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Abstract—How can we test for group differences in multidi-
mensional input patterns, such as functional magnetic resonance
imaging measurements or gene expression values? One solution
is to split the available data into training and test set, and to
estimate the generalization accuracy of a classifier that predicts
the group variable from the input pattern. If this lies significantly
above chance level, we can reject the null hypothesis of no
association. This test is straightforward for balanced data, where
all groups are equally frequent in the data set. However, data
sets collected in observational studies are often imbalanced. Then
accuracy is no longer a suitable measure of performance, and
balanced accuracy should be used instead. In this paper, we give
an overview on existing analytical tests and use the framework of
prediction theory to derive a new test for the balanced accuracy
of a classifier. We then use numerical simulations to evaluate the
type I error rate and the power of two tests for imbalanced data.

I. INTRODUCTION

In many scientific fields, researchers are confronted with the
question whether there exists an association between a set of
variables X and a factorial variable Y . They want to answer
this question using a dataset (Xi, Yi), i = 1 . . . n, that was
either obtained observationally or by means of an experimental
study. In tumor classification from microarray data [1]–[3] the
goal is to check for associations between the expression levels
X of genes and the tumor type Y . In the multivariate analysis
of functional magnetic resonance imaging (fMRI) data [4],
[5] the question is whether the measured blood oxygenation
level dependent signal within a region of interest (such as
certain brain area, or a local search light) is associated to a
particular factor variable, such as experimental condition or
subject group.

The null hypothesis is that there is no association between X
and Y , and the task is to test whether this null hypothesis can
be rejected at a given significance level. Since the existence of
an association between X and Y implies that X is predictive
of Y , machine learning methods can be applied to try to
establish an association. If a classifier can be learned that
predicts Y from X better than chance in the population,
the null hypothesis of no association can be rejected. This
is called classifier-based association testing. The parameters
of a classification model are learned on a training set, and
the model is used to predict the class labels of the examples
in a test set. The task is to assess whether the predictions

of the classifier are accurate enough that it seems unlikely
that this could have been purely achieved by chance. In other
words, we want to test whether the null hypothesis that the
true accuracy µ of the classifier is not above chance level can
be rejected at a chosen significance level δ, i.e H0 : µ ≤ 0.5
versus H1 : µ > 0.5. Since the true accuracy of a classifier
cannot be observed, one needs to define a hypothesis test
based on the predictions the classifier made on a test set. For
balanced class labels and binary classification, testing whether
the classification results on the test set allow to reject the null
hypothesis of no association between the multi-dimensional
inputs and the binary group variable (class label) is rather
straightforward. Two approaches will be briefly reviewed in
section II. The first approach is based on Bayesian statistics,
the second on the test set bound from prediction theory [6].

In experimental studies, the experimental design usually
ensures that the data sets are balanced with respect to the
group variables. However, for observational data, one group
is often more prevalent than the other, making the data set
imbalanced. This affects classifier-based association testing,
since for such imbalanced data, the accuracy is not a suitable
performance measure any longer. The reason for this is that
high accuracy values can already be obtained by assigning all
test data into the larger class, without taking the inputs even
into account. Therefore, a better performance measure should
be used, in which such a strategy would gain you nothing. One
such measure is the balanced accuracy, which is defined as
the arithmetic mean of sensitivity (percentage of the positive
class that are correctly classified as positive) and specificity
(percentage of the negative class that are correctly classified as
negative). Classifying everything into the larger class results in
a balanced accuracy of 50%. If the true balanced accuracy of a
binary classifier is above 50%, we can claim to have learned a
dependency between the input variables and the class variable.

In this work, we focus on classifier-based association tests
for imbalanced data. We will first describe a test that is based
on the posterior probability of the true balanced accuracy [7].
Then we will derive an alternative test within the framework
of prediction theory. For this, we extend the test set bound on
the generalization performance of a classifier [6] to the case of
imbalanced class labels. This confidence bound is then used
to derive a test for assessing whether the empirical balanced
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accuracy is significantly higher than chance level. We evaluate
the type I error rates and the power at different signal to noise
levels for both the prediction theoretic test and the Bayesian
posterior-based test on data sets of different class label ratios.

