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Abstract— Modeling behavioral mechanism of animal group 
promotes the development of group animation and other fields 
involving crowd simulation. This paper introduces a model to 
mimic behaviors of animal group. We proposes a swarming 
intelligence algorithm, Evasion Mechanism Artificial Fish School 
Algorithm (EM-AFSA) in our model, in which AFSA often 
focuses on optimization. The EM-AFSA introduces a new 
mechanism, i.e. evasion, which enables the group to avoid 
obstacles and collisions and to evade predation. It also includes 
flocking, foraging and tailgating. It is convenient to show the 
dynamic demonstration of our model and the model vividly 
mimics the real animal group behavior, which could potentially 
be used in designing group animation. 

Keywords—EM-AFSA; swarm intelligence algorithm; group 
animation; group behavior; evasion mechanism  

I.  INTRODUCTION  
The past decades witnessed a flourish in distributed 

artificial intelligence (DAI) theory, which mainly concentrates 
on the research of structure and coordination of concurrent 
multi-agent. To some extent, distributed artificial intelligence 
structure is ‘smarter’ than traditional artificial intelligence. 
Because in the real world, knowledge and resources of a single 
agent is spatial and temporal limited. So social coordination 
and cooperation within the colony is necessary for members 
who want to achieve their own ends. DAI not only relates to 
the theoretical basis of joint activities, distributed computing 
model and computational ecology, but also involves practical 
applications [1]. One of these applications is group animation.  

From the very beginning, computer animation was drawn 
by hand frame by frame, which cost a lot of time and human 
resources. Then the key-frame technology arose and liberated 
animators from amount of repeating labor. But it is still an 
unrealizable job to modify and display group activities if the 
number of the group is large. Designing motion path and 
behavior for each individual in the group was not feasible until 
C.W.Reynolds proposed the concept of group animation in [2]. 
In the bird-oid (BOID) model he proposed, he defined three 
behavior, i.e. cohesion, alignment and separation. Each 
individual can make decisions on its behavior next step 
according to the state of other individuals nearby and the 
current state of its own synthetically. From then on, the 
development of group animation accelerated and related swarm 
intelligence algorithms also thrived.  

Another important model that should not be ignored is 
Artificial Fish proposed by Tu [3], [4]. Just like the BOID, 
each fish can be regarded as an Agent, observing rules 
animators defined. But it also has vital signs such as intention, 
habit, perception and attention. Based on computer graphic 
technology, the model can simulate the visual complexity and 
randomness of natural fish colonies, which satisfies the 
demand of visual realism well and creates vivid animation. 

Nowadays, the research on group animation mainly targets 
on two directions: simulating colonies and behavior control. 
The former focuses on modeling group activities for 
applications in Artificial Life, Human–Machine Interaction, 
Virtual Reality, and so on. While behavior control focuses on 
the algorithms and rules of colonies, which are important for 
simulating traffic scenes and evacuation in crowded public 
places, searching for best paths, and modeling autonomous 
intelligent vehicles. In fact, these two directions is inseparable 
[5], [6] if we ignore their difference in applications. 

Apart from the models mimicking natural groups, swarm 
intelligence algorithm mentioned before, which also shares the 
idea of DAI, is another research direction impelled by natural 
colonies. For instance, Particle Swarm Optimization (PSO) 
proposed by Eberhart and Kennedy in 1995 [7], [8] originates 
in mimicking the predation process of birds. Based on the 
principle of information sharing among members within the 
group, the whole colony evolved into a stable optimal state 
from disorder ones in solving space. Ant Colony Optimization 
(ACO) proposed by Marco Dorigo [9], [10] in 1999 originates 
in behaviors of ants searching for food, which is often used in 
finding the optimal path in the graph. Besides, we also see 
many other swarm intelligence algorithms, such as Artificial 
Bee Colony Algorithm (ABC) [11] and others related to bee 
colony, Bacterial Foraging Optimization (BFO) [12] and 
Bacterial Chemotaxis Algorithm (BC) [13], Glowworm Swarm 
Optimization (GSO) [14], as well as Artificial Fish School 
Algorithm (AFSA) [15], [16], and so on. All these algorithms 
focus on bionic optimization for practical engineering 
problems with characteristics like high dimension, multi- 
extremums, non-linearity, and undifferentiability. 

