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Abstract—In this paper, we present a new learning rule
for classification of spatiotemporal spike patterns. This rule is
derived from the common Widrow-Hoff rule, and it can be used
for both the association and the classification. We mainly focus
on investigating its classification ability in this paper. Through
experimental simulations, it can be seen that this rule can
successfully train the neuron to reproduce the desired spikes.
In the classification task, the neuron is capable to classify
different categories with the learning rule. We have proposed two
decision-making schemes which are the absolute confidence and
the relative confidence criteria. The classification performance
is largely improved by the relative confidence criterion. The
performance of this rule on classification of spatiotemporal spike
patterns is also investigated and benchmarked by the tempotron
rule.

I. INTRODUCTION

The great computational power of human brain has attracted
numerous researchers into the area of computational neurobi-
ology during these several decades. How the information is
represented in the brain still remains unclear. However, there
is strong evidence showing that the representation of external
stimuli in the brain is in a form of spatiotemporal spikes [1],
[2]. Neurons in the brain propagate information through action
potentials (or called as spikes). These discoveries suggest the
development of the spiking neural networks (SNNs). SNNs are
more biologically plausible and computational powerful than
the traditional artificial neural networks.

The coding schemes consider how the spatiotemporal spikes
convey the information of external stimuli. Among different
coding schemes, rate coding and temporal coding [3] are two
of the most widely studied methods. The rate coding is the
most basic example of a neural code in which information is
conveyed through spike count within a time window. However,
the precise timing of each spike is considered in the temporal
coding. Recently, experimental evidence suggests that neural
systems also use exact time of spikes to convey information.
Neurons are revealed to precisely respond to stimuli on a
millisecond timescale in the retina [4], [5], the lateral genic-
ulate nucleus (LGN) [6] and the visual cortex [7], [8]. These
observations support the hypothesis of the temporal coding.
Additionally, recent studies have shown that the temporal
coding scheme can carry more information than the rate coding

scheme [9]–[11].
Several learning algorithms have been proposed for pro-

cessing spatiotemporal spike patterns. According to different
learning algorithms, the neurons adapt their synaptic weights
during learning and store these synaptic weights as memories
after learning. One of the first supervised learning algo-
rithms for SNN is SpikeProb [12]. SpikeProb is a gradient
descent based learning rule. This rule can solve nonlinear
classification tasks by emitting single spikes at desired firing
time. However, SpikeProb in its original form cannot learn
to reproduce multiple spike train. The tempotron rule [13],
which also uses a gradient descent approach, is evaluated to be
efficient in distinguishing binary temporal classification task.
The tempotron makes the decision by a binary response of
firing or not. Since the tempotron is designed for recognition,
it is also unable to produce precise spikes. Several learning
algorithms, such as ReSuMe [14], [15], Chronotron [16],
SPAN [17] and Precise-Spike-Driven (PSD) synaptic rule [18],
have been proposed to train neurons to precisely respond
to spatiotemporal spike patterns. Among these four rules,
without complex error calculation, the PSD rule is simple and
efficient in the view point of calculation, and yet biologically
plausible [18]. The PSD rule is derived from the Widrow-
Hoff (WH) rule by applying the spike convolution method
on the afferent spike trains. The synaptic adaptation in the
PSD rule is driven by the error between the desired and
the actual output spikes, with positive errors causing long-
term potentiation (LTP) and negative errors causing long-term
depression (LTD). The amount of the adaptation depends on
the eligibility trace determined by the afferent spikes. The PSD
rule can perform both the association task and the classification
task.

In this paper, we further investigate the ability of the
PSD rule on classification of spatiotemporal spike patterns.
In the following, the detailed description of the PSD rule
is presented. Through simulation, we demonstrate several
preliminary results of the learning rule. In the first experiment,
the association ability of the PSD rule is demonstrated. With
the PSD rule, the neuron could be trained to successfully
reproduce desired spikes. In the following experiments, the
PSD rule is applied to perform the classification task of
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spatiotemporal spike patterns. Two decision making criteria,
namely the absolute confidence and the relative confidence,
are proposed for recognition. The performance of the PSD
rule for classification is also analyzed and discussed.

II. LEARNING RULE

In this section, we firstly describe the neuron model used
in this study. The PSD rule is presented later through detailed
description.

A. The neuron model

Spiking neuron models have attracted more attention re-
cently because of their biological realism. There are several
kinds of spiking neuron models such as the integrate-and-
fire (IF) model [19], the resonate-and-fire model [20], the
Hodgkin-Huxley model [21], and the Izhikevich model (IM)
[22].

