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Abstract— The classification error of a specified classifier can
be decomposed into bias and variance. Decision tree based
classifier has very low bias and extremely high variance. En-
semble methods such as bagging can significantly reduce the
variance of such unstable classifiers and thus return an ensemble
classifier with promising generalized performance. In this paper,
we compare different tree-induction strategies within a uniform
ensemble framework. The results on several public datasets show
that random partition (cut-point for univariate decision tree or
both coefficients and cut-point for multivariate decision tree)
without exhaustive search at each node of a decision tree can
yield better performance with less computational complexity.

I. INTRODUCTION

Some classifiers are said to be unstable in the sense that
small perturbations in their training sets or in construction
may result in large changes in constructed predictors. In other
words, they usually have extremely high variance. Subset
selection methods in regression, decision trees in regression
and classification, and neural nets are unstable [1].

The performance of an unstable classifier can be significant-
ly improved by ensemble methods [2], [3], [4], [5], [6], [7]
. Ensemble classifiers work by means of firstly generating an
ensemble of base classifiers by learning different permutated
training sets and then aggregating the outputs of all classifiers
to create the final prediction. This “perturb and combine”
strategy can significantly reduce the variance of unstable
classifiers [1].

Two approaches for constructing classifier ensembles seem
to be perceived as “classic” at present, namely bagging and
boosting. They have been found to be accurate, computational-
ly feasible across various data domains, and with no clear dom-
inance between them. Bootstrap Aggregation (Bagging) [2]
takes bootstrap samples of objects and trains a classifier on
each sample set. The outputs of the classifiers are combined by
majority voting. Boosting [8], [9], [3] is a family of methods,
the most prominent member of which is AdaBoost [3], [8].
The idea is to boost the performance of a “weak” classifier
by using it within an ensemble structure. The classifiers in
the ensemble is generated in a sequential manner. The current
classifier will pay more attention to those data which have
been “difficult” for the previous ensemble members. A set of
weights is maintained across the objects in the dataset so that
objects which were difficult to classify acquire more weight,
forcing subsequent classifiers to focus on them.

Comparative studies can be found in [4], [5], [6], [10]. It
appears that, on average, AdaBoost is the best method although
Random Subspaces and Bagging have their application niches
as well. Interestingly, for large ensemble sizes (in the order
of thousand classifiers) the significance between the ensemble
models almost disappear [4]. Moreover, boosting tend to be
more sensitive to outliers and noise.

Random Forests (RF) combine the concepts of bagging and
random subspace [7] to build a classification ensemble with
a set of decision trees that grow using randomly selected
subspaces of data [11]. Moreover, Breiman also stated that
Random Forests are similar to Adaboost [11]. RF are well-
known ensemble classifiers which have gained popularity in
high-dimensional and ill-posed classification and regression
tasks, for example on micro-arrays [12], time series [13], or
spectral data [14], [15], but also for inference in applica-
tions such as image segmentation and object recognition in
computer vision [16], [17]. Random forests are comparable
in performance to many other non-linear learning algorithms.
They often do well with little parameter tuning [18], and are
able to identify relevant feature subsets even in the presence of
a large number of irrelevant classifiers [19], [20], [21]. More
recently, additional properties of the random forest have gained
interest, for example in feature selection [21], [22], [23], [24]
and the explorative analysis of sample proximities [25].

The main effect of RF and other ensemble classifiers is
to reduce variance [1], [26], [27]. It is known that this
variance reduction is closely related to the randomness of the
algorithm [28]. The randomness comes from various means,
such as the perturbation of dataset, the randomness of the
algorithm, etc. In this context, we study performance of
different decision tree ensembles under the well-known RF
framework: we change the test function in each node of the RF
to generate different RF models. We also study the relationship
among the bias-variance and the randomness of the algorithm.

