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Abstract— With the advent of low-cost 3D sensors and 3D
printers, surface reconstruction has become an important
research topic in the last years. In this work, we propose
an automatic method for 3D surface reconstruction from raw
unorganized point clouds acquired using low-cost sensors. We
have modified the Growing Neural Gas (GNG) network, which
is a suitable model because of its flexibility, rapid adaptation and
excellent quality of representation, to perform 3D surface recon-
struction of different real-world objects. Some improvements
have been made on the original algorithm considering colour
information during the learning stage and creating complete
triangular meshes instead of basic wire-frame representations.
The proposed method is able to create 3D faces online, whereas
existing 3D reconstruction methods based on Self-Organizing
Maps (SOMs) required post-processing steps to close gaps
and holes produced during the 3D reconstruction process.
Performed experiments validated how the proposed method
improves existing techniques removing post-processing steps
and including colour information in the final triangular mesh.

I. INTRODUCTION

Many well established techniques proposed solutions to
the 3D representation and surface reconstruction problem
from a geometric point of view. However, these algorithms
required long times to process the input point cloud and do
not scale properly with very large data [1], [2]. Moreover,
these traditional geometric approaches do not manage non-
stationary distributions and do not deal with the lack of a
priori information about the input space, e.g. the presence of
multiple shapes in the point cloud and noise induced by the
sensors.

Considering the 3D representation problem from a compu-
tational intelligence approach and based on self-organization
maps, a different perspective to obtain 3D reconstructions is
proposed. These methods could be considered as flexible and
growing models . Moreover, we can find some similarities or
correspondences between the neural network map and the 3D
representation obtained. Nodes of the neural network map
correspond to vertices of a mesh and connection between
nodes correspond to the edges. Therefore, in this work the
terms node and vertex, and connection and edge are used
interchangeably. From this perspective, some methods were
proposed based on self-organizing maps.

In [3] it is proposed the use of Kohonen’s self-organizing
map for surface reconstruction using as an input data unorga-
nized point clouds. Moreover, since Kohonen’s map does not
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produce regular faces, an edge collapse operation was intro-
duced eliminating dangling faces. This approach presented
some drawbacks as if the real object surface has concave
structures, applying Kohonen’s learning algorithm has some
difficulties to correctly approximate those parts. In addition,
as the Kohonen’s algorithm has a high computational cost,
the single thread CPU implementation presented in this work
took more than one hour to represent the Stanford bunny
model. Presented method was only tested with synthetic
data and the bunny model, which is comprised of 34, 834
points. Junior et al. [4], extended [3] introducing new mesh
operators that allowed it to perform improvements on the
surface geometry: edge swap, edge collapse, vertex split and
triangle subdivision. Moreover, the method introduced a new
step to remove unstable vertices using the mean distance and
the standard deviation of the 3D representation regarding the
sampled input space. Although this new approach improved
the surface geometry, the method does not deal with concave
or non-convex regions and the initial structure of the repre-
sentation has to be pre-established considering the topology
of the input space. The fixed structure of the SOM does
not learn the spatial relationships between the vertices and
therefore does not generate a model that accurately represents
the shape of the input space. To overcome this problem, some
methods based on Growing SOMs were proposed.

One of these SOM-based methods is the Growing Cell
Structures (GCS) algorithm [5], which is a model formed
incrementally. However, it constraints the connections be-
tween the nodes, so any model produced during training is
always topologically equivalent to the initial topology. In [6]
it is used the GCS algorithm to reconstruct objects surface.
Meshes operators are used to change the connectivity of the
mesh and therefore final topology is always equivalent to the
initial mesh.

The Topology Representing Networks (TRN), proposed by
[7], does not have a fixed structure and also does not impose
any constraint about the connection between the nodes. In
contrast, this network has a pre-established number of nodes,
and therefore, it is not able to generate models with different
resolutions. The algorithm was also coined with the term
Neural Gas (NG) due to the dynamics of the feature vectors
during the adaptation process, which distributes themselves
like a gas within the data space. Barhak [8] proposed a NG-
based surface reconstruction algorithm since this network has
the ability to accurately represent the topology of a point
cloud. However, as the NG has a fixed number of nodes, it
is necessary to have some a priori information about the input
space to pre-establish the size of the network. This model was
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extended by [9] proposing the Growing Neural Gas (GNG)
network, which combined the flexible structure of the NG
with a growing strategy. Moreover, the learning adaptation
step was slightly modified. This extension enabled the neural
network to use already detected topological information
while training in order to conform to the geometry. This
approach has the capability to add neurons while preserving
the detected topology.

