
 

 

Efficient Diminished-1 Modulo 2n+1 Multiplier 
Architectures 

Xiaolan Lv 
1.School of Electronic and Information Engineering  

South China University of Technology  
Guangzhou, China 

jingling220@126.com 

Ruohe Yao 
School of Electronic and Information Engineering  

South China University of Technology  
Guangzhou, China 

phrhyao@scut.edu.cn 
 
 

Abstract—The main components of an artificial neuron are 
adders and multipliers. In order to implement neural network, 
large number of adders and multipliers are required. The 
efficient architectures for diminished-1 modulo 2n+1 multipliers 
are described. The results and operands of the new modulo 2n+1 
multipliers use the diminished-1, avoiding n+1 bit circuit. And 
the presented multipliers can handle zero inputs and results. The 
proposed modulo 2n+1 multiplier are built using three major 
functional modules, partial products generation block, partial 
products reduction block and a final diminished-1 adder block. 
The final modulo 2n+1 addition block is built around a sparse 
carry computation unit for the analytical and experimental 
results. And this indicates that the significant area and power of 
the proposed multipliers is superior to the earlier proposals, with 
a high operation speed.  

Keywords—Residue number system (RNS); Diminished-1 
representation; modular multiplier; VLSI  

I. INTRODUCTION  
This Residue number system (RNS) is an efficient 

alternative number system which has been an important 
research field in computer arithmetic for many decades. One of 
the key advantages of RNS is a carry-free number system, 
which can represent number in a non-weighted form. High 
speed and less hardware complexity could be achieved by 
decomposing a large binary number into a set of smaller 
residues [1-2]. RNS has drawn widespread attention for design 
of FIR filters [3] ， digital signal processors [4] and 
communication components [5]. The main components of an 
artificial neuron are adders and multipliers. In order to 
implement neural network, large number of adders and 
multipliers are required. 

Arithmetic modulo 2n+1 is most commonly met as a part of 
a RNS, which plays an important role in many algorithms. 
Modulo 2n+1 multiplier is one of the critical components. It is 
used in pseudorandom number generation, cryptography and 
convolution computations without round-off errors. Typically, 
operands and results are presented in weighted representation. 
However, a number in the range of [0, 2n] is required (n+1) bits 
for its representation. In order to overcome the problem of n+1 
bits wide circuits, to all channels operate on n-bit ones, 
Leibowitz [6] introduced the diminished-1 number system. In 
the diminished-1 number system, each number X is represented 

by X=xzX-1，and the n-bit diminished-one operand are denoted 
by X-1=X-1＝xn-1…x1x0. Therefore, the diminished-1 modulo 
2n+1 arithmetic are combinational circuits accepting n-bit 
operands. But special treatment is required zero handling of 
diminished-1 number system, which is an attractive problem. 

Numerous algorithms and architectures have already been 
published for modulo 2n+1 multiplier[7-12]. It is well known 
that the number of partial products is cut in half by using Booth 
recoding, which leads to a shallower adder tree. But, this 
saving may be overwhelmed by complexity of the recoding 
logic generation. A few of non-Booth encoded modulo 2n+1 
multipliers have recently been investigated in the work of [9-
12]. In the work of Ma [7], bit-pair radix-4 Booth recoding 
technique is used to modulo (2n+1) multipliers. The multipliers 
accept operations in diminished-1 representation. The number 
of the PP was reduced to approximately n/2 at the cost of two 
additional modulo (2n+1) adders. Sousa and Chaves proposed 
the modified radix-4 Booth recoding modulo 2n+1 multipliers 
in [8]. The modulo multipliers use diminished-1 representation 
to handle zero operands. But correction term generator (CTG) 
is a complex combinational circuit that leads to complexities in 
the partial product generator. Cruiger et al. [9] proposed 
multipliers in which one input uses the diminished-1 
representation with n-bit wide, whereas the other uses weighted 
representation. However the usefulness of the proposed 
multipliers appears to be limited to FIR filters and 
cryptographic application for some special applications. The 
modulo 2n+1 multiplier is proposed in the work of Chen et al 
[10] with result and one multiplicand use weighted 
representation, while the other multiplicand uses diminished-1 
representation. This is also done for achieving an efficient 
dedicated design block for which they were originally 
intended. In the work of Wang et al. [11], the diminished-1 
number representation is used with n-bit input operands, and a 
zero partial-product counting circuit is required. However, zero 
operands and results were not handed. Efstathiou et al. [12] 
proposed a diminished-1 multiplier without Booth recoding. 
The multiplier uses an n×(n+3) partial-product array along with 
a CSA tree. These multipliers were analytically and 
experimentally shown to outperform those of Wang et al. [11] 
and Ma [7] in terms of delay and power, whereas treatment of 
zero operands or results was not considered.  