The rest of this paper is organized as follows: Section II
reviews the related work: RF and bias-variance decomposition.
Section III elaborates our proposed method. Section IV shows
the detail of the experiment environment. Some results are
presented and analyzed in Section V. Finally, Section VI
concludes the paper.
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II. RELATED WORK

A. Bias-Variance decomposition

Bias-variance decomposition [29], [1] is a powerful tool
from statistical sampling theory for analyzing supervised
learning scenarios that have quadratic loss functions. As
conventionally formulated, it breaks the expected cost given
a fixed target and training set size into the sum of three non-
negative quantities: noise, bias and variance. Noise defines
the bound on the expected cost of any learning algorithms.
It can also be regarded as the expected cost of the Bayes
optimal classifiers. This bias (or squared bias ) measures
how closely the learning algorithm’s average guess (over all
possible training sets of the given size) matches the target. The
variance measures how much the learning algorithm’s guess
fluctuates from the target for the different training sets of the
given size.

The bias-variance insight was originally borrowed from
the field of regression with squared loss as the loss func-
tion [29]. For classification problems, the above decomposition
is inappropriate because class labels are categorical, which
means it is not proper to transplant the decomposition of error
in regression tasks to classification. Fortunately, a number
of ways to decompose error into bias and variance terms
in classification tasks have been proposed [30], [31], [32],
[33], [34]. Each of these definitions is able to provide some
valuable insight into different aspects of a learning algorithm’s
performance.

We consider classification problems and the 0-1 loss func-
tion in the Kohavi and Wolpert’s work [31]. Let 𝑋 and 𝑌
be the input and output spaces respectively with cardinalities
∣𝑋∣ and ∣𝑌 ∣ and elements 𝑥 and 𝑦 respectively. The target 𝑓
is a conditional probability distribution 𝑃 (𝑌𝐹 = 𝑦𝐹 ∣𝑥) where
𝑌𝐹 is a Y-valued random variable. Unless explicitly stated
otherwise, we assume that the target is fixed. As an example, if
the target is a noise free function from 𝑋 to 𝑌 for any fixed 𝑥
we have 𝑃 (𝑌𝐹 = 𝑦𝐹 ∣𝑥) = 1 for one value of 𝑦𝐹 and 0 for all
others. The hypothesis ℎ generated by a learning algorithm is
a similar distribution 𝑃 (𝑌𝐹 = 𝑦𝐹 ∣𝑥) where 𝑌𝐻 is a 𝑌 -valued
random variable. As an example, if the hypothesis is a single-
valued function from 𝑋 to 𝑌 , as it is for many classifiers (e.g.,
decision trees, nearest neighbors), then 𝑃 (𝑌𝐻 = 𝑦𝐻 ∣𝑥) = 1
for one value of 𝑦𝐻 and 0 for all others. Hereafter, we
will drop the explicitly delineated random variables from the
probabilities when the context is clear. For example, 𝑃 (𝑌𝐻)
will be used instead of 𝑃 (𝑌𝐻 = 𝑦𝐻). Then for a single test
point, it is easy to show:
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Rearranging the terms, we have

𝐸(𝐶) =
∑

𝑦∈𝑌
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𝑌𝐹 and 𝑌𝐻 are conditionally independent given 𝑓 and a test
point 𝑥 [31], hence the “covariance” term vanishes. So,

𝐸(𝐶) =
∑

𝑥
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where

(𝑏𝑖𝑎𝑠𝑥)
2 =

1

2

∑

𝑦∈𝑌
[𝑃 (𝑌𝐹 = 𝑦)− 𝑃 (𝑌𝐻 = 𝑦)]2

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑥 =
1

2
[1−

∑

𝑦∈𝑌
𝑃 (𝑌𝐻 = 𝑦)2]

𝜎2
𝑥 =

1

2
[1−

∑

𝑦∈𝑌
𝑃 (𝑌𝐻 = 𝑦)2]

(5)