The IF model is the most widely used spiking neuron model
because of its simplicity and computational efficiency. For the
sake of simplicity, the leaky IF model is considered here. The
neuron evolves according to:

τm
dVm

dt
= −(Vm − E) +Rm(Ins + Isyn) (1)

where Vm is the membrane potential, τm = RmCm is the
membrane time constant, Rm = 1MΩ and Cm = 10nF are
the membrane resistance and capacitance, respectively, E is
the resting potential, Ins and Isyn are the background noisy
current and synaptic current, respectively. When Vm exceeds
a constant threshold Vthr, the neuron is said to fire, and Vm

is reset to Vreset for a refractory period tref . We set E =
Vreset = 0mV , Vthr = E + 18mV for clarity, but any other
values as E = −60mV will result in equivalent dynamics as
long as the relationships among E, Vreset and Vthr are kept.

For the postsynaptic neuron, the input synaptic current is
described as:

Isyn(t) =
∑

i

wiI
i
PSC(t) (2)

where wi is the synaptic weight of the i-th afferent neuron,
and IiPSC is the un-weighted postsynaptic current from the
corresponding afferent.

IiPSC(t) =
∑

tj

K(t− tj)H(t− tj) (3)

where tj is the timing of j-th spike emitted from the i-th
afferent, H(t) refers to the Heaviside function, K denotes the
normalized kernel and we choose as:

K(t− tj) = V0(exp(
−(t− tj)

τs
)− exp(

−(t− tj)

τf
)) (4)

where V0 is a normalization factor so that the maximum value
of the kernel is 1, τs and τf are the slow and fast decay
constants, respectively. Their ratio is fixed at τs/τf = 4.

Fig. 1 illustrates the neuron structure. Each spike from the
afferent neuron will result in a postsynaptic current (PSC). The
membrane potential of the postsynaptic neuron is the weighted
sum of all incoming PSCs over all afferent neurons.

B. The learning rule

In this part, the PSD rule is presented. This rule is derived
from the common Widrow-Hoff (WH) rule (also called as
Delta rule). This WH rule is described as:

Δwi = λxi(yd − yo) (5)

where λ is positive constant referring to the learning rate, xi,
yd and yo refer to the input, desired output and actual output,
respectively.

Since this WH rule was introduced for traditional neuron
models such as perceptron, the variables in WH rule are
regarded as real-valued vectors. However, the input and output
signals of spiking neurons are represented by the timing of
spikes. Direct implementation of this WH rule to spiking
neurons is problematic.

A spike train is defined as a sequence of impulses triggered
by the particular neuron at its firing times. It is described as
s(t) = Σfδ(t− tf ). Here, tf is the f -th firing time, and δ(x)
is the Dirac’s function (δ(x) = 1, if x = 0; or 0, otherwise).

The products of Dirac functions are mathematically prob-
lematic. By applying spike convolution on the input spike train
with a kernel as Eq. (4), IPSC can be used as an eligibility
trace for weight adaptation. The learning rule becomes:

dwi(t)

dt
= λ[sd(t)− si(t)]I

i
PSC(t) (6)

The above equation formulates an online learning rule. By
integrating Eq. (6), we get:

Δwi =λ

∫ ∞

0

[sd(t)− si(t)]I
i
PSC (t)dt

=λ
[

∑

g

∑

f

K(tgd − tfi )H(tgd − tfi ) (7)

+
∑

h

∑

f

K(tho − tfi )H(tho − tfi )
]

This equation could be used for trial learning where the
weight modification is performed at the end of pattern presen-
tation.

Additionally, to measure the distance between two spike
trains, we use the van Rossum metric [23] but with a different
filter function described as in Eq. (4). This filter is used to
compensate the discontinuity of the original filter function.
The distance is described as:

Dist =
1

τ

∫ ∞

0

[f(t)− g(t)]2dt (8)

where τ is a free parameter (we set τ = 10 ms here), f(t) and
g(t) are filtered signals of two considered spike trains. This
distance measurement is not involved in our learning rule, but
is used for analyzing the performance.