II. BALANCED DATA

A. Test for balanced data based on posterior of true accuracy

The first approach is based on calculating the posterior
distribution of the true accuracy given the observed classifica-
tion and the ground truth [4], [7]. It considers the prediction
on the test examples as a series of Bernoulli experiments,
in which balls are drawn with replacement from a bucket
with an unknown mixture of “correct” and “incorrect” balls.
The (unknown) proportion of correct balls in the bucket
corresponds to the true accuracy µ. The task is to estimate
the value of µ from the observations. The number of correct
balls k in a series of n trials can be modeled by a binomial
distribution,

π(k|µ, n) =

(
n

k

)
µk(1− µ)n−k. (1)

The posterior distribution for µ is determined by the choice
of prior. The conjugate prior for the binomial distribution is
the beta distribution [8],

π(µ, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, (2)

where Γ(·) is the Gamma function, and a and b are hyperpa-
rameters. The posterior distribution is again a beta distribution
of the following form [8]

π(µ|k, n, a, b) =
Γ(k + a+ (n− k) + b)

Γ(k + a)Γ(n− k + b)

·µk+a−1(1− µ)n−k+b−1.

(3)

One can see that a and b have the effect of virtual observations
in each of the two classes. In [7], the use of a flat prior for µ
was suggested, which corresponds to a = 1, b = 1. This choice
of prior therefore implies that we pretend to have drawn one
correct and one incorrect ball before we observe our actual
data. In this case the posterior, eq. (3), takes the form

π(µ|k, n) =
Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
µk(1− µ)n−k. (4)

The p-value for the association test is then given by the
probability that the true accuracy is smaller or equal to 0.5
(the chance level). This corresponds to the area under the left
tail of the posterior distribution cut off at µ = 0.5,

p =

∫ 0.5

0

π(µ|k, n)dµ. (5)

B. Test for balanced data based on prediction theory

The second approach is based on the test set bound that
was derived in the framework of prediction theory [6]. This
bound makes a statement about the future error rate of a trained
classifier. Assume that the classifier has the error rate 1 − µ,
where µ is the true accuracy. Using the binomial distribution

(eq. 1), the probability of making k or fewer errors on n
examples is given by the binomial tail distribution,

Bin(n, k, 1− µ) ≡
k∑
j=0

π(j|1− µ, n). (6)

Then one can define the Binomial tail inversion,

Bin(n, k, δ) ≡ max{p : Bin(n, k, p) ≥ δ}, (7)

as the largest true classifier error rate such that the probability
of observing k or more errors is at least δ.

The test set bound [6] states that if µS is the empirical
accuracy on a test data set of size n drawn from a distribution
D, then the probability of having a true error rate 1− µ that
is less than or equal to the Binomial tail inversion is greater
than or equal to 1− δ.

Theorem II.1. (Test Set Bound) For all classifiers f , all
distributions D and all δ ∈ (0, 1]

P
S∼Dn

(1− µ ≤ Bin(n, 1− µS , δ)) ≥ 1− δ. (8)

The test set bound can be interpreted as a game where
a “learner” tries to convince a reasonable “verifier” of the
amount of learning which has occurred, however it is essential
that the test examples are unknown to the learner [6]. The test
set bound is a tight bound, i.e. if the true error is sufficiently
large, it is violated exactly in a δ-portion of trials [6].

In an empirical investigation of several bounds on the true
error rate of learned classifiers [9] it was found that there is
trade-off between obtaining a high classification accuracy and
having high confidence in the accuracy, and the test set bound
was recommended for situations where the confidence is very
important.

The test set bound can be used to assess whether a signif-
icant association could be established by a classifier: If, for
a given δ, the binomial tail inversion Bin(n, 1 − µS , δ) lies
above the 50% error rate corresponding to chance level, then
the null hypothesis that the classifier does not classify better
than chance cannot be rejected at level δ.

III. IMBALANCED DATA

A. Test for imbalanced data based on posterior of true accu-
racy

The method in section II-A was recently extended to the
case of imbalanced class labels [7]. If q1 is the true accuracy
on the positive class and q2 is the true accuracy on the negative
class, the balanced accuracy is given by η = 0.5(q1 + q2).
Using a beta distribution with a = 1, b = 1 as prior for both
positive and negative class, in [7] the posterior density of the
true balanced accuracy was derived as

π(η|k1, n1, k2, n2) =

∫ 1

0

π(2(η − z)|k1 + 1, n1 + 1)

·π(2z|k2 + 1, n2 + 1)dz,

(9)

where k1 are the true positives, k2 the true negatives, n1 is
the number of positive examples in the test set, and n2 is
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the number of negative examples in the test set. Thus for
imbalanced class labels the p-value that the predicted outcome
was generated by a classifier with a true balanced accuracy of
at most chance level is obtained as

p =

∫ 0.5

0

π(η|k1, n1, k2, n2)dη. (10)

B. Prediction theoretic test for imbalanced data

In the following, we first derive the test set bound for the
balanced accuracy, then we use this to obtain a significance
test for the empirical balanced accuracy of a classifier.