As the original GNG algorithm does not produce faces
and the generated map is a wire-frame representation model,
some works extended the original algorithm to produce faces.
In [10], the GNG network is employed to model a point
cloud and those regions that need further sampling in order
to obtain a more accurate model. Rescanning at higher
resolution is performed for each identified region of interest
and a multi-resolution model is built. In this work, only
nodes of the generated map are used as the work is focused
on sampling capabilities of the GNG. MGNG [11] applied
some postprocessing steps in order to perform surface recon-
struction once the map is generated using the original GNG
algorithm. Most of these approaches were tested against
CAD models or synthetic data and only few experiments
were performed on objects acquired with 3D sensors. In
[12], the GNG algorithm was modified in order to produce
topological faces. The extended method was called Growing
Self-Reconstruction Maps (GSRM) and some learning steps
as CHL and the operation of vertex insertion and removal
were also modified. Most experiments of this work were per-
formed on the Stanford dataset, which had been previously
filtered and therefore the surface reconstruction step does not
have to deal with noisy input spaces produced by common
3D sensors. In [12], [8] the Competitive Hebbian Learning
was extended considering the creation of 2-manifold meshes
and face reconstruction. However, it was also required to
apply some post-processing steps to create a complete model.

Although the use of the SOM-based techniques as NG,
GCS or GNG for 3D input space representation and surface
reconstruction has already been studied and successful results
have been reported, there are some limitations that still
persist. Most of these works assumed noise-free point clouds.
Therefore, applying these methods on challenging real-world
data obtained using noisy 3D sensors have not been object
of study yet. Moreover, with the advent of low cost RGB-D
cameras as the Microsoft Kinect 1 partial point clouds have
to be considered. Besides providing 3D information, these
devices also provide colour information, feature that was not
considered in the revised works.

The rest of the paper is organized as follows: first, a section
describing briefly the GNG algorithm is presented. In Sec-
tion III the modification of the GNG algorithm, considering
colour information during the learning process, is detailed.
Section IV presents and depicts the proposed algorithm
for face creation during the network learning process. In
Section V we present some experiments and discuss results
obtained using our novel approach compared to existing

1Kinect for XBox 360: http://www.xbox.com/kinect Microsoft

methods. Finally, in section VI we give our conclusions and
directions for future work.

II. GNG ALGORITHM

With Growing Neural Gas (GNG) [9] method a growth
process takes place from minimal network size and new
neurons are inserted successively using a particular type
of vector quantization. To determine where to insert new
neurons, local error measures are gathered during the adap-
tation process and each new neuron is inserted close to the
neuron with highest accumulated error. At each adaptation
step a connection between the winner and the second-nearest
neuron is created as dictated by the Competitive Hebbian
Learning (CHL) algorithm. This is continued until an ending
condition is fulfilled, as for example evaluation of the optimal
network topology or a fixed number of neurons is reached.
The network is specified as:
• A set N of nodes (neurons). Each neuron c ∈ N has

its associated reference vector wc ∈ Rd. The reference
vectors can be regarded as positions in the input space
of their corresponding neurons.

• A set of edges (connections) between pairs of neurons.
These connections are not weighted and its purpose is to
define the topological structure. An edge aging scheme
is used to remove connections that are invalid due to
the motion of the neuron during the adaptation process.

The GNG learning algorithm is as follows:
1) Start with two neurons a and b at random positions wa

and wb in Rd.
2) Generate at random an input pattern ξ according to the

data distribution P (ξ) of each input pattern.
3) Find the nearest neuron (winner neuron) s1 and the

second nearest s2.
4) Increase the age of all the edges emanating from s1.
5) Add the squared distance between the input signal and

the winner neuron to a counter error of s1 such as:

4error(s1) = ‖ws1 − ξ‖2 (1)

6) Move the winner neuron s1 and its topological neigh-
bors (neurons connected to s1) towards ξ by a learning
step εw and εn, respectively, of the total distance:

4ws1 = εw(ξ − ws1) (2)

4wsn = εn(ξ − wsn) (3)

For all direct neighbors n of s1.
7) If s1 and s2 are connected by an edge, set the age of

this edge to 0. If it does not exist, create it.
8) Remove the edges larger than amax . If this results

in isolated neurons (without emanating edges), remove
them as well.

