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Abstract— A Bayesian Network (BN) is a graphical model
which can be used to represent conditional dependency between
random variables, such as diseases and symptoms. A Bayesian
Network Classifier (BNC) uses BN to characterize the relation-
ships between attributes and the class labels, where a simplified
approach is to employ a conditional independence assumption
between attributes and the corresponding class labels, i.e., the
Naive Bayes (NB) classification model. One major approach to
mitigate NB’s primary weakness (the conditional independence
assumption) is the attribute weighting, and this type of approach
has been proved to be effective for NB with simple structure.
However, for weighted BNCs involving complex structures, in
which attribute weighting is embedded into the model, there
is no existing study on whether the weighting will work for
complex BNCs and how effective it will impact on the learning
of a given task.

In this paper, we first survey several complex structure
models for BNCs, and then carry out experimental studies to
investigate the effectiveness of the attribute weighting strategies
for complex BNCs, with a focus on Hidden Naive Bayes
(HNB) and Averaged One-Dependence Estimation (AODE). Our
studies use classification accuracy (ACC), area under the ROC
curve ranking (AUC), and conditional log likelihood (CLL), as
the performance metrics. Experiments and comparisons on 36
benchmark data sets demonstrate that attribute weighting tech-
nologies just slightly outperforms unweighted complex BNCs
with respect to the ACC and AUC, but significant improvement
can be observed using CLL.

I. INTRODUCTION

BAYESIAN networks (BNs), consisting of a directed
acyclic graph (DAG) and a set of local distributions [1],

provide a means of expressing joint probability distributions
over interrelated random variables. A node in the network
corresponds to a variable, and the conditional probability
table (CPT) associated to the node contains the probability
of each state of the variable given every possible combina-
tion of states of its parents. The structure of the problem
domain can be exploited by the explicit representation of
probabilistic relations in the BN. In this way, incorporating
domain knowledge into a BN model can be easily achieved.
Besides, the intuitive graphical representation of the BN is
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very beneficial in decomposing a large and complex problem
representation into several small and self-contained models.

In order to use BN for classification, the underlying
Bayesian network classifier (BNC) from a given set of
labeled training instances that are represented by a tuple of
attribute variables should be constructed in order to predict
the distribution of the class variable. Learning a BNC is an
established research topic since the past decade. Generally,
the Bayesian approach for classification is to assign the most
probable target value to the test instance. Typically, one set
of training instances with class labels are given, a classifier
must be learned to predict the class distribution of an
instance with unknown class label. Assume that all attributes
satisfy the conditional attribute independence assumption, the
probability of observing the conjunction is just the product
of the probabilities for the individual attributes. This is the
essential concept of naive Bayes, NB, a highly practical
Bayesian network classification method. The naive Bayes
classification is based on the so-called Bayesian theorem and
is particularly suitable for high dimensional data. In naive
Bayes, each attribute node has the class node as its only
parent, and it does not have any other parent from other
attribute nodes, as shown in Figure 1.

In reality, the strong conditional attribute independence
assumption made by NB may reduce its classification per-
formance when the condition is violated in a learning task.
To alleviate the attribute independence assumption of NB
and retain NB’s simplicity and efficiency, researchers have
proposed many effective methods to further improve its per-
formance. The following three methods have demonstrated
good accuracy. Selective naive Bayes (SBC) [2] demonstrates
a significant improvement by using the selected subset of
variables, which optimizes the classification accuracy. Tree
augmented naive Bayes (TAN) [3] naturally extends the naive
Bayes classifier, as shown in Figure 2. Naive Bayes/Decision-
Tree Hybrid (NBTree) [4] combines a decision tree with NB.
Overall, these techniques have high computational overheads
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Fig. 1. The structure of Naive Bayes (NB).
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Fig. 2. The structure of Tree Augmented Naive Bayes (TAN).

during training or classification phases: (a) TAN and NBTree
have high computational complexity at training time; and
(b) SBC has high computational complexity at classification
time.

The high computational overheads of the above methods
motivates the development of averaged one-dependence esti-
mators AODE [5]. As shown in Figure 3, an one-dependence
classifier is firstly trained for each attribute, in which the
attribute is set to be the parent of all other attributes. Then,
AODE directly averages the aggregation consisting of many
special tree augmented naive Bayes. In addition to having
good classification performance, AODE retains the simplicity
and direct theoretical foundation of NB without incurring
high computational costs. Su & Zhang [6] explored and
represented variable independence in learning conditional
probability tables (CPTs), and then proposed a full Byaesian
network classifier (FBC). Recently, Zhang & Jiang [7] pro-
posed a high-performance BNC, named hidden naive Bayes
(HNB). In HNB, the authors used the conditional mutual
information as the weight of the hidden parent attribute, as
shown in Figure 4.

Another major way to help mitigate its primary weakness
(i.e. attributes independence assumption) is to assign larger
weights to important attributes in classification. This is main-
ly because attributes do not play the same role in different
learning tasks, and some attributes are more important than
others for a specific learning task. For NB with a simple
structure, a natural way to extend NB is to assign attributes
different weight values to relax the conditional independence
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Fig. 3. The structure of Averaged One-Dependence Estimators (AODE).

assumption, called weighting naive Bayes, simply WNB. For
example, Jiang [8] proposed to use weight averaged one-
dependence estimators WAODE to improve AODE model.

In order to learn proper weight values for BNC, researcher-
s have proposed many methods to evaluate the importance
of attributes, including Gain Ratio [9], CFS (Correlation-
based Feature Selection) attribute selection algorithm [10],
Mutual Information [7], [8], ReliefF attribute ranking algo-
rithm [11] and so on. Besides, Hall [12] proposed a novel
attribute weighting methods based on the degree to which
they depended on the values of other attributes.

The above attribute weighting methods for NB have
achieved good performance to solve domain specific prob-
lems. However, for complex BNC models, such as AODE
and HNB, attribute weighting receives very little attention.
Moreover, for the existing WAODE [8], besides the M-
estimation the underlying attribute weighting method is only
a part of the improvements, similar to HNB. In this case,
there is no comprehensive understanding on how much
impact the attribute weighting can bring to the classification
results. In this paper, we analyze the performance of attribute
weighted complex BNCs (WAODE and HNB) by using
different attribute weighting methods. Experiments and com-
parisons, on 36 UCI benchmark data sets [13] demonstrate
that attribute weighting technologies only slightly outperform
unweighted complex BNCs on classification accuracy (ACC)
and area under the ROC curve ranking (AUC) [14]. However,
significant improvement can be observed using conditional
log likelihood (CLL) [15].