This Project was supported by the National Natural Science Foundation 
of China (No. 61274085). 

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 481



 

 

In this manuscript, we propose a novel architecture, for 
diminished-1 representation of the result and both inputs, 
which utilizes the observations made in the work of Efstathiou 
et al. [12]. The two improvements of the proposed architecture 
lie in: 

● Process of zero operands and results was considered. 

● A sparse tree based modulo2n+1 adder was used in the 
last stage addition, which has less number of carry merge cells 
and less inter-stage wiring. The use of the sparse tree adder 
results in a very efficient design of the modulo 2n+1 multiplier. 

The proposed modulo 2n+1 multiplier architecture is based 
on CSA tree and sparse tree modulo 2n+1 adder, and handling 
of zero inputs and results was considered. The analytical result 
shows that the proposed multiplier outperforms the solutions 
described in [3-12].  

II. BACKGROUND 
In the following the representation of diminished-1 

operands proposed in [13], which includes zero indication bit is 
adopted. According to this representation a number X∈[0, 2n] 
is represented as xzX-1, where xz is zero indication bit and X-1 is 
magnitude representation. Terms xz and X-1 are defined as 
follows: 

 

1

0 0

1 0

1 0

0 0

z

if X
x

if X

X if X
X

if X
−

⎧ ≠⎪= ⎨
=⎪⎩

⎧ − ≠⎪= ⎨
=⎪⎩

                             (1) 

When X≠0, X-1� [0, 2n-1] is an n-bit wide number, hence, 
(n+1)-bit circuits can be avoided in this case. Let Y

X denote 
the modulo Y residue of X. However, when 
X=0, 1 2 1 2 1 2 1

0 1 1 2 1 1 2n n n

n nX − + + +
= − = − = + − =  is an (n+1)-bit 

number, the representation of 0 is treated in a special way.  

III. ALGORITHM  
In this section, a new architecture for modulo 2n+1 

multiplier is proposed, the result and two inputs uses 
diminished-1 representation. Suppose that azA-1=azAn-1An-2…A0 
is the diminished-1 representation of multiplicand A and bzB-

1=bzBn-1Bn-2… B0 multiplier B, qzQ-1=qzQn-1Qn-2…Q0 is the 
diminished-1 representation of A×B modulo  2n+1 respectively. 
az, bz, and qz are zero indication bits, A-1, B-1, and Q-1 are the 
diminished-1 numbers. According to handle zero inputs and 
result, the product of a diminished-1 modulo multiplier is 
derived according to the following cases: 

1. When one of the two inputs is zero, the result is zero. 

2. When none of the input operands is zero, the result is 
zero. 

3. When none of the input operands is zero, the result is 
nonzero. 

We distinguish the three cases by 1z za b∨ = ; 1z za b∨ = , 

and 2 1nA B× = + ; 1z za b∨ = , and 2 1nA B× ≠ + . In the 
following, we use the notations “�”,“�”, and “–” to denote 
AND, inclusive-OR, and complement operations respectively. 

A. When 1z za b∨ = (inputs and result are zero) 
In this case, az=1 or bz=1, or az=1 and bz=1. The value of Q 

is equal to 0. This case can be handled by setting the output of 
each Q-1 to 0, and qz to 1. 