9) Every certain number λ of input patterns generated,
insert a new neuron as follows:
• Determine the neuron q with the maximum accu-

mulated error.

1475



• Insert a new neuron r between q and its further
neighbor f :

wr = 0.5(wq + wf ) (4)

• Insert new edges connecting the neuron r with
neurons q and f , removing the old edge between
q and f .

10) Decrease the error variables of neurons q and f mul-
tiplying them with a consistent α. Initialize the error
variable of r with the new value of the error variable
of q and f .

11) Decrease all error variables by multiplying them with
a constant γ.

12) If the stopping criterion is not yet achieved (in our case
the stopping criterion is the number of neurons), go to
step 2.

III. COLOUR INTERPOLATION

As modern 3D sensors provide colour information, the
proposed method was modified regarding the original version
considering also point cloud colour. Input space dimension
is increased from 3 to 6 adding red, green and blue colour
components. Now the input distribution is defined in Rd

where d = 6. Most SOM-based approaches already presented
only considered spatial information as neuron’s weight vector
wc, so we modified the learning algorithm adding colour to
the neuron’s weight vector wc and considering it during the
learning process, now the dimension of the neuron’s weight
vector is 6 including spatial and colour information. Color
values were normalized ranging from 0.0 and 1.0. Colour in-
formation is considered during the weight adaptation process
but it was not included in the CHL (winning neurons) stage
as we still are focused on preserving the topology of the
input space. Therefore, winning neuron stage only compute
Euclidean distance using x,y,z components. Figure 1 shows
how the GNG method generated a down-sampled version
of captured coloured point clouds, interpolating the colour
of original observations and achieving a good topological
fitting for different objects and scenes. We called this version
Colour-GNG.

In order to validate and compare the colour version of
the GNG, we implemented a different strategy to consider
point cloud colour. Instead of adding colour information
to the learning process, a post-processing step to compute
colour information is added to the process. Once the network
has been adapted to the input space (original GNG) and
it has completed the learning process, each neuron of the
network computes colour information from closest input
patterns. Colour information of each neuron is calculated
as the average of weighted values of the K-nearest input
patterns, obtaining an interpolated value of the surrounding
point. Colour values are weighted using Euclidean distance
from input pattern to its closest neuron reference vector.
K-nearest neighbours are obtained using a radius search
process, using as a radius the resolution of the generated
map by the GNG algorithm. Therefore, RGB colour for each
neuron is calculated using the following equation:

(a) (b)

(c) (d)

Fig. 1. Different objects are down-sampled using the Colour-GNG
representation. (a),(b) show original pointclouds. (c),(d) show down-sampled
point clouds using the proposed method.

RGBi = ψ
∑
∀j∈Ni

(RGBj · w(j − i)) (5)

where Ni represents the nearest input patterns of the neuron
i, i is the neuron being processed and w(j−i) is the distance
weighted function between the neighbouring pattern j and
the neuron itself. Using that distance weighted function the
weight of the colour of the input pattern decays exponentially
as the distance to the neuron increases. ψ is a normalization
factor that makes RGB components range between 0.0 and
1.0.

w(j − i) = e−‖j−i‖ (6)

Figure 2 visually shows this process. Although this search
is accelerated using a Kd-tree structure it is considerably
slower than the colour version of the GNG. Colour-GNG
in the same learning process is able to adapt its neurons’
weights fitting accurately to the input space.

Figures 3 and 4 show various observations that have
been created using both approaches. Colour-GNG produces
a map that successfully interpolates input colour information
producing a useful down-sampled map. Moreover, results
were similar to those obtained with the colour interpolation
post-processing step.

Finally, some quantitative results are presented in Table
I showing the mean error between estimated colours us-
ing the post-processing interpolation step and the proposed
Colour-GNG method. The error is computed over the three
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Fig. 2. Colour interpolation. Colour assigned to each neuron (large circles)
is calculated as the averaged weighted sum of input space samples (small
circles) within a search radius (dotted circle).