The (𝑏𝑖𝑎𝑠𝑥)
2 term measures the squared difference between

the target’s average output and the algorithm’s average output.
It is a real valued non-negative quantity and equals zero only if
𝑃 (𝑌𝐹 = 𝑦∣𝑥) = 𝑃 (𝑌𝐻 = 𝑦∣𝑥) for all 𝑥 and 𝑦. The variance
term measures the variability (over 𝑌𝐻 )of 𝑃 (𝑌𝐻 = 𝑦∣𝑥). It
is a real-valued non-negative quantity and equals zero for an
algorithm that always makes the same guess regardless of the
training set (e.g. the Bayes optimal classifier). As the algorithm
becomes more sensitive to changes in the training set, the
variance increases. Moreover, given a distribution over training
sets, the variance only measures the sensitivity of the learning
algorithm to changes in the training set and is independent of
the underlying target. The noise measures the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 of the
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target in that the definitions of variance and noise are identical
except for the interchange of 𝑌𝐹 and 𝑌𝐻 . In addition, the noise
is independent of the learning algorithm.

B. Random Forests

Ensemble classifiers significantly reduce the variance of the
classifier and retain the most part of its bias [11], which means
the bias component slightly fluctuate [28]. This fluctuation
can be negligible compared with the variance reduction in
most cases. Then from the bias-variance decomposition point
of view, the ensemble classifier should have much better
performance if the base classifier has high variance. So it
is easy to understand why decision tree, neural networks
naturally work well with ensemble methods [1] while other
methods (such as SVM ) may need much more complex
algorithm to be combined [26].

RF combine the concept of bagging and random subspaces
to further enlarge the variance of the base classifier. RF build
a classification ensemble with a set of decision trees that grow
using randomly selected subspaces of data. The RF work as
follows:
⋅ Training phase:
Given:
𝑋 := 𝑁×𝑚 is the training dataset, where 𝑁 is the number

of the training data, 𝑚 is the dimension of each data.
𝑌 := 𝑁 × 1 is the labels of the training set.
𝐿 is the ensemble size, which means the number of trees

in the forests.
𝑇𝑖 refers to each random tree in the RF, 𝑖 = 1...𝐿.
𝑚 is the number of features randomly selected to split in

each non-leaf node.
For 𝑖 = 1...𝐿:

1) Generate the training set for 𝑇𝑖 by sampling 𝑁 times
from all 𝑁available training cases with replacement.

2) At each node the best split is calculated using the 𝑚
randomly chosen features in the training set for 𝑇𝑖.

3) Go to Step 2 until 𝑇𝑖 is fully grown without being
pruned.

⋅ Classification phase:
For a given sample, it is pushed down each tree in the forests

and each tree in the forests will give one vote on the predicted
label of this sample. In this case, the predicted label of this
sample is determined as the one which has the most votes in
the forests.

Each tree classifier in the RF ensemble is trained on the
bootstrap set of the original training set. At each node of
the tree classifier, 𝑚 features from 𝑀 are randomly selected.
Then one feature from the 𝑚 features is selected to perform
a partition along this feature axis according to some impurity
criteria (e.g. information-gain, gini-impurity, etc.) [35]. This
kind of decision tree can also be called as univariate decision
tree [36] since the test within each node is performed by only
one feature.

III. PROPOSED METHOD

Several research work has shown ensemble method can
significantly reduce the variance of the tree classifiers while
maintaining the most part of its bias [11], [26], [27]. Recently,
Pierre et al. [28] showed that if stronger randomization is
involved, the ensemble would work better. Their algorithm
works by replacing the deterministic best-split test among
𝑚 features with a random test within each node. That is,
they conduct a random split with each feature among the 𝑚
randomly selected features. For all experiments, the impurity
criteria is only used to select one best split among those 𝑚
random splits.

In this paper, we propose to use even stronger randomization
strategies by extending the work of Pierre to multivariate (or
oblique) [36] decision trees. At each node of tree classifier, we
propose to conduct a test by 𝑓(𝑥) =

∑𝑚
𝑖=1 𝑤𝑖 ∗ 𝑥𝑖, where 𝑥𝑖

are the randomly selected features and 𝑤𝑖 are their coefficients.
We propose two methods. First one works by generating 𝑚
different coefficients at each node and use impurity criteria to
find the optimized the cut-point 𝑓(𝑥) for each trial. The second
method works by randomly generating the cut-point 𝑓(𝑥) as
well as all the coefficients for each trial. For both methods,
we need the impurity criteria to find the best split among the
𝑚 trials. Hereafter, we name Pierre’s work as “Extreme RF”
(E-RF )and the first method as “Oblique RF” (O-RF) and the
second method as “Extreme Oblique RF” (EO-RF).