II. ATTRIBUTE WEIGHTED BNCS

Given a training set D = {x1, · · · , xN} with N instances,
each of which contains n attribute values and a class label.
We use xi = {xi,1, · · ·xi,j , · · ·xi,n, yi} to denote the ith
instance in the data set D, with xi,j denoting the jth attribute
value and yi denoting the class label of the instance. The
class space Y = {c1, · · · , ck, · · · , cL} denotes the set of
labels that each instance belongs to and ck denotes the kth
label of the class space. For ease of understanding, we use
(xi, yi) as a shorthand to represent an instance and its class
label, and use xi as a shorthand of xi. We also use Aj as
a shorthand to represent the jth attribute. Each attribute can
be a discrete random variable (with a number of discrete
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Fig. 4. The structure of Hidden Naive Bayes (HNB).
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TABLE I
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED WAODE VS. AODE: ACC AND STANDARD DEVIATION.

Data Sets AODE CFS-WAODE GR-WAODE MI-WAODE Ref-WAODE DT-WAODE

anneal 96.83±1.66 96.92±1.59 96.90±1.56 97.38±1.58 97.54±1.51 97.15±1.59
anneal.ORIG 89.01±3.10 89.40±3.09 89.59±3.07 89.70±2.78 89.86±2.86 89.59±2.95
audiology 71.66±6.42 71.70±6.48 71.66±6.42 71.61±6.67 71.57±6.59 71.65±6.54
autos 74.60±10.10 75.18±10.26 75.08±10.03 75.43±9.96 75.32±10.00 76.20±10.22
balance-scale 89.78±1.88 88.32±2.34 ◦ 89.65±2.00 89.65±2.00 89.15±2.21 89.71±1.97
breast-cancer 72.73±7.01 72.77±6.88 71.80±7.33 72.25±7.11 72.53±7.13 72.67±7.11
breast-w 96.85±1.90 96.68±1.94 96.82±1.91 96.82±1.91 96.81±1.91 96.67±2.05
colic 80.93±6.16 81.01±6.23 81.36±6.03 81.50±6.09 81.72±5.90 81.23±6.33
colic.ORIG 75.38±6.41 75.60±6.51 75.71±6.21 76.26±6.35 75.82±6.46 75.85±6.21
credit-a 85.86±3.72 85.96±3.73 85.97±3.58 85.90±3.57 85.90±3.57 85.90±3.76
credit-g 76.45±3.88 76.33±3.80 76.52±3.62 76.30±3.63 76.20±3.75 76.45±3.77
diabetes 76.57±4.53 76.42±4.58 76.33±4.64 76.20±4.64 76.05±4.70 76.54±4.52
glass 61.73±9.69 61.87±9.43 62.06±9.46 61.40±9.38 61.26±9.24 61.78±9.68
heart-c 82.84±7.03 82.97±6.91 83.04±6.93 83.04±6.83 83.10±6.91 83.00±7.00
heart-h 84.09±6.00 84.32±5.77 84.29±5.52 84.50±5.77 84.30±5.92 84.36±6.07
heart-statlog 83.63±5.32 83.63±5.67 83.52±5.80 83.93±5.84 83.48±5.90 83.59±5.89
hepatitis 85.21±9.36 84.76±9.65 85.09±9.63 84.06±10.05 85.15±9.49 85.02±9.51
hypothyroid 93.56±0.61 93.61±0.56 93.58±0.55 93.52±0.56 93.58±0.54 93.62±0.57
ionosphere 91.74±4.28 91.99±4.17 91.88±4.13 91.85±4.12 91.74±4.23 91.85±4.01
iris 94.00±5.88 94.40±5.50 95.07±5.16 95.00±5.14 95.40±4.80 94.67±5.53
kr-vs-kp 91.03±1.66 92.30±1.46 • 93.26±1.39 • 94.14±1.28 • 93.51±1.45 • 91.64±1.71 •
labor 94.57±9.72 94.93±9.13 94.93±9.13 94.03±10.18 94.17±9.90 94.17±9.48
letter 77.64±2.02 78.06±2.07 • 78.65±1.93 • 78.70±1.94 • 78.87±1.95 • 77.80±2.08
lymph 85.46±9.32 85.39±9.24 85.59±9.20 85.46±9.23 85.91±9.45 85.92±9.21
mushroom 99.94±0.19 99.92±0.21 99.88±0.24 99.87±0.25 99.90±0.23 99.68±0.42
primary-tumor 47.87±6.37 47.87±6.46 47.96±6.47 47.70±6.42 47.61±6.55 47.72±6.44
segment 92.92±1.40 92.89±1.42 92.98±1.44 93.13±1.49 93.22±1.45 92.83±1.43
sick 97.52±0.72 97.59±0.71 97.63±0.75 98.01±0.72 • 97.84±0.69 • 97.74±0.66 •
sonar 79.91±9.60 80.20±9.38 80.20±9.52 80.30±9.44 80.91±9.16 79.92±9.38
soybean 93.31±2.85 93.38±2.78 93.28±2.87 93.26±2.82 93.32±2.74 93.32±2.80
splice 96.12±1.00 96.18±0.98 96.13±0.99 96.11±1.01 96.20±0.98 96.11±1.01
vehicle 71.65±3.59 71.58±3.58 71.85±3.61 71.83±3.64 71.70±3.62 71.64±3.67
vote 94.52±3.19 94.52±3.19 94.46±3.17 94.46±3.17 94.11±3.35 94.25±3.28
vowel 89.64±3.06 89.56±3.09 89.04±3.21 89.09±3.21 89.73±3.15 89.56±3.13
waveform-5000 84.84±3.07 84.78±3.24 85.19±3.11 85.18±3.14 85.04±3.15 85.00±3.08
zoo 94.66±6.38 93.76±6.43 94.66±6.38 93.76±6.43 93.96±6.46 94.57±6.50

Mean 84.86±4.70 84.91±4.93 85.04±4.81 85.04±4.98 85.07±4.96 84.98±4.71
w/t/l - 2/33/1 2/34/0 3/33/0 3/33/0 2/34/0

•, ◦: Statistically significant upgradation and degradation, respectively.

values) or a continuous random variable. For each instance
xi, its value satisfies xi,j ∈ Aj . For an instance (xi, yi) in
the training set D, its class label satisfies yi ∈ Y , whereas
a test instance xt only contains attribute values and its class
label yt needs to be predicted by the BNC models.