(a) Original point cloud 
(12883 points)

(b) Filtered point cloud using 
Color-GNG (4000 points)

(c) Filtered point cloud using 
GNG + Color interpolation 

(4000 points)

Fig. 3. Mario figure is down-sampled using the Colour-GNG method.
Results are similar to those obtained with the colour interpolation post-
processing step.

components of the RGB model. The maximum error ob-
tained in a component between estimated colours using the
post-processing step and the Colour-GNG is less than four
units, considering that each component is represented using
unsigned char format. In this experiment we used values
between 0 and 255 to facilitate understanding of the obtained
results.

With these results we can conclude that Colour-GNG
method is able to obtain similar results compared to complex
post-processing steps and reducing the processing time.

IV. 3D SURFACE RECONSTRUCTION

Figure 5 shows the result of using an existing GNG-based
method for surface reconstruction [12] without applying post-
processing steps. The reconstructed model has a lot of gaps
and holes that makes the model not suitable for computer
vision applications.

(a) Original point cloud 
(287,218 points)

(c) Filtered point cloud using 
Color-GNG (50,000 points)

(b) Filtered point cloud using 
GNG + Color interpolation 

(50,000 points)

Fig. 4. Two different scenes captured using the Kinect sensor are
represented using the Colour-GNG method. Results are similar to those
obtained with the colour interpolation post-processing step.
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Fig. 5. Different views of reconstructed models using an existing GNG-based method for surface reconstruction. Post-processing steps were avoided
causing gaps and holes in the final 3D reconstructed models.

TABLE I
COLOUR MEAN ERROR BETWEEN COMPUTED COLOURS USING A

POST-PROCESSING INTERPOLATION STEP AND THE COLOUR-GNG.

Mean error
Red Green Blue

Scene 1 - 20, 000n 50λ 1 1 2
Scene 1 - 50, 000n 100λ 1 1 1
Scene 2 - 20, 000n 50λ 4 4 4
Scene 2 - 50, 000n 100λ 2 2 2
Object 1 - 3, 000n 50λ 2 3 3
Object 1 - 5, 000n 100λ 1 2 2
Object 2 - 3, 000m 50λ 3 3 3
Object 2 - 5, 000n 100λ 2 2 2

In this section, we detail the proposed extension of the
already described GNG method to generate full coloured 3D
models without applying post-processing steps.

A. Extended CHL

Original CHL, presented in Section II, only considered
the creation of edges between neurons producing wire-frame
3D representations. Therefore, it is necessary to modify
this process in order to create triangular faces during the
learning process. Based on [12] and [8] we extended the
CHL developing a method able to produce full 3D meshes. In
contrast to existing methods mentioned above, our extension
does not need post-processing steps. The 3D mesh is created
during the learning stage.

The edge creation stage, was also extended considering the
creation of triangular faces during this process. Algorithm 1
describes our extended CHL to produce triangular faces.

In order to avoid non-manifold and overlapping edges, the

edge creation step was modified restricting the creation of
edges if the winning neurons s1 and s2 have already more
than two common neighbours. This constraint helps avoiding
edges with more than two incident triangles. Then, for
every sampled point, a face is created whenever the already
existing edges or the new ones form a triangle. Moreover, if
the creation of faces would produce edges with more than
two incident faces, then the face is not created avoiding
overlapped triangles and non manifold meshes. During the
creation of triangular faces it is checked if the face to be
created already exist, in that case, the face is not created.
Figure 6 shows common situations produced during the CHL
and how our method create edges and triangular faces in
those cases.

The age scheme presented in the original GNG algorithm
was also considered to remove those edges that have an
age higher than a given threshold agemax. This age scheme
was extended including the removal of faces that shared
this edge. Furthermore, to obtain regular triangular faces we
included another constraint that was introduced in [13]. This
constraint is based on the Thales sphere concept. For every
edge that already existed in the CHL process, this mechanism
computes the angle between the vectors formed by s1 − s2
and s1−ni where ni is a common neighbour of s1 and s2. If
this angle θ > θmax the edge between s1 and ni is removed.
Faces incident to this edge are also removed. Different values
for θmax were tested, obtaining regular triangles for θmax

values between 2/3π and 3/4π. Figure 7 shows this process.
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input : A point cloud
output: 3D mesh

1 For each input pattern presented to the network, the
two nearest neurons to the input pattern are selected
as winning neurons s1 and s2;

2 if s1 and s2 are already connected by an edge then
3 Set edge age to 0 in order to “reinforce” it;
4 Check edge removal mechanism based on the