1) Test set bound for imbalanced data: Consider a classi-
fication function f : X → Y = {−1, 1}, x 7→ y that maps
an input space X to a binary output space Y . We assume an
unknown underlying distribution D over X × Y , from which
a test set S = {(x1, y1), . . . , (xn, yn)} of n examples has
been drawn independently. We further assume that from these
examples, n1 have the class label 1 and n2 have the class label
−1.

Definition III.1. (True Balanced Accuracy) The true balanced
accuracy η of the classifier is defined as

η ≡ 1

2

(
P

(x,1)∼D
(f(x) = 1) + P

(x,−1)∼D
(f(x) = −1)

)
(11)

Thus η corresponds to the average of specificity and sen-
sitivity. While the true balanced accuracy is not observable,
one can use the prediction of the classifier on the test set S
to obtain an estimate η̂S .

Definition III.2. (Empirical Balanced Accuracy) The empiri-
cal balanced accuracy η̂ of the classifier is defined as

η̂S ≡
1

2

(
P

(x,1)∼S
(f(x) = 1) + P

(x,−1)∼S
(f(x) = −1)

)
=

1

2n1

∑
{i|yi=1}

I(f(xi) = 1)+

1

2n2

∑
{j|yj=−1}

I(f(xj) = −1),

(12)

where I is an indicator function,

I(a) ≡
{

1 if a = true,
0 if a = false.

(13)

We can consider the prediction on the test examples as a
series of Bernoulli experiments. Let q1 and q2 be the true
accuracies of a classifier for each of the two classes. Getting
a certain number of correct predictions for each of the two
classes can be considered as two independent events. Therefore
the probability of making k1 correct predictions on the n1
examples in class 1 and at the same time making k2 correct
predictions on the n2 examples in class -1 is given by a product
of two binomial distributions

π(k1, k2|q1, n1, q2, n2) = π(k1|q1, n1) · π(k2|q2, n2)

=

(
n1
k1

)
q1
k1(1− q1)

n1−k1
(
n2
k2

)
q2
k2(1− q2)n2−k2 (14)

Then the probability of the event that the classifier obtains an
empirical balanced accuracy of at least η̂S on a test set with
n1 positively and n2 negatively labeled examples is calculated
as

π(η̂ ≥ η̂S |q1, q2, n1, n2)

=

n1∑
k1=0

n2∑
k2=0

I

(
1

2
(
k1
n1

+
k2
n2

) ≥ η̂S
)
π(k1, k2|q1, n1, q2, n2)

(15)

where the indicator function I(·) ensures that only terms with
1
2 ( k1n1

+ k2
n2

) ≥ η̂S are included in the summation.

Definition III.3. (Likelihood) The Likelihood
Lη̂S ,n1,n2

(q1, q2) is a function of (q1, q2) that maps (q1, q2)
to the probability that the event η̂ ≥ η̂S occurs, if drawing
from the distribution π(k1, k2|q1, n1, q2, n2).

Lη̂S ,n1,n2
: [0, 1]× [0, 1]→ [0, 1]

(q1, q2) 7→ π(η̂ ≥ η̂S |q1, q2, n1, n2) (16)

On a test data set sampled from D, which contains n1
examples from class 1 and n2 examples from class -1, the
classifier f will reach an empirical balanced accuracy of at
least η̂S with probability Lη̂S ,n1,n2

, if the true accuracies for
class 1 and class -1 are q1 and q2, respectively. Examples for
the likelihood function for three different empirical balanced
accuracy are shown in Fig. 1.

Definition III.4. (Delta Superlevel Set) The delta superlevel
set of Lη̂S ,n1,n2

at δ is defined as

Γ+
δ (Lη̂S ,n1,n2

) ≡ {(q1, q2)|Lη̂S ,n1,n2
(q1, q2) ≥ δ} (17)

The delta superlevel set Γ+
δ (Lη̂S ,n1,n2

) is the set of pairs of
true class-based accuracies (q1, q2) for which the probability
of having η̂ ≥ η̂S is at least δ.

Definition III.5. (Delta Level Set) The delta level set of
Lη̂S ,n1,n2

is defined as the set of all (q1, q2) where the function
Lη̂S ,n1,n2

takes on the value δ ∈ (0, 1]:

Γδ(Lη̂S ,n1,n2
) ≡ {(q1, q2)|Lη̂S ,n1,n2

(q1, q2) = δ} (18)

The delta level set Γδ(Lη̂S ,n1,n2) is an algebraic curve in
the [0, 1] × [0, 1] plane that forms the lower boundary of
Γ+
δ (Lη̂S ,n1,n2

).