Decision tree (regardless of univariate or multi-variate)
has very low bias and extremely high variance. Since the
coefficient of each feature is randomly generated, the variance
of this kind of oblique decision tree will tend to increase. The
rationale behind the proposed method here is that the explicit
randomization of the coefficient and attribute combined with
ensemble averaging should be able to reduce variance more
strongly than the weaker randomization schemes. In the next
section, we will evaluate the performance of the proposed
method and the method of Pierre [28] and Breiman [11] with
several benchmark datasets.

IV. EXPERIENTS

This section compares the performance of the proposed
method (O-RF, EO-RF) and the method of Pierre (E-RF)
and Breiman (RF) on real-world benchmark classification
datasets. The information of those datasets used in this paper
is summarized in Table I.

The simulation of different algorithms on all datasets are
carried out in Matlab R2010b with Intel (R) Core(TM) i5,
3.20-GHz CPU and 4-GB RAM. Actually there are 2 pa-
rameters here for all versions of Random Forests. The first
one 𝐿, controls the size of the ensemble. The second one 𝑚,
controls the randomization of the algorithm, which stands for
the number of features randomly selected to conduct the test.
For all experiments, the gini-impurity [35] is employed as the
impurity criterion for all tree classifiers in each node to select
the best split.

Considering the computational complexity, we set the en-
semble size 𝐿 to be 100 for all experiments. For all datasets,
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TABLE I

SPECIFICATION OF CLASSIFICATION PROBLEMS

Datasets Samples Features Classes
Banknote 1372 4 2
W-Breast 699 9 2
Iris 150 4 3
P-Relax 182 12 2
Ringnorm 7400 20 2
Twonorm 7400 20 2
Vowel 990 10 11
Waveform 5000 21 3

The“W-Breast” stands for “Breast-cancer wisconsin” and “P-Relax”
represents “Planning Relax”.

the input features are normalized in the range of [-1, +1] to
avoid the dominance of some of the features. In the first set of
experiment, we set the other parameter with the default value
(𝑚 = 𝑟𝑜𝑢𝑛𝑑(

√
𝑀), where 𝑀 is the number of features of

the training data).
The classification accuracies of each dataset are presented

in Table II. For each data set and ensemble method, 10 3-
fold cross validations were performed. The accuracies were
averaged over all the 30 testing accuracies per method and data
set. The boldface indicates the best result. Table III shows a
summary of the comparisons among the methods. For each of
these datasets, a paired t-test (𝛼 = 0.05) is used to determine
the significance of the differences between each method. The
entry 𝛼𝑖𝑗 displays the number of times when the method of the
row (𝑖) has a better result than the method of the column(𝑗).
The number in the parentheses shows in how many of these
differences have been statistically significant. The biases and
variances from each dataset and each algorithm are presented
in Table IV.

Note that theoretically, the prediction error of a classifier
should also be decomposed into three terms (irreducible error,
squared bias and variance). However, it is usually difficult to
estimate irreducible error in real-world learning tasks of which
the true underlying class distribution is unknown and there are
generally too few instances at any given point in the instance
space to reliably estimate the class distribution at that point. In
the commonly used methods, the irreducible error is generally
aggregated into both bias and variance or only the bias term
due to the fact that irreducible error is invariant across learning
algorithms for a single learning task and hence not a significant
factor in comparative evaluations.

TABLE III

T-TEST OF RESULTS

Method RF O-RF E-RF EO-RF
RF - 0(0) 1(0) 0(0)

O-RF 8(8) - 5(3) 1(1)
E-RF 7(6) 3(2) - 2(2)

EO-RF 8(8) 7(3) 6(5) -
The entry 𝛼𝑖𝑗 displays the number of times when the method of the row 𝑖

has a better result than the method of the column 𝑗. The number in the
parentheses shows in how many of these differences have been statistically

significant.