Tales Sphere;
5 if s1 and s2 have one or two common

neighbours then
6 foreach common neighbour ni do
7 Create a face f using s1, s2 and ni;
8 end
9 end

10 if s1 and s2 have one or less common
neighbours then

11 if There exist two neighbours n1 and n2 of
s1 and s2 respectively that are connected and
are not common to s1 and s2 then

12 Triangulate rectangular hole (Figure 6d):
Create two faces using s1, s2, n1 and s2,
n1, n2;

13 end
14 else if There exist two neighbours n1 and n2

of s1 and s2 respectively that are not
connected between them and are not common
to s1 and s2 then

15 Triangulate pentagonal hole (Figure 6e):
Create three faces using s1, s2, n2; s1, n2,
n3 and s1, n1, n3;

16 end
17 end
18 else
19 if s1, s2 have two common neighbours n1,n2 then
20 if n1 and n2 are already connected (Figure

6c) then
21 Edge between n1 and n2 is removed;
22 Remove coincident faces to n1 and n2;
23 Create two faces using n1, s1, s2 and n2,

s1, s2;
24 else
25 Create an edge between s1 and s2;
26 Create two faces using n1, s1, s2 and n2,

s1, s2;
27 (Figure 6b);
28 end
29 else
30 Create edge between s1 and s2;
31 if s1 and s2 have one common neighbour n1

(Figure 6a) then
32 Create a face f using s1,s2 and n1;
33 end
34 end
35 end

Algorithm 1: Pseudo-code of the extended CHL stage.

s1 s2

n2

n1

s1 s2

n2

n1n1

s1 s2

s1

s2 n2

n1

(d)

s1

s2

n2

n1

(e)

n3

(a) (b) (c)

Fig. 6. Considered situations for edge and face creation during the extended
CHL.

n1

s1 s2

n1

s1 s2

Fig. 7. Edge removal constraint based on the Tales sphere. Left: The
triangle formed by these 3 neurons is close to a right triangle, therefore it
is not removed. Right: The edge connecting s1 and ni is removed as the
angle formed by vectors s2−s1 and ni−s1 is larger than 3/4π. Moreover,
the triangle formed by these edges is also removed.

q fr q fr

Fig. 8. Face creation process during the insertion of new neurons. Left:
neuron insertion between the neuron q with highest error and its neighbour
f with highest error. Right: four new triangles and two edges are created
considering r, q and r.

B. Inserting and deleting neurons

The neuron insertion process was also modified. Every
time a neuron is inserted in the network, an edge between the
neurons with highest error is removed and therefore, triangles
incident to this edge are also removed. If it is possible new
faces are created along with the new neuron (Figure 8 ).

Finally, if the given number of neurons is reached, all
the input patterns are presented to the network in order to
close possible gaps and holes that were generated during the
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Fig. 9. Reconstructed models using our extended GNG method for face reconstruction and without applying post-processing steps. Top: Stanford bunny.
Bottom: builder helmet.

learning process.

V. EXPERIMENTS

In this section, different experiments are shown validating
the capabilities of our extended GNG method to create 3D
meshes. The proposed method is also able to learn colour
information and therefore create coloured 3D meshes. 3D
models were rendered using colour information stored in
the neurons and a triangle smooth-shading technique. The
method was tested using different point clouds. Some of
these point clouds were obtained using the Kinect sensor
(builder helmet and person). Other models as the dinosaur
and the foot were acquired using other 3D sensors as the
Minolta laser scanner and a foot digitizer. Finally, the well
known Stanford bunny was also tested.

Figure 9 and 10 show the ability of the proposed method
to create colour meshes of different types of models. It
can be seen how most holes and gaps showed in Figure
5, generated by existing extensions of the GNG method
for surface reconstruction, were not generated using the
proposed method.

The proposed extension is also able to generate 3D meshes
with different resolutions and therefore, detail level. Figure
11 shows the builder helmet model reconstructed using
different number of neurons, creating meshes with different
level of detail.