A. WNB: Attribute Weighted NB

Because attributes in NB may not play equally important
roles in different learning tasks, a natural way to extend NB
is to assign attributes different weight values to relax the
conditional independence assumption. This is the main idea
of the weighted naive Bayes (WNB) methods, which can be
mathematically formulated as follows.

c(xt) = argmax
ck∈Y

P (ck)
n∏
j=1

P (xt,j |ck)wj (1)

In Eq. (1), P (ck) denotes the probability of class ck in the
whole training set. P (xt,j |ck) denotes the joint distribution
of xt,j conditioned by the the given class ck, where wj
denotes the weight of jth attribute. In [16], an empirical
analysis was carried out on WNB and the underlying results
show that attribute weighting can significantly improve the
performance of NB. Therefore, we do not include the exper-
imental analysis for WNB in this paper.

B. WAODE: Attribute Weighted AODE
The main object of attribute weighting for averaged one-

dependence estimators (WAODE), proposed by Jiang [8], is
to improve the ACC performance of AODE. In the original
design, a tree augmented naive Bayes was built for each
attribute, in which the attribute was set as the root attribute.
Each tree augmented naive Bayes was assigned a weight
value determined by the mutual information between the
attribute and the class variable, which could be formulated
as

c(xt) = argmax
ck∈Y

n∑
j=1

wjP (xt,j , ck)
n∏
i=1

P (xt,i|xt,j , ck)∑n
j=1 wj

s.t. F (xt,j) ≥ m

(2)

where F (xt,j) denotes the number of training instances
having attribute-value xt,j and is used to enforce the limit
m that they place on the support needed in order to accept
a conditional probability estimation. n is the number of at-
tributes. In order to avoid unreliable probability estimations,
WAODE excludes models where the frequency of the value
for classified object of the parent attribute in the training data
is fewer than the limit (m=30).

C. HNB: Hidden Naive Bayes
Hidden Naive Bayes (HNB) is an extension of the naive

Bayes classifier. It employs an approximation of the joint
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TABLE II
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED WAODE VS. AODE: AUC AND STANDARD DEVIATION.

Data Sets AODE CFS-WAODE GR-WAODE MI-WAODE Ref-WAODE DT-WAODE

anneal 98.93±1.50 98.96±1.47 98.95±1.48 98.97±1.47 98.97±1.49 98.98±1.47
anneal.ORIG 97.29±3.93 97.38±3.76 97.43±3.69 97.56±3.30 97.65±3.08 97.47±3.50
audiology 83.81±1.48 83.82±1.48 83.82±1.48 83.84±1.48 83.86±1.49 83.85±1.49
autos 94.67±2.54 94.76±2.51 94.72±2.52 94.83±2.51 94.83±2.48 94.88±2.53
balance-scale 79.93±3.94 79.21±4.03 ◦ 79.81±3.95 79.81±3.95 79.70±4.00 79.82±3.95
breast-cancer 71.18±10.03 70.88±10.04 69.79±10.12 70.09±10.25 71.01±9.96 70.98±10.13
breast-w 99.28±0.73 99.27±0.76 99.28±0.73 99.29±0.73 99.29±0.73 99.27±0.75
colic 86.79±6.08 86.97±6.05 87.25±6.03 87.15±6.05 87.64±5.98 87.13±5.96
colic.ORIG 82.22±7.24 82.72±7.13 83.29±6.93 82.95±7.20 82.67±7.29 82.69±7.08
credit-a 92.35±2.92 92.39±2.93 92.47±2.93 92.39±2.94 92.47±2.91 92.40±2.94
credit-g 79.68±4.14 79.67±4.19 79.62±4.21 79.64±4.20 79.58±4.17 79.68±4.14
diabetes 82.96±4.83 83.02±4.76 83.08±4.71 83.05±4.68 82.89±4.71 83.03±4.82
glass 83.60±5.64 83.78±5.48 84.04±5.38 83.58±5.62 83.82±5.67 83.72±5.55
heart-c 84.11±0.57 84.09±0.58 84.08±0.58 84.08±0.58 84.08±0.58 84.09±0.58
heart-h 83.97±0.54 83.98±0.54 83.99±0.56 83.98±0.55 83.98±0.55 83.96±0.55
heart-statlog 91.28±4.70 91.24±4.68 91.18±4.71 91.14±4.64 91.19±4.70 91.22±4.68
hepatitis 88.53±10.56 88.42±10.74 88.57±10.45 87.80±10.84 88.22±10.75 88.44±10.42
hypothyroid 87.34±7.23 87.46±7.09 87.88±6.54 87.43±6.85 87.11±7.17 87.36±7.11
ionosphere 97.57±2.23 97.52±2.37 97.54±2.33 97.51±2.29 97.54±2.26 97.47±2.43
iris 99.16±1.42 99.15±1.47 99.17±1.43 99.17±1.43 99.17±1.43 99.13±1.44
kr-vs-kp 97.44±0.75 97.89±0.66 • 98.14±0.61 • 98.53±0.52 • 98.33±0.57 • 97.71±0.69 •
labor 98.54±4.90 98.38±5.65 98.50±5.54 98.50±5.54 98.08±5.93 98.08±6.19
letter 98.40±0.28 98.46±0.27 • 98.55±0.25 • 98.55±0.25 • 98.60±0.24 • 98.42±0.27 •
lymph 95.03±4.35 95.09±4.32 94.95±4.30 95.13±4.34 95.09±4.31 95.16±4.35
mushroom 100.00±0.01 100.00±0.01 100.00±0.01 100.00±0.01 100.00±0.01 99.99±0.02
primary-tumor 85.72±2.07 85.78±2.04 85.75±2.06 85.79±2.04 85.78±2.06 85.75±2.05
segment 99.42±0.22 99.42±0.22 99.44±0.21 • 99.46±0.21 • 99.47±0.21 • 99.42±0.21
sick 97.09±1.69 97.41±1.50 • 97.55±1.46 • 98.36±1.01 • 98.12±1.13 • 97.66±1.40 •
sonar 90.01±6.77 90.02±6.83 90.02±6.85 90.25±6.75 90.58±6.61 89.95±6.71
soybean 99.91±0.09 99.91±0.09 99.91±0.08 99.92±0.08 99.91±0.09 99.91±0.09
splice 99.56±0.25 99.56±0.25 99.55±0.26 99.55±0.26 99.56±0.25 99.56±0.25
vehicle 89.91±2.03 89.95±1.99 89.90±2.04 89.91±2.05 89.92±2.05 89.94±2.00
vote 98.67±1.24 98.67±1.24 98.77±1.21 98.77±1.21 98.55±1.30 98.59±1.31
vowel 99.40±0.36 99.39±0.36 99.36±0.36 99.36±0.35 99.40±0.35 99.40±0.36
waveform-5000 96.70±1.27 96.68±1.25 96.65±1.24 96.64±1.24 96.62±1.26 96.72±1.25
zoo 99.07±1.43 99.07±1.43 99.07±1.43 99.07±1.43 99.07±1.43 99.07±1.43