B.  When 1z za b∨ = , 2 1nA B× = +  (inputs are nonzero, 
result is zero) 
In this case, az=0 and bz=0. But A×B=2n+1, 

so 2 1
0nA B

+
× = . The value of Q is equal to 0. This case can be 

handled by setting the output of each Q-1  to 0, and qz to 1. 
According to the diminished-1 modulo 2n+1 arithmetic, 
operations [6, 11] are defined as following , 

 

1 2 1

2 1

1 1 2 1

1 1 1 1 2 1

2 1

1

( 1)( 1) 1

1

n

n

n

n

n

Q

A B

A B

A B A B

C S

− +

+

− − +

− − − − +

+

= × −

= + + −

= × + +

= + +

  (2) 

In (2)，C and S denote the carry and sum output vectors of 
the inverted end around carry save addition (CSA) tree. From 
A×B=2n+1, we can further derive C+S=2n. It then holds 
C+S=2n-1, that is, C and S are bit-wise complementary. This 
condition can be easily detected as the logical AND of the 
XOR of the bits of C and S vectors with the same weight, and 
let H denotes the signal. It should be noted that this logic 
operation will not add any delay on the critical path of the 
modulo multiplier. 

C. When 1z za b∨ = , 2 1nA B× ≠ +  (inputs and result are 
nonzero) 
In this case, A-1, B-1≠0, A-1=|A-1|2n

+1 and B-1=|B-1|2n
+1 are 

two n-bit numbers, for the diminished-1 modulo 2n+1 
multiplier of A with B , it holds that 

 
1 2 1 2 1

1 1 1 12 1 2 1

1 1

(

n n

n n

Q Q AB

A B A B
− + +

− − − −+ +

= − = −

= × + +
              (3) 

Taking into account that i+j≤2n−2, the first partial product 
vector 1 1 2 1nA B− − +

× of relation (2) can be written as 

482



 

 

 

1 1

1 1 2 1
0 0 2 1

1 1

0 0 2 1

1 1

2 1
0 0 2 1

2 2

2

2

n

n

n

n
n

n n
i j

i j
i j

n n
i j

i j
i j

n n
i j

i j
i j

A B A B

A B

A B

− −

− − +
= = +

− −
+

= = +

− −
+

+
= = +

× =

=

=

∑ ∑

∑∑

∑∑

                 (4) 

According to [6, 11], the diminished-1 arithmetic 
operations are defined as following, 

 2 1

2 1

2 1

2
2

2

n

n

n

i

ns i

i

n is even

n is odd

++

+

+

⎧
⎪= ⎨
⎪−⎩

               (5) 

And for x�{0,1}, it holds  

 2 1 2 1 2 1
2 1 2n n n

n nx x x
+ + +

− = + − = +           (6) 

Where x  represents the one’s complement of x. From (6), 
the above relation (4) can be rewritten as sum of partial 
products 

  

1 1 1 1

1 1 2 1
0 0 1 2 1

1 1 1 1

0 0 1 2 1

1

0
0

1 1 1 1

0 1

2 2

2 (2 )2

2

( )2 2 2

n n
n

n

n n

n

n n

n n i n n
i j i j

i j i j
i j i j n i

n n i n n
i j i jn

i j i j
i j i j n i

n
j

j
j

n i n n n
i j i jn

i j i j
j j n i i j n i

A B A B A B

A B A B

A B

A B A B

− − − − −
+ +

− − +
= = = = − +

− − − − −
+ +

= = = = − +

−

=

− − − − −
+ +

= = − = = −

× = −

= + +

=
+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑

∑ ∑ ∑
1

1 2 1

1

0 2 1

( )

n

n

n

i

n

i i
i

P C

−

= +

−

= +

= +

∑ ∑

∑

 (7) 

Where Pi denotes the i-th partial product. The correction 
factor introduced by complementing the AiBj terms with weight 
more than 2n-1 and repositioned it to the (i+j-n)th column. For 
each such complementation and repositioning, a corresponding 
correction factor Ci is taken into account. Pi and Ci can be 
reformulated as: 

  

1

0 0
0

1 1

0

2 0

( )2 1, , 1n

n
j

j
j

n i n
i j

i i j i j
j j n i

P A B i

P A B A B i n

−

=

− − −
+

= = −

⎧ = =⎪
⎪
⎨
⎪ = + = −⎪⎩

∑

∑ ∑
 (8) 