However, the proposed method still produced some small
gaps in the generated 3D reconstructions. Figure 12 shows
small gaps and holes created in some of the experiments
carried out. These are caused by the randomness of the
network learning stage. Moreover, in some cases triangles
are removed caused by the edge removal ageing scheme,
which also is responsible of the good level of adaptation and

Fig. 10. Reconstruction of 3D human models with the proposed method.
Top: 3D model of a person. Bottom: digitized human foot.

relationship between neurons. Despite this fact, the proposed
method is valid for many computer vision applications. 3D
triangular faces are used in many 3D descriptors which are
often used in object and scene recognition applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel computing method
to create complete meshes from unorganized raw noisy 3D
data. Previous knowledge about the sensor is not necessary. It
has been demonstrated how Growing Self-Organizing Maps
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Fig. 11. Different 3D reconstructions of a the builder helmet model using various network sizes. Left: 3D reconstruction using 250 neurons and 200 input
patterns. Middle: 3D reconstruction using 1000 neurons and 500 input patterns. Right: 3D reconstruction using 2500 neurons and 1000 input patterns.

Fig. 12. Small gaps produced by our extended GNG method for 3D surface
reconstruction.

(GSOM) are capable to represent noisy 3D data distributions.
Neurons’ codevector has also been modified adding colour
components to their weights. Due to this modification, the
algorithm is able to adapt its structure to the input space
topology during the learning step and also to learn and store
colour from the observation. This eliminates the necessity to
add post-processing steps to add colour information to the
final representation.

Furthermore, the GNG algorithm has been also extended
considering the creation of triangular faces during the learn-
ing stage. In contrast with existing methods, our extension
allowed to create complete triangular meshes with colour
information during the learning stage, not requiring any post-
processing steps to close gaps and holes. The method was
validated with several models ranging from scanned objects
to body parts like the foot.

Future work includes the adaptation and application of the
proposed method for 3D scene reconstruction tasks.

ACKNOWLEDGEMENTS

This work was partially funded by the Spanish Gov-
ernment DPI2013-40534-R grant. Experiments were made
possible with a generous donation of hardware from NVDIA.

REFERENCES

[1] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” SIGGRAPH
Comput. Graph., vol. 26, no. 2, pp. 71–78, Jul. 1992. [Online].
Available: http://doi.acm.org/10.1145/142920.134011

[2] N. Amenta, S. Choi, and R. K. Kolluri, “The power
crust,” in Proceedings of the sixth ACM symposium on
Solid modeling and applications, ser. SMA ’01. New York,
NY, USA: ACM, 2001, pp. 249–266. [Online]. Available:
http://doi.acm.org/10.1145/376957.376986

[3] Y. Yu, “Surface reconstruction from unorganized points using self-
organizing neural networks yizhou yu,” in In IEEE Visualization 99,
Conference Proceedings, 1999, pp. 61–64.

[4] A. Junior, A. D. D. Neto, and J. de Melo, “Surface reconstruction using
neural networks and adaptive geometry meshes,” in Neural Networks,
2004. Proceedings. 2004 IEEE International Joint Conference on,
vol. 1, 2004, pp. –807.

[5] B. Fritzke, “Growing cell structures - a self-organizing network for
unsupervised and supervised learning,” Neural Networks, vol. 7, pp.
1441–1460, 1993.

[6] I. Ivrissimtzis, W.-K. Jeong, and H.-P. Seidel, “Using growing cell
structures for surface reconstruction,” in Shape Modeling International,
May 2003, pp. 78 – 86.

[7] T. Martinetz and K. Schulten, “Topology representing networks,”
Neural Networks, vol. 7, no. 3, 1994.

[8] J. Barhak, “Freeform objects with arbitrary topology from multirange
images.” Ph.D. dissertation, Israel Institute of Technology, Haifa,
Israel, 2002.

[9] B. Fritzke, A Growing Neural Gas Network Learns Topologies. MIT
Press, 1995, vol. 7, pp. 625–632.

[10] A.-M. Cretu, E. M. Petriu, and P. Payeur, “Evaluation of growing
neural gas networks for selective 3D scanning,” in Proc. Int. Workshop
Robotic and Sensors Environments ROSE 2008, 2008, pp. 108–113.

[11] Y. Holdstein and A. Fischer, “Three-dimensional surface reconstruc-
tion using meshing growing neural gas (MGNG),” Vis. Comput.,
vol. 24, pp. 295–302, March 2008.

[12] R. L. M. E. Do Rego, A. F. R. Araujo, and F. B.
De Lima Neto, “Growing self-reconstruction maps,” Trans. Neur.
Netw., vol. 21, no. 2, pp. 211–223, Feb. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TNN.2009.2035312

[13] V. L. D. Mole and A. F. R. Araújo, “Growing self-organizing surface
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