Rules designed for agents in group animation are usually 
complicated. So people developed ways substituting for this 
huge project. For example, some example-based methods [17]-
[19] and data-driven methods [19]-[24] were developed to 
simplify the process of making group animation. 
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It is natural to assume that applying improved swarm 
intelligence algorithm to group animation should be a way 
alternative. In this paper, for the purpose of combining swarm 
intelligence algorithms with group animation, we proposed 
EM-AFSA based on AFSA by bringing in evasion mechanism 
which enhances the visual complexity and realism of the 
model. Based on the algorithm, we establish models to 
simulate behaviors of animals, such as avoiding obstacles, 
avoiding collisions, flocking, foraging, tailgating, predation 
and evading predation, etc. 

It is always difficult to develop verification platforms for 
making group animation, which is always time-consuming and 
requires a lot of computational resource. The high hardware 
requirements and long development cycle are not endurable 
when we want to verify algorithms proposed. In this paper, we 
also establish a platform which makes it convenient to realize 
the dynamic demonstration of swarm intelligence algorithm 
applied in group animation. In the platform, the dynamic effect 
of the improved algorithm is simulated. All behavioral 
mechanisms, especially the evasion mechanism, are tested. We 
also make experiment to test the effect of the model’s target 
function. 

The remainder of this paper is organized as follows. The 
second section introduces the overall plan to establish 
simulation system. The third section explains the algorithm we 
have improved and the whole model of animals’ behavioral 
mechanism. Experimental results are given in the fourth 
section. Finally, the last section concludes our work and gives 
directions for further research. 

II. ESTABLISHING A VERIFICATION PLATFORM 
It is always a time-consuming and computational expensive 

job to establish a group animation simulating system if we take 
the vivid visual effect into consideration. In fact, it is not 
necessary to spend a lot of effort to develop an extreme perfect 
and vivid system when we just need a platform to verify 
algorithms. So, a scheme which is easy to construct and 
beneficial to quickly and conveniently demonstrating the 
dynamic effect of algorithm is needed. 

A. Virtual World Modeling 
The virtual reality scene used for dynamic demonstration is 

held in an ASCII file. It can be made by directly programming 
with virtual reality modeling language (VRML). But for cases 
containing objects whose number is large or with complex 
shapes, directly programming to complete the modeling will be 
a mission impossible. Some 3D modeling softwares help us to 
realize the modeling. For example, some products of Autodesk 
such as Maya, 3D-MAX and AutoCAD all support virtual 
reality modeling and can export files with format we need. 
Matlab also contain toolbox integrated with V-Reaml builder 
and 3Dworld editor, which are helpful to edit and modify the 
model we made. 

Each ASCII file contains some specific father nodes. The 
WorldInfo node contains document title, author, copyright and 
other identity information. The background node contains 
information describing the background of the model. The 
switch node includes many subentries, which contain the 
vertex information and the three-dimensional coordinates of 

these vertex. Meanwhile, the group node consists of child 
nodes. In the virtual reality model, roles such as animal 
individuals, obstacles, and predators are all bonded in group 
node, so they are child nodes in the model. Each child node 
consists of several fields, which define the viewport, location, 
spin, scale, appearance and other characteristics of the object 
respectively. For instance, by controlling the translation field 
and rotation field, we can change the location and direction of 
corresponding objects. In the platform we built, there are 
mainly three kinds of roles, i.e. zooplankton colonies, predators 
and obstacles. 

B. Interface Function  
The interface function bridges the virtual reality world and 

algorithms describing the behavioral mechanisms. By invoking 
relevant functions, we can get and control the property 
parameters we want and have objects in the virtual reality 
world behave the way our algorithms define. 

In Matlab, there are limited numbers of functions that 
control or describe the Vrworld. But in our scheme, it’s 
completely enough. Commands that are frequently used are 
listed in TABLE I. 

In practice, we usually have to control quantities of 
members in the group and it is not wise to call these commands 
respectively for each member. It is necessary to write loop 
programs to get the parameters or change them conveniently. It 
is a feasible schedule to get all the parameters relevant in the 
beginning and have them stored in data bank. The algorithm 
works on the data bank and modifies the data in the mechanism 
designed. Then we write the data relevant into the Vrworld and 
realize the purpose of controlling behaviors of target members. 

We will describe the animal group behavioral model in detail 
in next section. 

 

III. GROUP BEHAVIORAL ALGORITHM ADDED EVASION 
MECHANISM 

A. Principles of Behavior Modeling 
Inspired by ecology, researchers on artificial life proposed a 

series of guidelines on behavioral mechanism design. And they 
have been already properly applied to some group animation 
models. These principles are as follows [3], [25], [26]. 