Theorem III.1. (Test Set Bound for Imbalanced Data) For
all classifiers f , all distributions D, all data sets S with n1
positive labels and n2 negative labels sampled from D, and
for all δ ∈ (0, 1]

P
S∼D

((q1, q2) ∈ Γ+
δ (Lη̂S ,n1,n2)) ≥ 1− δ. (19)

Proof: Irrespective of the true combination of (q1, q2),
the observation ηS will not fall into the tail of size δ of the
distribution π(η̂ ≥ η̂S |q1, q2, n1, n2) (15) with probability 1−
δ. Therefore the true values of (q1, q2) have to be above or on
the curve of Γδ(Lη̂S ,n1,n2) with confidence 1− δ.
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Fig. 1. The Likelihood Lη̂S ,n1=35,n2=15 as function of q1 and q2, for three different values of the empirical balanced accuracy η̂S .

2) Significance test for the balanced accuracy: In order
to test the significance of the observed empirical balanced
accuracy, we need to test whether the null hypothesis that the
true balanced accuracy is lower than chance level, i.e. η ≤ 0.5
can be rejected at level δ. In the space q1 × q2, the condition
η = 0.5(q1 + q2) = 0.5 corresponds to the line q1 + q2 = 1.
All points (q1, q2) on and below that line mark the values of
q1, q2 corresponding to the above null hypothesis.

Note that testing whether the balanced accuracy is above
chance level is not equivalent to testing whether the predictions
of each of the classes are Bernoulli unbiased. The balanced ac-
curacy η is defined as the average of the class-based accuracies
q1 and q2, i.e. η = 0.5(q1+q2). Even if q1 and q2 are Bernoulli
biased (i.e. different from 0.5), the balanced accuracy can still
be at chance level (η = 0.5). In fact, all combinations of q1
and q2 along the line q1 + q2 = 1 correspond to an unbiased
balanced accuracy. Therefore, it is not sufficient to test both
q1 and q2 individually for bias. Instead, one has to test for the
combination η, which makes the problem non-trivial.

Because Lη̂S ,n1,n2(q1, q2) is monotonously increasing with
q1 and q2, it is sufficient to test whether any of the points on
the diagonal q1 + q2 = 1 lie within Γ+

δ (Lη̂S ,n1,n2
) (Fig. 2).

This can be done by finding the maximum of Lη̂S ,n1,n2
(q1, q2)

along the line q2 = 1− q1 (Fig.3), and checking whether it is
larger or equal to δ. In that case, the null hypothesis cannot
be rejected at level δ.

Thus, the p-value is obtained as

p = max
q1

Lη̂S ,n1,n2(q1, 1− q1). (20)

With eqns. (15) and (14) we get

p = max
q1

n1∑
k1=0

n2∑
k2=0

I

(
1

2
(
k1
n1

+
k2
n2

) ≥ η̂S
)

(
n1
k1

)
q1
k1(1− q1)

n1−k1
(
n2
k2

)
(1− q1)

k2(q1)n2−k2 .

(21)

This can also be interpreted as the maximum over all values
q1 of the probability that a reasonable “verifier” obtains a
balanced accuracy as high as the one observed by flipping

a coin with bias q1 repeatedly, n1 times for the positive class
and n2 times for the negative class.

Summarizing the factors, we can obtain the p-value for the
prediction theoretic significance test in the case of imbalanced
class-labels as

p = max
q1

n1∑
k1=0

n2∑
k2=0

I

(
1

2
(
k1
n1

+
k2
n2

) ≥ η̂S
)

(
n1
k1

)(
n2
k2

)
q1
k1+n2−k2(1− q1)

k2+n1−k1 .

(22)

IV. EVALUATION

We conducted simulation studies to assess the type I error
rate and the power of the prediction theoretic test and the
Bayesian posterior based test at different significance levels.
The power corresponds to the probability that the test correctly
rejects the null hypothesis. If the probability for a type II error
is given by the false negative rate β, then the power is 1− β.
Since the power depends on the relative amount of noise, we
investigated the power for three different relative noise levels.
It is important to strictly bound the probability of finding a
spurious association, i.e. the type I error rate, by setting the
significance level δ. Therefore the type I error rate should
always be lower than or equal to the chosen significance level.
We investigated whether this strictly holds for the two tests.