III. EXPERIMENTAL RESULTS

In this section, simulation experiments are conducted to
demonstrate the performance of the PSD rule on classifica-
tion. The first experiment simply demonstrates the association
ability of the PSD rule. The PSD rule can successfully train a

3854



oi
Af

fe
re

nt
 N

eu
ro

ns
i

i
s y nI

d

Fig. 1. Illustration of the neuron structure. The afferent neurons are connected to the postsynaptic neuron through synapses. Each emitted spike from the
afferent neuron will produce a postsynaptic current (PSC). The membrane potential of the postsynaptic neuron is the weighted sum of all incoming PSCs
from all afferent neurons. The yellow neuron denotes the instructor which is used for learning.

neuron to associate the input spatiotemporal spike pattern with
the desired spike train. In the latter experiments, a spatiotem-
poral pattern classification problem is mainly considered and
investigated.

A. Demonstration of the learning rule

In this experiment, the neuron is trained to associate a
randomly generated spatiotemporal pattern with a specific
target spike train. For the sake of simplicity, we only consider a
single spike for each afferent neuron. The neuron is connected
with npre afferent neurons, and each fires a single spike in the
time interval of (0, T ). Each spike is randomly generated with
a uniform distribution. We set npre = 500, T = 200 ms here.
To avoid single synapse dominating the firing of the neuron,
we limit the weight below wmax = 6 nA. The initial synaptic
weights are drawn randomly from a normal distribution with
mean value of 0.5 nA and standard deviation of 0.2 nA. For
the learning parameters, we set λ = 0.01wmax and τs =
10 ms. The target spike train could be randomly generated,
but for simplicity, we specify it as [40, 80, 120, 160] ms for
this experiment.

Fig. 2 illustrates a typical run of the association ability of
the PSD rule. Initially, the neuron seems to fire at arbitrary
times and with a different firing rate from the target train,
which results in a large spike distance value. The actual output
spike train is quite different from the target spike train at the
beginning. Along the learning process, the neuron gradually
produces spikes at the target times, which is also reflected by
the reducing spike distance. After finishing the first 10 epochs
of learning, both the firing rate and precise timings meet those
in the target spike train. The dynamic of neuron’s membrane
potential is also illustrated. Whenever the membrane potential
exceeds the threshold value, a spike is emitted and then the
potential is kept at the reset level for a refractory period.
Detailed mathematical description is presented previously.

This experiment shows the feasibility of the PSD rule to
train the neuron to reproduce the desired spike train. After
several learning epochs, the neuron can successfully spike at
the target times. In other words, the PSD rule is able to train
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Fig. 2. Illustration of the association ability of the PSD rule in a typical
run. The neuron is connected with npre = 500 synapses, and is trained to
reproduce spikes at the target times (denoted as the shaded bars in middle).
The bottom and top show the dynamics of the neuron’s potential before and
after learning, respectively. The dashed red lines denote the firing threshold.
In the middle, each spike is denoted as a dot. The right figure shows the
distance between the actual output spike train and the target spike train.

the neuron to associate the input spatiotemporal spike pattern
with the desired output spike train within several training
epochs. The knowledge of the input pattern is stored by a
specified spike train. Both of the dimension and the complexity
of the input information are largely reduced by this association.

B. Classification of spatiotemporal patterns

In this experiment, the ability of the PSD rule for classifying
spatiotemporal spike patterns is investigated. Multiple classifi-
cation task is considered. In this experiment, 5 categories are
used. Five random spike patterns are generated in a similar
fashion as for previous experiment, and they are fixed as the
templates. A Gaussian jitter with a standard deviation is used
to generate jittered patterns. Fig. 3 illustrates some examples
of spike patterns used in this experiment.

1) Decision-making criteria: In this scenario, we investi-
gate the effects of different decision-making criteria on the
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Fig. 3. Examples of spike patterns generated for training and testing. Only
three categories are demonstrated here. The top row shows the fixed templates
of three different categories. The bottom row shows the patterns generated for
training and testing. They are generated by adding a Gaussian time jitter of
zero mean and 3 ms standard deviation to the templates. Each dot in the
figure denotes a spike.

classification performance. We use a jitter noise of 3 ms to
generate both the training set and the testing set. The training
set and the testing set contains 5 × 20 and 5 × 50 samples,
respectively. Five neurons are trained to recognize these five
categories, and each neuron corresponds to one category. The
training set is used for training and the testing set is for
determining the generalization ability of the trained neurons.
Different neurons for each category could be specified to
fire different spike trains. However, for simplicity, all the
neurons in this experiment are trained to fire a same spike
train ([40, 80, 120, 160] ms). The experiment is repeated
by 20 runs, and for each run a different initial condition is
chosen.