Mean 91.93±3.05 91.95±3.06 92.00±3.02 92.00±3.02 92.02±3.03 91.97±3.06
w/t/l - 3/32/1 4/32/0 4/32/0 4/32/0 3/33/0

•, ◦: Statistically significant upgradation and degradation, respectively.

distribution defined as follows.

c(xt) = argmax
ck∈Y

P (ck)

n∏
j=1

P (xt,j |Ahj , ck) (3)

where

P (xt,j |Ahj , ck) =
n∑

j=1,j ̸=i

wi,jP (xt,j |xt,i, ck) (4)

where wi,j is the conditional weight contributed by attribute
Ai and Aj . In HNB, attribute dependencies are actually
represented by hidden parents of attributes. It can be viewed
in such a way that a hidden parent Ahj is created for each
attribute Aj . One-dependence estimators P (xt,j |xt,i, ck) are
used to define hidden parents. Presumably, HNB is an
accurate model because it can represent the influences on
each attribute from all other attributes and assign higher
weights to important attributes.

D. Attribute Weighted Approach

The way to learn the attribute weights is the most im-
portant part for attribute weighted BNCs, which can be
summarized as follows.

1) MI (Mutual Information): According to the probability
and information theory, the mutual information of two ran-
dom variables provides a quantified measure to evaluate the

mutual dependence of two variables, which can be defined
as

wj =
∑

aτj∈Aj ,ck∈Y
P (aτj , ck)log

P (aτj , ck)

P (aτj )P (ck)
(5)

Mutual information has been widely used for measuring the
importance between attributes and the class variable in clas-
sification. For HNB, Jiang [7] proposed a conditional mutual
information based method to calculate the wi,j defined as

wi,j =
Ii,j∑n

j=1,j ̸=i Ii,j
(6)

where Ii,j is the conditional mutual information between xt,i
and xt,j given the class ck, which can be defined as

Ii,j =
∑

xt,i,xt,j ,ck

P (xt,i, xt,j , ck)log
P (xt,i, xt,j |ck)

P (xt,i|ck)P (xt,j |ck)
(7)

2) GR (Gain Ratio): Zhang & Sheng [17] argued that an
attribute with a higher gain ratio [9] deserves a higher weight
value in WNB. In their studies, they proposed a gain ratio
weighted method that calculates the weight of an attribute
from a data set, as shown in the following Eq. (8).

wj =
GainRatio(Aj)× n∑n
j=1GainRatio(Aj)

(8)
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TABLE III
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED WAODE VS. AODE: CLL AND STANDARD DEVIATION.

Data Sets AODE CFS-WAODE GR-WAODE MI-WAODE Ref-WAODE DT-WAODE

anneal -9.56±5.69 -9.43±5.65 -9.43±5.65 -9.13± 5.68 -9.05±5.70 -9.55±5.66
anneal.ORIG -25.08±5.92 -24.72±5.91 • -24.42±5.91 • -24.48±5.95 -24.30±5.95 • -24.61± 5.95
audiology -286.15±102.49 -285.89±102.19 -285.59±102.58 • -286.28±101.61 -286.32±101.63 -285.85±102.02
autos -133.92±61.13 -132.07±61.60 -133.23±61.30 -130.85±61.48 • -130.34±61.22 • -129.30±60.88 •
balance-scale -53.21±2.50 -53.86±2.57 ◦ -53.36±2.53 ◦ -53.36±2.53 ◦ -53.36±2.58 -53.36±2.53 ◦
breast-cancer -58.49±11.77 -58.31±11.27 -58.49±10.55 -58.35±10.68 -59.43±12.24 ◦ -58.43±11.57
breast-w -10.63±6.92 -10.81±7.04 -10.71±6.98 -10.62±6.91 -10.66±6.91 -10.78±6.95
colic -55.35±18.75 -55.12±18.71 -54.93±18.76 -54.41±18.62 -54.41±18.82 -54.97±18.75
colic.ORIG -54.23±12.78 -53.65±12.82 -52.91±12.96 -54.11±13.28 -54.18±13.42 -53.75±12.81
credit-a -38.40±10.06 -37.96±9.87 • -37.43±9.81 -37.62±9.79 -37.73±9.97 -38.13±10.01
credit-g -51.48±5.80 -51.48±5.86 -51.58±5.91 -51.83±6.01 -51.85±5.96 -51.48±5.81
diabetes -49.86±8.00 -49.81±7.99 -49.88±8.04 -49.93±8.00 -50.11±7.98 -49.78±8.01
glass -103.54±21.42 -103.13±21.96 -102.94±22.04 -103.87±21.81 -103.68±21.99 -103.25±21.60
heart-c -42.72±18.57 -42.82±18.54 -42.63±18.48 -42.67±18.23 -43.12±18.78 -42.80±18.42
heart-h -43.22±15.20 -42.37±14.59 • -41.59±14.15 -41.43±13.68 -41.66±13.95 -42.69±14.46
heart-statlog -44.25±17.03 -44.58±17.19 -44.59±17.28 -44.58±17.09 -45.05±17.37 -44.53±17.11
hepatitis -42.96±27.80 -42.23±27.31 -41.64±26.94 -42.43±26.91 -42.21±27.10 -42.21±27.12
hypothyroid -23.39±2.94 -23.15±2.89 • -23.06±2.78 • -23.16±2.92 -23.20±2.93 -23.19±2.90 •
ionosphere -59.76±39.09 -59.63±39.30 -59.67±39.23 -60.07±39.42 -59.98±39.37 -60.06±40.11
iris -16.35±9.37 -15.95±9.47 -15.66±9.35 -15.68± 9.36 -15.48±9.41 -16.10±9.73
kr-vs-kp -24.45±1.86 -23.22±1.78 • -22.00±1.78 • -20.38±1.70 • -20.96±1.80 • -23.26±1.83 •
labor -15.30±20.12 -16.03±21.09 -16.24±21.63 -16.49±21.35 -17.76±23.90 -18.65±25.16
letter -79.52±7.19 -77.94±7.15 • -75.67±7.07 • -75.66±7.05 • -74.65±7.08 • -78.97±7.19 •
lymph -38.24±23.93 -38.03±23.51 -37.76±23.31 -37.81±23.06 -37.79±23.25 -38.15±23.61
mushroom -0.51±1.25 -0.54±1.19 -0.54±1.11 -0.57± 1.15 -0.57±1.30 -1.00±1.40 ◦
primary-tumor -188.96±22.30 -188.54±22.04 -188.56±22.12 -188.59±22.04 -188.95±22.17 -188.85±22.20
segment -22.07±5.57 -22.06±5.53 -21.50±5.49 • -21.06±5.43 • -21.10±5.49 • -22.14±5.52
sick -8.55±2.37 -7.89±2.22 • -7.69±2.20 • -6.52±2.03 • -6.86±2.08 • -7.44±2.15 •
sonar -67.79±35.58 -68.41±36.33 -68.68±36.74 -67.79±36.39 -68.41±37.33 -70.17±38.64
soybean -22.90±9.62 -21.60±9.12 • -22.73±9.61 -21.09±8.84 • -21.03±8.84 • -22.68±9.60 •
splice -12.07±3.30 -11.95±3.31 • -11.94±3.37 -11.94±3.36 -11.93±3.32 • -12.01±3.33
vehicle -79.40±11.54 -79.60±11.73 -78.96±11.58 -78.82±11.57 -79.17±11.59 -79.60±11.56
vote -17.27±10.77 -16.73±10.20 • -15.56±9.51 • -15.51±9.49 • -17.71±10.43 -17.72±10.70
vowel -31.15±6.85 -31.33±6.89 -32.24±6.91 -32.15± 6.88 -30.82±6.80 -31.09±6.83
waveform-5000 -37.08±7.84 -36.50±7.69 -36.06±7.76 • -36.06±7.76 • -36.17±7.75 -36.56±7.78 •
zoo -10.26±9.24 -9.68±8.58 -10.09±9.03 -9.60± 8.50 -9.84±8.76 -10.50±9.74