TABLE I.  COMMANDS ON VRWORLD 

Function Operation corresponding 

close() Close a Vrworld 
delete() Delete a closed Vrworld from memory 

get() Get parameters of a Vrworld or a node 
nodes() List the nodes available in Vrworld 
open() Open a Vrworld 

reload() Reload the Original Vrworld  
save() Save a Vrworld to a VRML file 
set() Set properties of a Vrworld or a node 

fields() List the fields of a node 
vrnode() Create a new node in the Vrworld 
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1) Behavioral priority  
Establish priority level for behaviors of agent. It should 

satisfy physical criteria visually as much as possible. Behaviors 
to avoid life-threatening danger should be superior to other 
acts. 

2) Opportunity 
The agent should have the ability to interrupt the current 

behavior for an act with higher behavioral priority. 

3) React instantaneously 
The agent should be able to react to stimulus 

instantaneously. That is to say, real-time simulation is required.  

B. The Overall Framework of EM-AFSA 
In this paper, the colony we mainly simulate is 

zooplankton. The mechanism we designed are as follows: 
avoiding static obstacles, avoiding predators, avoiding mutual 
collision, flocking, foraging and tailgating, which are arranged 
by priority from high to low. 

The evasion mechanism we proposed reflects in the first 
three mechanisms. Avoiding static obstacles and avoiding 
predators make the zooplankton get away from potential 
threats. The third mechanism enable agents in group to avoid 
congestion, which also guarantees different agents not 
occupying the same location. Flocking imitates the habit of 
zooplanktons, which always gather together in colony. It is also 
the necessary condition that guarantees the agent moving to 
region with higher density of food during the process of 
foraging. Tailgating enables agents to approach neighbors with 
best condition. It is a supplementary condition that accelerates 
flocking. According to principles of behavior modeling and 
regulations zooplankton in natural world always obeying, we 

designed a complete group behavioral model with EM-AFSA. 
The algorithm flow is revealed in Fig. 1. 

C. Behavioral Mechanisms 
We assume that in the three dimensional space there is a 

zooplankton colony with N  individuals. The position of each 
individual is ( ) ( )1 2 3, , , 1,2, ,iP t p p p i N= =

JG
"  , where 

1 2 3, ,p p p   represent the position coordinates of the individual. 
Individuals in the colony own following functional parameters: 
perception range V , step length S   , number of times to 
perform foraging in current location ForagNum  , number of 
times to perform tailgating in current locationTailNum   and 
crowding distance dangerC  . We must adjust these parameters 
according to different situations we set. We also should define 
range of motion Range   in Vrworld. After initializing all 
these parameters, the simulation process can start. 

1) Avoiding static obstacles 
a) Define 1 0Flag =  . 

b) Search obstacles’ position obstacleP
JG

 withinV   . 

c) If 

( )arg argt et t et i dangerP V P P t C∈ ∧ − <
JG JG JG

                    (1) 

where argt et obstacleP P=
JG JG

,  the current agent steps back by random 
length in the opposite direction along agent and obstacle, i.e. to 
update the coordinate of current agent to a new one ( )1iP t +

JG
 in 

next cycle according to equation : 

( ) ( ) ( )
1i i

R S A B
P t P t

A B

−
+ = +

−

JG JG
i iJG JG
JG JG  ,                        (2) 

where ( )iA P t=
JG JG

, obstacleB P=
JG JG

 and ( ]0,1R ∈  is a random 
positive number. 

d) If (1), set 1 1Flag = , which records that avoiding static 
obstacles happened. 

e) Check whether 

( )1iP t Range+ ∈
JG

 ,                                  (3) 

is satisfied. If not, set values of border coordinate on relevant 
dimensions to components of ( )1iP t +

JG
. 

2) Avoiding predators  
a) Define 2 0Flag = . 

b) Search predators’ position preP
JG

withinV  . 

c) If (1), where argt et preP P=
JG JG

, update the coordinate of 
current agent to ( )1iP t +

JG
 in next cycle according to equation 

(2), where ( )iA P t=
JG JG

 and preB P=
JG JG

. 
 

Fig. 1.  Algorithm flow of animal’s group behavioral model 
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d) If (1), set 2 1Flag =   , which records that the behavior 
avoiding predators happened. 

e) Check whether (3) is satisfied and react correspondingly. 