In the second set of experiments, we investigate how the

randomization influence the performance of the ensemble
by analyzing the effect of parameter 𝑚. As we know, the
parameter 𝑚 denotes the number of features randomly selected
at each node. It may be chosen from the interval [1, ...𝑀 ],
where 𝑀 is the number of the features of a particular dataset.
For a given problem, the smaller 𝑚 is, the stronger the
randomization of the tree classifier. In the extreme case, for
𝑚 = 1, the attributes selection are most likely to be different.
While for 𝑚 = 𝑀 , the choice of features is not explicitly
randomized at all.

In order to check how this parameter influence the per-
formance, we have conducted a systematic experiment for
all our datasets by varying the parameter over its range. For
each dataset, Fig. 4 shows the evolution of the classification
accuracy and bias- variance with respect to different 𝑚 for
“waveform” dataset.

V. DISCUSSION ON THE RESULTS

The first set of experiments check the performance of differ-
ent Random Forests with default parameter. From Table II we
can see in most cases, O-RF, E-RF and EO-RF all outperforms
RF, which indicates that involving stronger randomization
improves the performance of the Random Forest. Fig. 1 gives a
graphical overview of the results in Table II. For each dataset,
each bar graph from left to right stands for the accuracy for
the base classifier of RF, RF, base classifier of O-RF, O-
RF, base classifier of E-RF, E-RF, base classifier of EO-RF,
EO-RF respectively. Form Fig. 1 we can see that the base
classifier of E-RF, which selects best splits among 𝑚 randomly
univariate splits within each node, performs the worst among
all other base classifiers. The reason is quite straightforward.
For the real-life problem, especially when the optimal decision
boundary is complex, recursively and randomly drawing a
threshold to split may not generate a good approximation
of the decision boundary of a given problem. On the other
hand, exhaustive search for a optimal threshold or use of a
multivariate split can achieve a good approximation of the
optimal decision boundary. However, even with a higher bias,
the variance of the base classifier of E-RF is usually much
larger than other base classifiers, which can be evidenced by
Figs. 2 and 3. So E-RF can achieve comparable performance
as O-RF and EO-RF since ensemble methods can benefit
significantly from such high variance base classifiers.

We investigate two oblique RF ( O-RF, EO-RF )in this study.
For both methods, the binary test : 𝑓(𝑥) =

∑𝑚
𝑖=1 𝑤𝑖 ∗ 𝑥𝑖

(where 𝑥𝑖 is the randomly selected features and 𝑤𝑖 is their
coefficients) is conducted at each node. The only difference
lies in the choice of the threshold, which is quite similar as
the difference of RF and E-RF. For O-RF, the threshold, 𝑓(𝑥)
is found by exhaustive search to minimize the gini-impurity.
From EO-RF, the threshold is also randomly generated. Form
Table II and Fig. 1, it is obvious that optimizing this threshold
cannot lead to a better performance in most cases. From
Figs. 2 and 3, we can see that optimizing this threshold
only improves the bias of the classifier. However, on the
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TABLE II

CLASSIFICATION ACCURACY AND STANDARD DEVIATION OF EACH ALGORITHM

Datasets RF O-RF E-RF EO-RF
W-Breast 93.88± 1.67 94.62± 1.50 91.07± 3.70 94.94± 1.67

96.43± 01.11 97.05± 0.95 96.36± 1.04 97.08± 1.02
Banknote 97.79± 1.21 97.98± 1.26 95.65± 1.69 98.71± 0.91

99.18± 0.39 99.79± 0.20 99.90± 0.18 99.99± 0.16
Iris 93.20± 3.48 91.40± 4.91 88.53± 6.63 90.47± 5.39

94.80± 2.42 95.27± 1.98 95.07± 2.16 95.33± 2.10
P-Relax 58.46± 6.36 60.71± 7.05 65.11± 6.32 61.04± 6.37

69.45± 4.27 71.43± 4.48 72.47± 4.91 71.87± 24.70
Ringnorm 86.94± 0.98 86.44± 0.98 77.44± 1.70 84.08± 1.09