Mean -51.6±16.18 -51.31±14.14 -51.11±16.12 -50.97±16.02 -51.11±16.25 -51.49±16.38
w/t/l - 10/25/1 9/26/1 8/27/1 8/27/1 7/27/2

•, ◦: Statistically significant upgradation and degradation, respectively.

3) CFS (Correlation-based Feature Selection): CFS based
attribute weighting uses a correlation-based heuristic evalua-
tion function as the attribute quality measure [10] to calculate
weight of each attribute. The core of CFS algorithm is
the heuristic process that evaluates the worth or “merit”
of a subset of features. Hall [12] employed this method
to evaluate the importance of attributes according to the
heuristic “merit” value. The weight of attribute Aj can be
defined as

wj =
1√

indexrank(Aj) + 1
(9)

where indexrank(Aj) is the index of the ranked attributes
according to the order of being added to the subset during a
forward selection search in CFS.

4) Ref (Relief-F): Relief is a feature selection method
based on attribute estimation [18]. Relief assigns a grade
of relevance to each feature by examining the change of the
feature values with respect to instances within the same class
(i.e. the nearest hit) and instances between classes (i.e. the
nearest miss). If a feature’s values remain relatively stable
for instances within the same class, the feature will receive
a higher weight value. The original Relief only handles
binary classification problems. Its extension, Relief-F, can
be applied for multi-class classification [11].

5) DT (Decision Tree-Based Attribute Weighting): This
type of method proposed by Hall [12] assigns small weight

values to the attributes, which have strong dependencies
on other attributes. In order to estimate each attribute’s
dependence on other attributes, an unpruned decision tree
is constructed from the training instances with a minimum
depth indicating the depth for testing the tree. The weight
for the attribute Aj is set as

wj =
1√
dAj

(10)

Where dAj is the minimum depth at which the attribute Aj
is tested in the tree. Attributes that do not appear in the tree
receive a zero weight value.

III. EXPERIMENTS

A. Experimental Settings

We carry out the experiments for attribute weighted B-
NCs using WEKA [19] data mining tool and validate their
performance on 36 benchmark data sets from UCI data
repository [13]. The data characteristics are described in [20].
Because Bayesian network classifiers are designed for cat-
egorical attributes, in our experiments, we first replace all
missing attribute values using unsupervised attribute filter
ReplaceMissingV alues in WEKA. Then, we apply unsu-
pervised filter Discretize in WEKA to discretize numeric
attributes into categorical attributes.

In our experiments, all probability estimations use the
Laplace Estimation, which introduces a prior probability for
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TABLE IV
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED HNB VS. HNB WITH NO WEIGHT: ACC AND STANDARD DEVIATION.