3) Avoiding mutual collision 
a) Define 3 0Flag =  . 

b) Search other agents’ position within V  , which is 
denoted as ( ) , 1,2, ,jP t j N j i= ≠

JG
" . 

c) If (1), where ( )argt et jP P t=
JG JG

 , update the coordinate of 

current agent to ( )1iP t +
JG

 in next cycle according to equation 

(2), where ( )iA P t=
JG JG

and ( )jB P t=
JG JG

. 

d) If (1), set 3 1Flag = , which records that the behavior 
avoiding mutual collision happened. 

e) Check whether (3) is satisfied and react correspondingly. 

By now, the evasion mechanism is accomplished. Note that 
the priority of flags is different, i.e. 1 2 3Flag Flag Flag> > . In 

simulation, if any of the flags equals to 1, update ( )iP t
JG

to

( )1iP t +
JG

 according to corresponding cases. 

4) Flocking 
Before describing flocking, we must have a look at the 

objective function of the system. In the searching space, we 
defined an objective function to imitate the density of food 
resource distributed in the space. 

Different kinds of objective function are tested. Normal 
distribution function or sampling function is usually employed. 
We denote ( )f X

JJG
 as the objective function of the system, 

which represents the food density in location X
JJG

. 

a) Initialize counter and center position, which are denoted 
as _ 1F num = and center iP P=

JG JG
 . 

b) Search other agents’ position within V . If detected, 
update the counter by the equation: _ _ 1F num F num= +  

and update the center position by the equation: 

, ,
_

center j
center j

P PP P V j i
F num

+= ∈ ≠
JG JGJG JG

.                    (4) 

e) After iterating through all the agent within  V  of ( )iP t
JG

 , 

we compute the value of objective function on ( )iP t
JG

and centerP
JG

. 

f) If ( ) ( )( )center if P f P t>
JG JG

, update ( )iP t
JG

by equation (2), 

where centerA P=
JG JG

and iB P=
JG JG

. 

g) Check whether (3) is satisfied and react correspondingly. 

h) If ( ) ( )( )center if P f P t<
JG JG

, the current agent executes 
foraging. 

5) Foraging 
a) Regard the current position as the center and search for a 

new position: 

1(t) (t) , 1,2,
k
i iP P R S V k ForagNum= + =
JG JJG

i i " ,          (5) 

 where [ ]1 1,1R ∈ − . 

b) If ( )( ) ( )( )k
i if P t f P t>
JG JG

then the current agent moves 

towards this new position with a random length step, i.e. 
update  ( )iP t

JG
 by equation (2), where ( )k

iA P t=
JG JG

 and

( )iB P t=
JG JG

. Terminate the foraging. 

c) If ( ) ( )( )k
i if P f P t<
JG JG

, repeat a-b until the number of 

searching times reaches ForagNum . If there is no new position 

within V  satisfies ( ) ( )( )k
i if P f P t>
JG JG

 in the end, the current 

agent moves one step randomly: 

( ) 11 (t)i iP t P R S+ = +
JG JJG

i ,                          (6)  

and terminate foraging. 

 d) Check whether (3) is satisfied and react 
correspondingly. 

6) Tailgating 
a) Search for other agents withinV   and find out the agent 

with best condition and denote its position as ( )maxP t
JG

 , i.e. 

                 ( )( ) ( )( )max,m mP f P t f P t∀ >
JJG JG JJG

,               (7)  

where max , mP V P V∈ ∈
JG JJG

  and maxm i≠ ≠ . If there is no other 

agents within   then set ( )( )max 0f P t =
JG

 . If there are too many 

agents of the same kind in V , the maximum number of 
searching times isTailNum . 

b) If ( ) ( )max (t) (t)if P f P>
JG JG

 then current agent moves 

towards the position ( )maxP t
JG

 by equation (2), where 

( )maxA P t=
JG JG

and ( )iB P t=
JG JG

.    

c) Check whether (3) is satisfied and react correspondingly. 

d) If not, the current agent executes foraging. 

7) Predation 
We also defined predator in our model. In fact, the evasion 

mechanism of predator is almost the same as zooplankton. The 
difference lies in the foraging mechanism. For a predator, it 
doesn’t depend on objective function to execute behavior next 
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step when foraging. Instead, it chases after th
its perception range until it succeeds.  

