfortable chair, placing his/her hands on a table. The 
recording system is Neuroscan EEG recording system with 
32channels traditional EEG cap as shown in Fig. 1. The 
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position of electrodes on EEG cap is same a
10-20 system shown in Fig. 1. 

A. Feature Extraction 
We use the Common Spatial Pattern (CS

extraction. CSP has been successfully us
denote the EEG data of trial i for class a 
matrix of size N by T. Here N represen
channels and T represents the number of sam
domain. In the present case we ha
corresponding to Left-Motor Imagery 
Imagery. The corresponding normalized (s
matrix, R  , is calculated as: R =

∑ ೌೌసభ∑ ௧ሺೌೌሻ  సభ .     

In (1) n is the number of trials in class a
compute the normalized (spatial) covariance
class b.  
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And we do the eigen decomposition of RRୡ ൌ BୡλBୡT.            
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are N by N matrices. Now we use
transformation which scales the principal comW ൌ λିଵ ଶ⁄ BୡT.          

Then the covariance matrices Rୟ  and R
as  Sୟ ൌ WRୟWT and Sୠ ൌ WRୠ

With this transformation, Sୟ  and Sୠ
common eigenvectors. To find the common 
and Sୠ, the eigen decomposition of Sୟ is Sୟ ൌ UψୟUT.            

And with the eigenvectors in U  Sୠ ൌ UψୠUT.            
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Fig. 3: Comparison of data scatter map
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2D scatter map. In the other hand, because
row after CSP projection contains the mo
information [16], so the feature of the first
used to plot this 2D scatter map. 

B. Classifier Design 
Linear Discriminate analysis (LDA) [18

classification method which projects data in 
a projection, y ൌ wTx , which  minimizes

scatter and maximizes the scatter between cl
Fig. 4.  

III. RESULTS AND DISCUSSI

A. Our Experiment Procedure 
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Fig. 4: Linear Discriminate analysis (LDA) projection 
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performance. The accuracy rate of prediction is 91.250% 
which means the model is stable. 

IV. CONCLUSIONS 
In this study, we have used common spatial patterns for 

feature extraction and linear discriminant analysis for motor 
imagery classification based on EEG signals. The developed 
method uses CSP and LDA with data from 32 channels. A 
novel classification method is proposed to solve the 
misclassifying problem caused by voting scheme － High 
classification accuracy rate on the three datasets and well-
performed computational efficiency can be obtained. This 
motor imagery based BCI system is high efficient, real-time 
and can be utilized in our daily life. 

The motor imagery algorithm on brain-computer interface 
yield good classification rate－which can be used to real-life 
applications (e.g. robot and wheel chair) with online user 
interface. However, the motor imagery based BCI system 
currently still need computer to further build classification 
model and process online data through the proposed motor 
imagery algorithm. Consequently, in the following research 
stage, we’re going to develop the novel algorithm on 
embedded system, which is integrated in the brain-computer 
interface system. Through the innovative algorithm-device 
integration, the motor imagery based BCI system will become 
a computer-free, convenient and more practicable system. 
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