Data Sets HNB CFS-HNB GR-HNB MI-HNB Ref-HNB DT-HNB

anneal 97.73±1.50 98.11±1.43 97.85±1.49 98.62±1.14 • 98.53±1.19 98.32±1.30 •
anneal.ORIG 88.92±3.02 89.37±2.91 89.41±2.81 91.60±2.63 • 90.51±2.96 • 90.13±2.99 •
audiology 75.87±6.30 75.41±5.82 76.22±6.35 73.15±6.00 74.70±6.12 76.39±6.47
autos 77.99±9.50 78.48±9.05 78.53±9.33 78.04±9.43 79.50±9.05 80.20±8.28
balance-scale 89.60±2.19 88.19±2.48 ◦ 89.41±2.30 89.65±2.42 88.82±2.49 89.35±2.31
breast-cancer 71.52±7.14 71.76±7.43 71.37±6.86 70.23±6.49 71.47±7.51 70.99±7.20
breast-w 96.32±2.47 96.32±2.38 96.37±2.46 96.08±2.46 95.88±2.56 95.95±2.47
colic 81.23±6.25 80.85±6.32 80.50±6.47 81.25±6.27 80.39±6.43 80.82±6.26
colic.ORIG 75.82±6.80 76.47±6.68 76.93±6.09 75.50±6.57 76.42±6.35 76.47±6.60
credit-a 85.35±3.88 85.12±3.76 84.49±3.72 84.84±4.43 84.77±4.09 85.12±3.89
credit-g 76.70±3.83 76.82±3.75 76.69±3.26 76.86±3.64 76.62±3.45 76.74±3.62
diabetes 75.13±4.91 74.87±4.89 74.70±4.90 75.83±4.86 74.41±4.77 75.30±4.97
glass 59.88±9.02 59.70±9.34 59.61±9.27 59.33±8.83 59.24±9.31 60.16±9.13
heart-c 82.38±6.95 82.68±6.94 82.05±7.09 81.43±7.35 82.02±7.08 82.48±6.80
heart-h 83.18±6.28 83.18±5.83 82.56±5.87 80.72±6.00 82.09±5.72 82.78±5.80
heart-statlog 82.33±5.91 82.63±5.61 82.59±5.48 81.74±5.94 82.37±6.10 82.44±5.64
hepatitis 84.18±9.50 84.37±9.37 84.75±8.75 82.71±9.95 84.44±9.46 84.05±9.66
hypothyroid 93.31±0.62 93.50±0.61 93.17±0.57 93.28±0.52 93.61±0.59 93.49±0.61
ionosphere 92.59±4.09 92.42±4.04 92.37±4.05 93.02±3.98 92.68±4.06 92.31±4.05
iris 93.00±6.02 91.40±5.94 92.47±5.58 93.93±6.00 92.20±6.22 90.87±6.47
kr-vs-kp 89.51±1.82 91.10±1.74 • 92.14±1.68 • 92.35±1.32 • 93.81±1.43 • 90.77±1.83 •
labor 93.37±11.35 93.20±11.37 92.87±11.41 90.87±13.15 92.13±12.56 91.40±12.52
letter 82.07±1.80 82.58±1.85 • 83.27±1.93 • 82.31±1.74 83.62±1.81 • 82.21±1.85
lymph 82.46±8.80 82.52±8.61 83.20±8.68 82.93±8.96 84.20±8.80 83.39±8.66
mushroom 99.88±0.26 99.88±0.26 99.88±0.26 99.94±0.19 99.88±0.26 99.81±0.34
primary-tumor 48.38±5.90 48.49±5.86 48.38±5.62 47.85±6.06 48.08±5.68 48.43±5.65
segment 94.19±1.38 94.26±1.36 94.41±1.37 94.72±1.42 94.77±1.31 94.21±1.34
sick 97.78±0.70 97.81±0.70 97.82±0.67 97.78±0.73 97.95±0.70 97.75±0.71
sonar 81.17±8.60 80.06±9.24 80.11±8.81 80.89±8.68 80.50±8.38 80.92±8.98
soybean 93.85±2.73 94.03±2.54 94.01±2.62 94.67±2.25 94.08±2.52 93.91±2.67
splice 96.06±1.02 96.08±1.08 96.06±1.07 96.13±0.99 96.09±1.06 96.10±1.06
vehicle 72.65±3.45 72.48±3.51 72.49±3.63 73.63±3.86 72.91±3.64 72.62±3.40
vote 93.56±3.45 93.24±3.41 93.72±3.20 94.36±3.20 92.02±3.73 ◦ 92.12±3.50 ◦
vowel 92.03±2.58 91.79±2.65 91.00±2.77 92.99±2.49 • 91.79±2.66 91.92±2.63
waveform-5000 83.74±3.17 84.44±3.20 85.14±3.25 84.31±3.02 85.03±3.21 84.06±3.28
zoo 96.45±4.97 97.15±4.49 97.15±4.49 99.90±1.00 • 97.15±4.49 96.35±5.16

Mean 85.00±4.67 85.02±4.62 85.10±4.56 85.10±4.55 85.13±4.66 85.01±4.67
w/t/l - 2/33/1 2/34/0 5/31/0 3/32/1 3/32/1

•, ◦: Statistically significant upgradation and degradation, respectively.

each attribute Aj such that no attribute has a zero conditional
probability values. In this case, The class probabilities P (ck),
conditional probabilities P (xt,i, |ck), and joint probabilities
P (xt,i|xt,j , ck) in BNCs are estimated as

P (ck) =
F (ck) + 1.0

N + L
(11)

P (xt,i, |ck) =
F (xt,i, ck) + 1.0

F (ck) + |Ai|
(12)

P (xt,i|xt,j , ck) =
F (xt,i, xt,j , ck) + 1.0

F (xt,i, ck) + |Ai|
(13)

where, |Ai| is the number of distinct values of attribute Ai
and L is the number of classes in D. F (·) is the frequency
with which a combination of terms appears in the training
data. N is the number of training instances. For MI-HNB,
it employs the Eqs. (6) and (7) in [7] to calculate the
wi,j . While for other attribute weighted HNB models, the
underlying wi,j can be obtained through wi,j = (wi+wj)/2.

B. Evaluation Criterions

In our experiments, the selected algorithms are evaluated
in terms of classification accuracy measured by ACC, ranking
measured by AUC, and probability estimation measured by
CLL. The ACC is calculated by the percentage of successful
predictions on domain specific problems [21], [22], [23]. In
addition to the accuracy, some data mining applications also

require accurate rankings [24], so we also collect the AUC
and CLL in our experiments, where AUC of the classifier is
calculated as follows:

E =
P0 − t0(t0 + 1)/2

t0t1
(14)

where t0 and t1 are the numbers of positive and negative
instances, respectively. P0 =

∑
ri, with ri denoting the rank

of ith positive instance in the ranked list. It is clear that AUC
is essentially a measure of the quality of ranking, but it can
only handle binary-class classification problems. For multiple
classes, Hand and Till [25] propose another AUC measure:

E′ =
2

L(L− 1)

∑
i<j≤L

E(ci, cj) (15)

where L is the number of classes and E(ci, cj) is the AUC
of each pair of classes ci and cj .

CLL performance of a classfier h on data set D with N
instances is evaluated by using Eq. (16).

CLL(h|D) =
∑N

t=1
logPh(yt|xt) (16)

where h is a learning model. In [3], maximizing Eq. (16)
amounts to best approximation of the conditional probability
of Y given each text instance xt, and is equivalent to
minimizing the conditional cross-entropy. The ACC, AUC,
and CLL of each algorithm on each data set are obtained via
10 runs of 10-fold cross validation.
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TABLE V
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED HNB VS. HNB WITH NO WEIGHT: AUC AND STANDARD DEVIATION.