We also design an extra mechanism, swa
the visual effect. If the zooplankton is with
range of predator, set the coordinate of thi
same as the predator. So the zooplankton
predator and looks like it is swallowed. 

IV. SIMULATION AND EXPERIMENT

A. Experiment 1 
The platform’s size is   grids. This grid is

Maya. In the Vrworld, we arranged 
zooplankton colony, obstacles, and a predator
normally distributed in the space. In the re
density of food, we place a ring to put a m
status, the zooplanktons are scattered random
away from the food region. Between the ab
there is a region occupied by elliptical obsta
of agents in the system is 120, whose percep
of 8 grids in semi diameter and step lengths
ForagNum and  TailNum are 5 and 10 ti

dangerC is 0.75 grid. The initial status is shown

If the behavioral model we proposed
zooplanktons should demonstrate corresp
group effect in the simulation. And if the sim
satisfied, it is feasible to transplant sw
algorithm to the field of group animati
experimental results prove our scheme can pe

Fig. 3 and Fig. 4 show statuses after 1,00
respectively. In Fig. 3, we can see that the 
colony from the scattered status. In Fig. 4, 
obstacles and move towards the region with m

Fig. 2.  The initial status of the virtual 

Fig. 3.  The status of the virtual world after 1,

Fig. 4.  The status of the virtual world after 1

he nearest target in 

allowing, to enrich 
hin the swallowing 
is zooplankton the 

n is hidden in the 

TAL RESULTS 

s the default unit in 
three elements: 

r. Food resource is 
egion with highest 
mark. In the initial 
mly in a region far 
bove two regions, 
acles. The number 
ption ranges are all 
s are all 0.28 grid. 
imes respectively.  

n in Fig. 2. 

d does work, the 
ponding dynamic 

mulation outcome is 
warm intelligence 
ion. In fact, the 
erform well. 

00 and 1,800 cycle 
agents flock to a 
the agents bypass 

more food in lines, 

which demonstrates evasio
mechanism at the same time. 

B. Experiment 2 
For the purpose of verifyi

added, we design supplementa
outcome. In the basis of las
obstacle in the way the zoopl
The result in Fig. 5 illustrate
works well. For comparison, w
effect of our model on condit
removed. The result is shown 
members in this zooplankton c
toward their target in lines strai
obstacles occupied. Obviously i

C. Experiment 3 
The evasion mechanism no

static obstacles, but also gives
from moving threats. Related ex
Fig. 7. In Fig.7, the zooplank
and agents in the front of the
original planned path to evade 
predator moving away, agents 

their order as a group and keep 

In this section, we demo
simulation. The results show 

 
world  

 
,000 cycle 

 
,800 cycle 

Fig. 5.  The supplementary exp

Fig. 6.  The effect with

Fig. 7.  Animal group evad

on, foraging and tailgating 

ing the evasion mechanism we 
ary experiment to examine the 

st experiment, we add another 
lankton colony used to choose. 
es that the evasion mechanism 
we also demonstrate the visual 
tion that evasion mechanism is 
in Fig. 6. We can see that the 

colony flock together and move 
ightly, passing through the space 
it looks unreal. 

ot only enables agents to avoid 
s agents the ability to get away 
xperimental results are shown in 

kton colony catches on predator 
e colony chose to change their 
dynamic danger. Then after the 
in the colony begin to recover 

on moving to food resource. 

nstrate experimental results in 
the behavioral model based on 

 
periment on evasion mechanism 

 
hout evasion mechanism 

 
de predator during foraging 
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swarm intelligence algorithm we improved can display the 
dynamic effect of behavioral mechanism we designed in the 
model, which breeds the embryo of group animation designing. 

 

V. CONCLUSION 
In this paper, we improve a swarm intelligence algorithm 

by bringing in evasion mechanism to model animal’s group 
behavior. In the simulation platform we build, we efficiently 
demonstrate the dynamic visual effect of this model. The 
mechanisms it includes, such as avoiding obstacles, avoiding 
mutual collision, getting away from predator, flocking, 
foraging and tailgating, all contribute to an encouraging display 
of group behavior. It is feasible to apply improved swarm 
intelligence algorithm to the designing of group animation.  

In the future work, we will improve the simulation platform 
to create more visual realistic group animation and explore new 
mechanisms to optimize the model. Giving more intelligent 
characteristics to animal group such as learning ability is also 
under consideration. Besides, the model’s capability to 
generate typical crowd phenomena [27] is still remaining to be 
tested. 
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