After training, the classification is performed on both the
training and the testing set. For the classification task, we
propose two decision-making criteria which are the absolute
confidence and the relative confidence. Under the absolute
confidence criterion, only if the distance between the desired
spike train and the actual output spike train of the correspond-
ing neuron is smaller than a specified value (0.5 is used here),
the input pattern is regarded as being correctly recognized.
For the relative confidence criterion, a scheme of competition
is used. The incoming pattern will be labeled by the winning
neuron which reproduces the closest spike train to the desired
train.

Fig. 4 shows the average classification accuracy for each
category under the two proposed decision-making criteria.
From the absolute confidence, we see that the neuron could
successfully classify the training set with an average accuracy
of 99.20% across all categories. The average accuracy for
the testing set is 66.74% across all categories. Noteworthily,
under the relative confidence, both the average accuracies for
the training and the testing set reach to 100%. The classifica-
tion performance is largely improved by the decision-making
criterion of relative confidence. In the absolute confidence,
the trained neuron focuses more to exactly recognize those
memorized patterns. However, in the relative confidence, the
trained neuron focuses more to decide the most possible
category through competition. Thus, the relative confidence
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Fig. 4. The average accuracies for the classification of spatiotemporal
patterns with different decision-making criteria. There are 5 categories to
be classified. The average accuracies are represented by shaded bars. Two
types of criteria for making decision are proposed and investigated. (a) is the
absolute confidence criterion, and (b) is the relative confidence criterion. All
the data are averaged over 20 runs.

criterion can benefit the classification task, and we use this
criterion in the following experiment.

2) Effects of the number of desired spikes: In this scenario,
we investigate the effects of the number of desired spikes on
the classification performance. The desired spike train is set to
be evenly distributed over the time window T with a specified
number of spikes n. The firing time of the i-th desired spike:
ti = i/(n+1) · T , i = 1, 2...n. Additionally, we also use the
tempotron rule [13], [24], under the same experimental setup
with the PSD rule, to provide comparisons for analysis.

Jitter noises are added to generate noisy patterns. In the
training phase, the learning neurons are trained for 100 epochs
with a jitter strength of 2ms. In each learning epoch, a training
set of 50 patterns, with 10 for each category, is generated. After
training, a jitter range of 0-14 ms is used to investigate the
generalization ability. The number of the testing patterns for
each jitter strength is set to 100. All the results are averaged
over 20 runs. The effect of n on the classification performance
is shown in Fig. 5.
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Fig. 5. The performance of the PSD rule with different numbers of target
spikes on the spatiotemporal classification task. (a) shows the whole results
with both the mean values and the standard deviation values. (b) is another
demonstration of the results where the average accuracies are represented by
different colors.

As can be seen in Fig. 5, the testing accuracy stays on a
high level when the noise is under the training noise. The
performance will gradually decrease with an increasing noise
strength. When n is low, the classification is also relative low.
An increasing number of the desired spikes can improve the
classification performance significantly. For example, when
n = 9, the classification accuracy is still quite high even under
a strong noise level. The reasons for this phenomenon are due
to the local temporal features associated with each desired
spike. The decision is made by a combination of all the local
temporal features. For small number of desired spikes, the
neurons make decision based on a relatively less number of
temporal features. This small number of features only cover a
part range of the whole time window, which inevitably leads
to a lower performance compared to a more number of spikes.

In addition, we also use the tempotron rule [13], [24] to
perform the same classification task. The tempotron rule is
known as an efficient rule for spatiotemporal classification
task. Fig. 6 shows the classification performance.

As can be seen from Fig. 6, the PSD rule outperforms the
tempotron rule. This is because that the PSD rule makes a

Fig. 6. The classification performance of the PSD rule compared to the
tempotron rule.

decision based on a combination of several local temporal
features over the entire time window, but the tempotron rule
only makes a decision by firing one spike or not based on one
local temporal feature.

IV. CONCLUSION

The PSD rule can perform both the association and the
classification task. Through simulations, it can be seen that
the neuron can be successfully trained to reproduce spikes as
the desired spike train. In the classification task, the neuron
is capable to classify different categories with the PSD rule.
We have proposed two decision making-schemes which are
the absolute confidence and the relative confidence criteria.
The classification task is largely improved by the relative
confidence criterion. For the classification of spatiotemporal
spike patterns, the performance of the PSD rule is better than
the tempotron rule. In addition, a sufficient number of desired
spikes can also benefit the classification performance of the
PSD rule.
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