 ( )
1

2 1
2 2 2 2 1n

n

n
i jn n i

i
j n i

C
−

+

+= −

= = −∑            (9) 

According to (8) and (9), the following partial products Pi 
and Ci correction factors matrix are derived: 

0 0 1 0 2 0 1 0 0 0

1
1 1 2 1 3 1 0 1 1 1

2
2 2 3 2 4 2 1 2 2 2

2
2 2 1 2 0 2 3 2 2 2

1 1 0 1 1 1 2 1 1 1

... 0

... 2 (2 1)

... 2 (2 1)

... 2 (2 1)

... 2 (

n n

n
n n n

n
n n n n

n n
n n n n n n

n
n n n n n n n

P AB AB AB AB C

P AB AB AB AB C

P A B AB AB AB C

P A B A B A B A B C

P A B A B A B A B C

− −

− − −

− − − −

−
− − − − − −

− − − − − − −

= =

= = −

= = −

= = −

= = 12 1)n− −

 

The total correction, Ct, required for the formation of the 
above n partial products is equal to 

 
( )

( )

1 1

0 1
2 2 1

2 2 1

n n
n i

t i
j j

n i

C C

n

− −

= =

= = −

= − −

∑ ∑
                         (10) 

In order to further reduce the partial products into two 
summands, we consider that the reduction of the partial 

products is performed by using modulo carry-save addition. 
Tree architectures have been introduced by Dadda [14]. And 
the first speed-up technique for multiplication is to accelerate 
the addition of the partial products using a carry-save adder 
tree (Dadda tree) [14]， a Carry, Sum vector pair (C, S) is 
reached by a n+1 stage Carry Save Adder (CSA) array. At the 
same time, we must consider correction factor introduced 
during the reduction of the partial products into two 
summands. Assume that cn is the carry output at the most 
significant bit position, each carry bit with weight 2n, since 

 2 12 1 2 1
2 2nn n

n n
n n nc c c

++ +
= − = +                 (11) 

According to the above formulate, cn can be complemented 
and placed at bit position 0 of the next stage, that is, in the next 
to the least significant bit, and introducing a correction factor 
2n for each such operation. Since n+1 CSA stages are required 
for the reduction of the n+3 partial products into two 
summands (a Carry and Sum vector pair (C, S)), the total 
correction by n+1 CSA stages is 

 ( 1)2n
fC n= +                              (12) 

The last correction factor for the entire partial product 
matrix can be calculated from the sum of Cp and Cf as follows: 

 ( )
2 1 2 1

2 1
2 2 1 ( 1)2 1

n n

n

t f

n i n

C C C

n n

+ +

+

= +

= − − + + =
            (13) 

483



 

 

The constant ’1’ in equation (13) is the last correction 
factor, C-1=C-1=0 is its diminished-one number representation, 
that is, a total correction 0 ... 0000 is introduced. It is important 
to note that the correction term should have the zero value non-
null values, since in this case less than n+1 the computed 
carries of weight 2n will be produced if it is ignored during the 
reduction of the partial products. According to the previous 
discussion, the product Q-1 of relation (1) can be rewritten as: 

 
1 2 1 2 1

1 1 1 2 1

1 1n n

ni

Q Q AB

P A B C
− + +

− − − +

= − = −

= + + +
                  (14) 

As a result, we get a completely rectangular array, and the 
partial product complete matrix of the n+3 partial product of 
the proposed diminished-1 modulo 2n+1 multiplier is given by: 

0 0 1 0 2 0 1 0 0

1 1 2 1 3 1 0 1 1

2 2 3 2 4 2 1 2 2

2 2 1 2 0 2 3 2 2

1 1 0 1 1 1 2 1 1

1 2 1 0

1 1 2 1 0

1

...

...

...

...

...

...

...