Data Sets HNB CFS-HNB GR-HNB MI-HNB Ref-HNB DT-HNB
anneal 99.04±1.43 99.07±1.41 99.06±1.42 99.15±1.37 99.19±1.36 99.12±1.40
anneal.ORIG 98.04±2.41 97.98±2.65 97.99±2.69 97.87±3.27 98.02±2.72 98.06±2.54
audiology 84.22±1.50 84.26±1.48 84.26±1.49 84.08±1.48 84.29±1.47 84.30±1.47
autos 95.09±2.54 95.31±2.53 95.25±2.50 95.19±2.49 95.39±2.47 95.61±2.38
balance-scale 87.21±4.13 85.98±4.37 ◦ 86.99±4.24 87.38±4.21 86.75±4.33 87.03±4.28
breast-cancer 69.52±10.06 68.86±10.16 66.40±10.18 ◦ 66.69±10.61 ◦ 69.41±9.87 69.24±10.17
breast-w 99.10±0.89 99.09±0.91 99.11±0.89 99.02±0.95 99.08±0.92 99.09±0.90
colic 86.35±6.25 86.28±6.21 86.26±6.08 86.73±6.09 86.21±6.17 86.57±6.22
colic.ORIG 84.21±5.68 84.85±5.56 85.27±5.46 83.70±5.62 85.08±5.37 85.09±5.39 •
credit-a 91.81±3.11 91.85±3.02 91.89±2.95 91.04±3.58 91.76±3.01 91.76±3.10
credit-g 79.56±4.12 79.44±4.15 79.08±4.14 79.65±4.42 79.09±4.15 79.48±4.12
diabetes 82.34±4.93 81.98±4.86 81.59±4.88 82.31±4.82 81.47±4.82 ◦ 82.19±4.88
glass 88.58±4.33 88.74±4.30 88.68±4.37 88.37±4.57 88.67±4.47 88.66±4.37
heart-c 84.03±0.62 84.00±0.63 83.99±0.63 83.94±0.63 83.97±0.63 84.00±0.63
heart-h 83.93±0.57 83.94±0.55 83.92±0.55 83.79±0.59 83.91±0.54 83.90±0.56
heart-statlog 90.13±5.02 89.88±5.08 89.79±5.19 89.26±5.22 89.61±5.23 89.85±5.10
hepatitis 88.69±10.01 88.39±10.07 88.38±10.16 88.04±9.91 88.08±10.28 88.52±9.99
hypothyroid 89.08±6.32 89.19±6.17 89.26±6.15 88.77±6.29 89.69±5.80 89.11±6.20
ionosphere 97.90±1.99 97.63±2.12 ◦ 97.67±2.10 98.19±1.95 97.93±1.99 97.25±2.60 ◦
iris 98.77±2.09 98.45±2.37 98.28±2.55 98.72±2.20 97.80±2.86 98.13±2.61
kr-vs-kp 96.74±0.91 97.47±0.77 • 97.83±0.70 • 98.21±0.56 • 98.47±0.55 • 97.36±0.80 •
labor 97.33±7.34 97.33±7.12 97.50±6.98 97.04±7.52 97.04±7.52 97.71±6.92
letter 98.86±0.21 98.91±0.21 • 98.99±0.19 • 98.89±0.20 99.03±0.19 • 98.88±0.21 •
lymph 95.01±4.24 95.06±4.24 94.93±4.23 94.82±4.27 95.24±4.19 95.11±4.29
mushroom 100.00±0.01 100.00±0.01 100.00±0.01 100.00±0.01 100.00±0.01 100.00±0.01
primary-tumor 85.84±2.10 86.00±2.05 85.92±2.06 85.86±2.12 86.10±2.06 85.87±2.10
segment 99.59±0.18 99.62±0.16 • 99.67±0.15 • 99.71±0.14 • 99.71±0.14 • 99.61±0.17
sick 97.16±1.73 97.77±1.43 • 98.07±1.36 • 98.24±1.22 • 98.84±0.86 • 98.18±1.25 •
sonar 90.03±6.57 90.11±6.58 90.01±6.71 90.15±6.63 90.55±6.35 89.99±6.84
soybean 99.94±0.06 99.94±0.06 99.94±0.06 99.96±0.05 99.94±0.06 99.94±0.06
splice 99.56±0.25 99.55±0.25 99.53±0.26 99.57±0.24 99.55±0.25 99.56±0.25
vehicle 90.27±2.06 90.07±1.99 89.98±2.06 90.73±2.00 • 90.32±2.04 90.38±2.00
vote 98.31±1.43 98.15±1.50 ◦ 98.38±1.43 98.76±1.13 • 97.95±1.56 ◦ 97.97±1.59 ◦
vowel 99.62±0.26 99.59±0.28 99.55±0.28 ◦ 99.70±0.22 • 99.61±0.27 99.61±0.26
waveform-5000 96.63±1.31 96.75±1.27 96.72±1.27 96.63±1.31 96.68±1.28 96.69±1.31
zoo 99.07±1.43 99.07±1.43 99.07±1.43 99.26±1.11 99.07±1.43 99.07±1.43
Mean 92.27±3.00 92.24±3.00 92.20±2.99 92.21±3.03 92.32±2.98 92.30±3.01
w/t/l - 4/29/3 4/30/2 6/29/1 4/30/2 4/30/2

•, ◦: Statistically significant upgradation and degradation, respectively.

C. Analysis of Attribute Weighted BNCs

Tables I, II, and III report the detailed results (the ACC,
AUC, and CLL with the underlying standard deviation) of
attribute weighted AODE, respectively. Besides, Tables IV,
V, and VI report the detailed results of attribute weighted
HNB, with the mean values and standard deviation on all
data sets being summarized at the bottom, in which each
entry w/t/l means that the algorithm in the corresponding
row wins in w data sets, ties in t data sets and loses in l
data sets on the 36 benchmark data sets, compared to the
BNC (AODE or HNB) without using attribute weighting.
In these six tables, symbols • and ◦ represent statistically
significant upgradation and degradation over the BNC with
their p-value less than 0.05 (i.e. a 95% confidence level).
Overall, the results can be summarized as follows:

1. Attribute weighted AODE does not have significant su-
periority compared to AODE in ACC and AUC ranking.
Specifically, attribute weighted AODE models slightly
outperform AODE in ACC around (3 wins and 0 losses),
and AUC around (4 wins and 0 losses).

2. Attribute weighted AODE significantly outperforms
AODE in CLL, such as CFS-WAODE (10 wins and 1
losses), GR-WAODE (9 wins and 1 losses), MI-WAODE
(8 wins and 1 losses), and Ref-WAODE (8 wins and 1
losses), except for DT-WAODE (7 wins and 2 losses)
not so significant.

3. Attribute weighted HNB almost ties HNB with no

weight in ACC around (2 wins and 0 losses), and AUC
around (4 wins and 2 losses), except for that MI-HNB
could slightly outperforms HNB in ACC (5 wins and 0
losses), and AUC (6 wins and 1 losses).

4. Attribute weighted HNB significantly outperforms HNB
in CLL around (11 wins and 3 losses), except for DT-
HNB (8 wins and 4 losses) with slight improvement.

Overall, the above observations suggest that attribute
weighting could not achieve significant performance gain
on BNCs (e.g. AODE and HNB) with complex structure,
although the same weighting approaches have demonstrat-
ed good performance for the BNC (e.g. NB) with simple
structure. One possible reason is that for complex BNCs,
the structural dependency information in their Bayesian
networks plays a very significant role in classification. So
simply adding weight values to the attributes might not bring
noticeable changes to the underlying classifiers. Detailed
investigation in this direction is one of our future works in
the next step.