95.50± 0.51 96.79± 0.34 97.88± 0.26 97.28± 0.31
Twonorm 83.94± 0.89 91.84± 0.57 81.02± 0.12 91.65± 0.54

96.86± 0.40 97.62± 0.30 97.20± 0.30 97.65± 0.29
Vowel 70.75± 3.98 64.58± 3.34 55.66± 04.02 62.65± 3.53

92.35± 1.65 94.19± 1.51 93.65± 1.68 94.75± 1.66
Waveform 73.68± 1.30 70.19± 1.40 63.69± 2.00 67.12± 1.64

84.71± 0.81 85.69± 0.80 85.00± 0.80 85.48± 0.71

𝜇± 𝜎 of each algorithm. The first line in each entry of the table stands for the performance of the base classifier of the
ensemble and the second line stands for the performance of the ensemble

TABLE IV

BIAS AND VARIANCE OF EACH ALGORITHM

Datasets RF O-RF E-RF EO-RF
W-Breast (3.24, 2.88) (2.67, 2.71) (3.62, 5.31) (2.85, 2.21)

(2.92, 0.65) (2.56, 0.40) (3.13, 0.51) (2.49, 0.43)
Banknote (0.76, 1.45) (0.47, 1.55) (0.81, 3.54) (0.23, 1.05)

(0.71, 0.11) (0.11, 0.10) (0.06, 0.04) (0.00, 0.01)
Iris (4.56, 2.24) (4.55, 4.05) (4.66, 6.81) (4.11, 5.42)

(4.49, 0.70) (4.19, 0.55) (4.49, 0.45) (4.33, 0.34)
P-Relax (25.52, 16.03) (23.28, 16.00) (21.88, 13.01) (23.79, 15.17)

(26.65, 3.90) (26.75, 1.82) (26.60, 0.92) (26.85, 1.29)
Ringnorm (4.37, 8.69) (4.19, 9.38) (7.06, 15.50) (4.88, 11.04)

(3.29, 1.21) (2.57, 0.64) (1.39, 0.74) (2.08, 0.64)
Twonorm (5.60, 10.46) (2.98, 5.19) (6.81, 12.17) (2.97, 5.38)

(2.12, 1.03) (1.97, 0.41) (1.88, 0.92) (1.94, 0.42)
Vowel (9.53, 19.72) (12.05, 23.37) (16.46, 27.88) (12.71, 24.65)

(3.65, 4.00) (2.14, 3.67) (2.30, 4.05) (1.65, 3.60)
Waveform (12.49, 13.83) (13.41, 16.40) (16.53, 19.78) (14.55, 18.33)

(12.22, 3.07) (11.21, 3.10) (10.50, 4.50) (10.86, 3.66)

The first number in the bracket stands for the bias and the second number represents the variance. The first bracket in each
entry of the table stands for the bias-variance for the base classifier and the second stands for the bias-variance for the

ensemble

other hand, randomly generating the threshold is advanta-
geous to get a higher variance. As we mentioned before,
stronger randomization combined with ensemble averaging
should be able to reduce variance more strongly than the
weaker randomization schemes. Hence, the performance of
EO-RF is better than O-RF in most cases. Moreover, randomly
generating a threshold without exhaustive search can reduce
the computational complexity significantly, especially for large
datasets.

We also find that the variance of multivariate decision tree
is smaller than the base classifier of E-RF. The reason may be
that multivariate decision needs fewer nodes to approximate
the optimal decision boundary than the univariate one. In
other words, for a given problem, multivariate decision tree is
smaller than the univariate one. The variance of the decision
tree grows as the depth of the tree increases [36]. In order
to confirm our conjecture, we designed another experiment to
test the average tree nodes of each algorithm. The results are
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presented in Table V.
In oder to investigate the effect of the parameter, 𝑚, we have

designed another experiment by varying this parameter over
its range. The result for “waveform” dataset are presented in
Fig. 4. For other datasets, the results are quite similar. From
the results, we can see that for very small 𝑚 (especially in
the extreme case, 𝑚=1), the bias and the variance of the base
classifiers are larger than those with larger 𝑚. For all values of
𝑚, the bias of the ensemble and the base classifiers are almost
equal and the variance of the ensemble are quite smaller than
that of the base classifiers. In general, the performances of the
ensemble are quite stable when 𝑚 lies in the middle of its
range [18].
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Fig. 1. The Accuracy of each Method. For each dataset, each bar graph
from left to right stands for the accuracy for the base classifier of RF, RF,
base classifier of O-RF, O-RF, base classifier of E-RF, E-RF, base classifier
of EO-RF, EO-RF, respectively.