0 0 ... 0 0

n n

n n n

n n n n

n n n n n

n n n n n n

n n n

n n n

P A B A B A B A B

P A B A B A B A B

P A B A B A B A B

P A B A B A B A B

P A B A B A B A B
P A A A A

P B B B B

C

− −

− − −

− − − −

− − − − −

− − − − − −

− −

+ − −

−

=

=

=

=

=
=

=

=

 

In order to further reduce inter-stage wiring and large carry 
merge cell density, a new end-around inverted carry (EAIC) 
adder based on sparse tree is used for the last stage modulo 
addition. The modulo addition accepts Sum vector and Carry 
vector from the previous stage and produces the required 
product. 

Thus, the new diminished-1 modulo 2n+1 multiplier can not 
only avoid (n+1)-bit arithmetic circuits in the computation 
process, but also handle zero inputs and results. 

IV. ARCHITECTURE FOR DIMINISHED-1 MODULO 
MULTIPLIERS 

From the above arithmetic algorithms discussed, the 
proposed implementation of the modulo 2n+1 multiplier 
consists of three modules, that is, partial products generation 
module, partial products reduction module and the last 
diminished-1 modulo 2n+1 adder module. For the sake of 
presenting the complete implementation of the proposed 
multiplier, it is briefly described below. 

The first module is to generate partial products. Basic logic 
gates of AND or NAND gates that form a bit of each partial 
product.  

The second module is to reduce the partial products to two 
last summands. The n+3 partial products can be reduced into 
two summands by the CSA tree architecture indicated in Fig. 1 
for n=8. It is well known that the irregularity of the architecture 

cause layout difficulties if Dadda tree is used to build a integer 
multiplier. In the paper, it can be seen from Fig.1 that the FA 
and HA based adder array for the Dadda tree is extremely 
regular, and is therefore easier to implement than the Dadda 
tree binary multiplier, especially when n becomes large. The 
CSA tree is usually constructed with FA. But in our 
multipliers, since C-1 is the all 0s vector, one stage of the CSA 
tree that accepts this operand can be further simplified only 
using a row of half adders (HAs).  

The partial products reduction module is composed only by 
FA and HA blocks. Each such block produces a carry at its 
most significant bit position, which are complemented and 
added to the bits of the least significant bit position. 

The last module is to add the sum and carry vectors from 
partial products reduction module to produce the required 
product. Fig.2 presents the proposed Prop/4 32-bit EAIC 
adders. The notation Prop/k is used to denote the proposed 
modulo adders in which every kth (k=2, 4, 8…) carry is 
computed, instead of calculating the all carry terms for every 
bit position. For a 32-bit sparse IEAC with sparseness factor 
equal to 4, that is, k=4, the carries are computed for bit 
positions −1, 3, 7, 11, 15, 19, 23 and 27. Bit position −1 
corresponds to the inverted carry out of the bit position 31. The 
logic level implementation of the carry select block is shown in 
Fig. 3. For larger adders, the sparse version of the modulo 
adders introduced in this paper with less number of cells and 
less inter-stage wiring, which provid better performance in the 
proposed multiplier. The implementation of logic-level used in 
adders that is given in Fig. 4. For computing the most 
significant bit of Q, equivalently, zero indication bit qz. Taking 
into account that qz should be set to 1 if 1z za b∨ = ; or 

1z za b∨ =  and 2 1nA B× = + . We conclude that qz can be 
computed straightforwardly as az�bz�H. Fig. 1 presents an 
example of the proposed multiplier architecture for the case 
that n=8. It should be noted that handle 0 operands in 
diminished-1 representation did not add any delay on the 
critical path of the proposed multiplier. 

 
Fig. 1. The proposed modulo 28+1 multiplier 

484



 

 

 
Fig. 2.  Prop-n/4 32-bit EAIC adders. 

 
Fig. 3. The logic level implementation  of the carry select 

 
Fig. 4. The logic-level implementation of the basic cells used in adders. 

Example 1: When n=8, let A=154, B=199, then A-1=(99)16, 
B-1=(C6)16 and 1z za b∨ = .According to Figs. 1,these eleven 
partial products are diminished-1 added and the result is Q-

1=(3E)16, and H=0 can be detected by the logical AND of the 
logical XOR of final Si and Ci, we can further 
have 0z z zq a b H= ∨ ∨ = . Fig. 5a shows the computation 
process. 