IV. CONCLUSION AND FUTURE WORK

In this paper, we first reviewed the complex structure
models for BNCs, and then carried out experimental studies
to investigate the effectiveness of the attribute weighting
strategies for complex BNCs, with a focus on two approach-
es, including hidden naive Bayes (HNB) and averaged one-
dependence estimation (AODE). The experiments and com-

4082



TABLE VI
EXPERIMENTAL RESULTS FOR ATTRIBUTE WEIGHTED HNB VS. HNB WITH NO WEIGHT: CLL AND STANDARD DEVIATION.

Data Sets HNB CFS-HNB GR-HNB MI-HNB Ref-HNB DT-HNB
anneal -8.17±6.22 -7.15±6.14 • -7.74±6.20 • -5.67±6.22 • -6.14±6.35 • -6.65±6.14 •
anneal.ORIG -23.14±6.71 -22.27±6.65 • -21.76±6.78 • -19.44±6.91 • -20.64±6.96 • -21.16±6.76 •
audiology -232.55±115.09 -234.23±115.35 -227.61±115.44 • -285.76±114.34 ◦ -245.34±116.25 ◦ -232.71±116.64
autos -155.99±82.37 -151.51±83.72 -149.80±80.00 • -157.88±86.30 -149.19±82.31 • -144.87±81.12 •
balance-scale -45.86±3.27 -47.12±3.48 ◦ -46.07±3.31 ◦ -45.99±3.51 -46.24±3.42 ◦ -46.09±3.30 ◦
breast-cancer -61.68±12.54 -61.43±11.72 -62.24±10.60 -63.75±12.14 -62.83±13.13 -61.65±12.20
breast-w -14.07±8.87 -14.52±8.95 -14.06±8.80 -14.76±8.82 -14.74±9.04 -14.56±8.92
colic -60.08±21.15 -59.25±20.50 -59.81±20.23 -57.17±19.77 • -60.65±20.82 -59.32±21.07
colic.ORIG -53.27±13.83 -51.91±13.34 • -51.19±13.17 -55.90±14.64 -52.14±13.78 -51.79±13.21
credit-a -39.80±10.51 -38.81±9.91 • -37.82±9.01 -40.59±10.76 -38.53±9.41 -39.49±10.27
credit-g -51.54±6.11 -51.45±6.00 -51.90±6.00 -51.30±6.34 -52.04±6.12 -51.55±6.07
diabetes -52.46±9.34 -53.20±9.45 -54.17±9.76 ◦ -52.81±9.41 -54.29±9.59 ◦ -52.79±9.41
glass -100.98±25.97 -101.31±26.60 -101.09±26.48 -101.93±25.68 -102.39±26.80 -100.98±26.29
heart-c -46.17±21.54 -46.14±21.28 -46.03±21.05 -47.27±20.79 -46.84±21.50 -46.26±21.35
heart-h -44.69±16.31 -43.17±14.76 -42.09±13.33 -46.86±15.18 -42.89±13.17 -43.95±14.68
heart-statlog -48.63±18.79 -48.62±18.48 -48.14±18.01 -50.69±18.58 -49.38±18.76 -48.95±18.61
hepatitis -45.24±29.35 -44.60±28.57 -44.16±28.20 -44.41±25.48 -44.22±27.66 -44.38±28.44
hypothyroid -23.59±2.94 -23.17±2.82 • -24.08±2.94 -23.05±2.71 -22.47±2.76 • -23.19±2.84 •
ionosphere -54.74±39.24 -56.96±39.64 -56.24±39.01 -51.28±37.22 -54.18±39.49 -61.59±43.67 ◦
iris -20.74±14.94 -22.34±15.63 ◦ -23.44±16.17 -19.98±15.31 -27.31±18.94 ◦ -24.79±17.04 ◦
kr-vs-kp -26.18±2.04 -24.41±1.93 • -22.84±1.91 • -21.82±1.76 • -20.19±1.84 • -24.46±1.98 •
labor -20.85±28.71 -21.33±29.33 -20.84±28.12 -27.27±35.73 ◦ -26.35±36.01 -24.12±33.62
letter -66.34±6.77 -64.37±6.71 • -62.08±6.54 • -65.04±6.55 • -60.97±6.42 • -65.74±6.79 •
lymph -42.11±23.71 -42.70±23.18 -42.68±22.88 -45.16±24.88 -41.38±22.90 -42.29±22.97
mushroom -0.48±1.03 -0.49±0.93 -0.44±0.77 -0.38±0.91 -0.40±0.85 -0.88±1.49
primary-tumor -194.35±25.64 -193.67±25.34 -193.81±25.46 -194.52±25.23 -193.90±25.40 -194.15±25.54
segment -16.94±4.90 -16.26±4.63 • -14.99±4.32 • -14.27±4.28 • -14.67±4.47 • -16.77±4.82
sick -8.72±2.42 -7.61±2.11 • -7.16±2.08 • -6.80±1.96 • -5.81±1.62 • -6.98±1.95 •
sonar -75.75±41.50 -73.23±39.52 -73.48±39.85 -76.33±41.07 -76.03±40.70 -75.77±43.64
soybean -25.11±10.73 -22.50±9.60 • -24.64±10.48 -13.22±5.29 • -20.59±8.71 • -25.03±10.81
splice -12.38±3.55 -12.29±3.43 -12.35±3.39 -11.94±3.31 • -12.26±3.42 -12.27±3.44
vehicle -72.57±10.29 -70.93±9.83 • -68.89±9.49 • -63.34±8.95 • -68.48±9.67 • -72.31±10.21
vote -25.16±14.87 -23.83±13.29 -19.42±10.91 • -17.30±10.74 • -26.56±14.20 -27.21±14.88 ◦
vowel -23.33±7.54 -24.28±7.65 ◦ -25.98±8.07 ◦ -20.34±7.31 • -24.26±7.79 -23.52±7.57
waveform-5000 -47.27±10.87 -40.97±9.56 • -36.12±8.63 • -42.23±9.89 • -36.44±8.64 • -43.76±10.12 •
zoo -7.22±7.94 -7.13±7.68 -7.57±8.47 -4.21±3.90 -7.39±8.31 -7.83±8.50
Mean -51.34±18.54 -50.70±18.27 -50.08±17.94 -51.69±18.11 -50.78±18.53 -51.11±18.79
w/t/l - 12/21/3 11/22/3 13/21/2 11/21/4 8/24/4

•, ◦: Statistically significant upgradation and degradation, respectively.

parisons on 36 benchmark data sets with respect to the clas-
sification accuracy, class probability estimation, and ranking
performance showed that although attribute weighting can
significantly improve NB classifier with simple structure, the
improvement of attribute weighting for general BNCs with
complex structures is, nevertheless, insignificant.
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