0

5

10

15

20

25

30

bi
as

 

 

W−Breast

Banknote Iris

P−Relax

Ringnorm

Twonorm
Vowel

Waveform

base classifier of RF
 RF
base classifier of O−RF
O−RF
base classifier of E−RF
E−RF
base classifier of EO−RF
EO−RF
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Fig. 4. Accuracy of each method with Different 𝑚 Parameter for “waveform”
Dataset. 𝑎 − 𝑏, 𝑎 − 𝑒, 𝑏 − 𝑏, 𝑏 − 𝑒, 𝑣 − 𝑏, 𝑣 − 𝑒 stands for the accuracy
of the base classifier, accuracy of the ensemble, bias of the base classifier,
bias of the ensemble, variance of the base classifier, variance of the ensemble
respectively. The first row stands for RF and O-RF (from left to right) and
the second row stands for the E-RF and EO-RF (from left to right).

TABLE V

THE AVERAGE NUMBER OF NODES FOR EACH TREE CLASSIFIER IN EACH

ENSEMBLE METHOD

Datasets RF O-RF E-RF EO-RF
W-Breast 20.63 16.92 56.25 52.87
Iris 5.66 7.97 29.48 18.52
P-Relax 22.43 23.30 75.45 50.68
Ringnorm 299.93 341 1543.3 1486.7
Twonorm 367.11 226.04 1399.6 917.11
Vowel 118.56 136.31 406.28 276.27
Waveform 917.11 467.10 1278.9 1432.4

VI. CONCLUSIONS

In this paper, we have studied the performance of different
decision tree ensembles under the well-known Random Forests
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framework. We have changed the test function in each node of
the Random Forests to generate different RF models. We have
also studied the relationship among the bias- variance and the
randomness of the algorithm. A number of observations has
been made from the experiments as follows:

1) The classification error of a specific classifier can be
decomposed into bias and variance. The bias of the en-
semble are almost equal to the bias of its base classifier.
For decision tree, the variance of the ensemble can be
significantly reduced.

2) In most cases, multivariate decision tree needs fewer
nodes (or smaller tree size) to approximate the decision
boundary than the univariate decision tree.

3) Optimizing the threshold of each binary test at each node
can reduce both the bias and variance, but it is not a good
startegy for ensemble methods.

4) Involving stronger randomization by randomly gener-
ating the threshold (or cut-point) of the split in RF
can yield much larger variance and slightly larger bias.
With significant variance reduction of ensemble, those
randomization method can improve RF.

5) Besides saving computational time, involving stronger
randomization in multivariate decision tree by randomly
generating the coefficient of each feature to conduct a
linear combination of features ( 𝑓(𝑥) =

∑𝑚
𝑖=1 𝑤𝑖 ∗ 𝑥𝑖,

where 𝑥𝑖 are the randomly selected features and 𝑤𝑖 are
their coefficients) for the test at each node can yield
higher variance and comparable bias. With significan-
t variance reduction by the ensemble, randomization
methods can improve the Random Forests. Moreover,
randomly generating the threshold 𝑓(𝑥) can further
enlarge the variance with slightly larger bias. Hence, it
is unwise to optimize the threshold 𝑓(𝑥) by exhaustive
search.

6) The parameter 𝑚 (which stands for the number of
features randomly selected at each node) controls the
randomization of the algorithm. For the base classifiers,
larger 𝑚 leads to better performance with lower bias
and lower variance. For the ensemble, the performance
is quite stable when 𝑚 lies in the middle of its range.
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