Example 2: When n=9, A=17, B=26, then A-1=(013)16, B-

1=(01A)16 and 1z za b∨ = . These twelve These eleven partial 
products are diminished-1 added and the result is Q-1=(000)16 , 
and H=1 can be detected by the logical AND of the logical 
XOR of final Si and Ci. Since 1z z zq a b H= ∨ ∨ =  we 
have 0zq =  that will provide the expected diminished-one 

representation result Q-1=(00)16 and 1zq = . Fig. 5b shows the 
computation process. 

Example 3:When n=8, A=0, B=199, then A-1=(100)16, B-

1=(C6)16 and 0z za b∨ = . Since 1z z zq a b H= ∨ ∨ = , we have 

0zq =  that will provide the expected diminished-one 
representation result Q-1=(00)16 and 1zq = . 

 

 
Fig. 5. Examples of diminished-1 modulo 2n+ 1 multiplication       

a :Numeric illustration of Example 1 b :  Numeric illustration of Example 2 

V. HARDWARE ANALYSIS  
In this section, we will analyze the area and time 

complexity of the proposed multipliers. For our analysis, we 
adopt the approximations of the unit gate model proposed in 
the work of Tyagi [15], that is, we consider that all 2-input 
monotonic gates are computed in 1 gate equivalent for both 
area and delay, while a 2-input XOR or XNOR gate counts as 
2 gate equivalents for both area and delay. Table 1 presents the 
area and delay of logic-gates and basic-cells in gate equivalents 
according to this model approximately.  

For the proposed modulo multipliers, the delay and area 
results for any values of n are given in the follow. The area(A) 
and delay(T) requirements of the new multipliers consist of 
four parts, which are the partial products generation (PPG), the 
partial products reduction (PPR) , the last stage addition (FSA) 
and the handle zero operands(HZO) modules respectively, they 
can be written as 

 PROPOSED PPG PPR FSA HZOA A A A A= + + +              (15) 

485



 

 

 PROPOSED PPG PPR FSA HZOT T T T T= + + +              (16) 

The required n×(n+3) partial products bits can be generated 
in parallel uses n2 AND or NAND gates, so APPG=n2 , TPPG=1. 

We consider that these patial products are then reduced to 
two summands by the use of the CSA tree. The depth in FA 
stages of a Dadda tree is a function, suppose D(k), where D(k) 
denotes the depth in FAs of a k-operand CSA tree. D(k) is 
listed in Table 2 for all practical values of k. Therefore, the 
CSA tree of the proposed multiplier has D(n+3) stages, each of 
the n columns of the tree. Since a FA is equivalent to a 
compressor with fator of 3:2, we have to use (n+1) rows of n 
FAs each for reducing the n+3 partial product matrix to the 2 
n-bit vectors that will then be added by the last adder. 
Furthermore, since C-1=0 is the all 0s vector, the row of FAs 
can be simplified to a row of HA. The total area of partial 
products reduction is APPR=7n2+3n, while its execution delay is 
TPPR=4D(n+3).The area and the delay of the sparse tree based 
Inverted EAC in the stage [16] are 

 3 1 log 2 25 9
4 2

n
FSA

n nA ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤= + + −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠
         (17) 

 2 log 2 4n
FSAA ⎡ ⎤= +⎢ ⎥                        (18) 

The handle zero operands(HZO) module that handle 
operands in parallel with the other processing, therefore its 
delay does not count in, except for a 2-input “AND” gate is 
added in output of the proposed multipliers. Therefore, the 
delay of the handle zero operands (HZO) module takes 2 unit-
gate equivalents delay. That is THZO=1, AHZO=n+3. 

Summing the above delays, we conclude that the area and 
the delay of the proposed multipliers can be 

 28 4 3 1 log 2 25 6
4 2

PROPOSED PPG PPR FSA HZO

n

A A A A A

n nn n

= + + +

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤= + + + + −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠

       (19) 

 4 ( 3) 2 log 2 6
PROPOSED PPG PPR FSA HZO

n

T T T T T

D n

= + + +

⎡ ⎤= + + +⎢ ⎥
             (20) 

TABLE I.   UNIT GATE MODEL 

Logic gate/Basic cell Area Delay 
NOT 0 0 

AND, OR, NAND, NOR 1 1 
XOR, XNOR 2 2 

HA 3 2 
FA 7 4 

TABLE II.  FA STAGES IN K OPERAND TREES 

k 4 5…6 7…9 10…13 14…19 20…28 29…42 43…63 

D(k) 2 3 4 5 6 7 8 9 

VI. CONCLUSION 
In this paper, we have described a novel architecture for 

diminished-1 modulo 2n+1 multiplier. The new architecture 
adopts a pure radix-4 Booth recoding and a Wallce tree to 
reduce the number of the partial products and speed up the 
computation in the partial products reduction stage. Moreover, 
sparse tree based Inverted-end around carry adder is used in the 
last stage addition. The new architecture can handle zero inputs 
and result. The comparisons with the most existed efficient 
solutions indicate that the speed of the novel multipliers can be 
the same or better while being more compact. Besides, the very 
regular structure is well suited to VLSI implementations and 
direct application for pipeline architecture. 

 

REFERENCES 
[1] P.V.A. Mohan, “Residue number systems: algorithms and 

Architectures,” Norwell, MA: Kluwer, 2002. 
[2] K Navi, A.S Molahosseini and M. Esmaeildoust, “ How to teach residue 

number system to computer scientists and engineers ,” IEEE Trans. 
Educ. , 2011, 54(1): 156-163.  

[3] R. Conway and J. Nelson, “ Improved RNS FIR filter architectures ,” 
IEEE Trans. Circuits Syst. II, 2004, 51(1): 26–28. 

[4] J. Ramirez, A. Garcia, S. Lopez-buedo, and A. Lloris, “RNS-enabled 
digital signal processor design,” Electron. Lett., 2002, 38(6), 266-268.  

[5] A. S Madhukuma and F. Chin, “Enhanced architecture for residue 
number system-based CDMA for high-rate data transmission,”  IEEE 
Trans. Wirel. Commun., 2004, 3(5), 1363-1368. 

[6] L. Leibowitz, “A simplified binary arithmetic for the fermat number 
transform ,” IEEE Trans. Acoust. Speech Signal Process, 1976, ASSP-
24, 356–359. 

[7] Y. Ma, “A simplified architecture for modulo (2n+1) multiplication,” 
IEEE Trans. Comput., 1998, 47,(3), pp. 333–337. 

[8] L. Sousa and R. Chaves, “A universal architecture for designing 
efficient modulo 2n+1 multipliers IEEE Trans，”  Circuits Syst. I., 
2005,52(6), 1166–1178. 

[9] A. Curiger, H. Bonnenberg, and H. Kaeslin, “VLSI architectures for 
multiplication modulo (2n+1),”  IEEE J. Solid-State Circuits, 1991, 
26(7), 990–994. 

[10] J. W. Chen and R. H  Yao, “Efficient modulo multipliers for diminished-
1 representation,” IET Circuits, Devices Syst., 2010, 4(4), 291–300. 

[11] Z Wang, G. A. Jullien, and W. C. Miller, “An efficient tree architecture 
for modulo (2n+1) multiplication,” VLSI Signal Process., 1996, 14, 241–
248. 

[12] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, and D. Nikolos, 
“Efficient diminished-1 modulo 2n+1 multipliers,” IEEE Trans. 
Comput., 2005, 54(4), 491–496. 

[13] C. Efstathiou and I. Voyiatzis, “Handling zero in diminished-1 modulo 
2n+1 subtraction,” Signals, Circuits and Systems (SCS), 2009 3rd 
International Conference on. IEEE, 2009, 1-6. 

[14] L. Dadda, “On parallel digital multipliers,” Alta Frequenza, 1976, 45, 
574–580. 

[15] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Trans. 
Comput., 1993, 42(10), 1163–1170. 

[16] H.T.Vergos and G. Dimitrakopoulos, “ On Modulo 2n+1 Adder 
Design ,” IEEE Trans. Comput., 2012, 61(2), 173–186. 

 

486