The simulations were conducted as follows. For each
scenario we generated 100,000 data sets describing a 2-
class problem. For each class i, we randomly sampled the
data from a 20-dimensional isotropic Gaussian distribution
with class center ci and variance σ2 = 100. The class
centers were at positions c1 = (ν, ν, . . . , ν) for the pos-
itive class, and c2 = (−ν,−ν, . . . ,−ν) for the negative
class. Both the training and test each contained m = 200
data points, m1 for class 1 and m2 for class −1. We
investigated four different levels of class imbalance, with
(m1,m2) ∈ {(100, 100), (140, 60), (160, 40), (180, 20)}. The
first case corresponds to a balanced data set, the last case to
a heavily imbalanced one.

The relative noise level of the data was varied by changing
the class separation, i.e. the position of the class centers, by
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Fig. 2. This figure shows Lη̂S ,n1=35,n2=15(q1, q2) in [0, 1] × [0, 1] for three different values of the empirical balanced accuracy η̂S . The solid curve
denotes the delta level set at δ = 0.05. The dotted curve denotes the line (1/2)(q1+q2) = 0.5, where the balanced accuracy is at chance level. For η̂S = 0.6
the two curves cross, which means that the null hypothesis that the balanced accuracy of the classifier is at or below chance level cannot be rejected.

Fig. 3. Left: The function Lη̂S ,n1=35,n2=15(q1, q2) for all points on the line q2 = 1 − q1, q1 ∈ [0, 1] for different values of the empirical balanced
accuracy η̂S . The black curve shows the delta level set at δ = 0.05. Right: The logarithm of the p-value that corresponds to the maximum of the function
Lη̂S ,n1=35,n2=15(q1, q2) over the line q2 = 1− q1, q1 ∈ [0, 1] for different values of η̂S .

varying ν ∈ {1, 2, 3}. The distance between the class centers
is given by ∆ =

√
20(2ν)2 =

√
80ν. Thus increasing ν

decreased the ratio between within class variance and class
separation, i.e. the relative noise level.

In order to analyze the type I error rate of the tests, both
classes were sampled from the same 20-dimensional isotropic
Gaussian distribution with variance σ2 = 100 distribution
centered at the origin, i.e. c1 = c2 = 0.

As classifier we employed a C-SVM with linear kernel and
fixed C = 0.01. Each classifier was learned on the training
set and used on the test set for prediction. Then both, the
prediction theoretic tests and the test based on the Bayesian

posterior, were applied at different significance levels1.
For each data set there was either a true association (for

ν ∈ {1, 2, 3}), or there was no association (for ν = 0). The
type I error rate was calculated for each significance level δ as
the proportion of the data sets with no association for which
the null hypothesis was (falsely) rejected at level δ. The power
was calculated at different noise levels ν ∈ {1, 2, 3} and for
each significance level δ as the proportion of the data sets for
which the null hypothesis could not be rejected at level δ. The
results for both type I error rate and power of the classifiers
are reported in Table I for the test using the Bayesian posterior

1For the test based on the Bayesian posterior, we used the Matlab-code
available at http://people.inf.ethz.ch/bkay/downloads.html

491



and in Table II for the prediction theoretic test. Type I error
rates that were correctly below the significance level δ are
marked in bold font.

For the prediction theoretic test, the type I error rate never
exceeded the specified significance level. In contrast, the test
based on the Bayesian posterior displayed in many cases
slightly inflated type I error rates that exceeded the significance
level δ. However, the test based on the Bayesian posterior
had in many cases slightly more power than the prediction
theoretic test. The difference in power of two tests increased
with larger class imbalance and with higher noise level. In
summary, these results show that the prediction theoretic test
is more conservative than the posterior based test.

V. DISCUSSION

Classifier-based association tests are employed to estab-
lish the existence of a significant group difference on data
consisting of multidimensional vectors, such as functional
magnetic resonance imaging or gene expression patterns. In
this paper, we first gave a brief review of two association
tests for balanced data. The main focus was, however, on the
case of imbalanced data, which often arises from observational
studies. The main difference to the balanced case is that it
requires the use of a special performance measure, such as
the balanced accuracy. The main contribution of this paper is
a classifier-based association test for imbalanced data that was
derived in the framework of prediction theory.

As a first step, we extended the test set bound for binary
classifiers [6] to the case of imbalanced data. This bound
was then used to derive a hypothesis test that allows to
assess the significance of the balanced accuracy obtained by
a classifier. We compared this prediction theoretic test to a
previously derived test based on the Bayesian posterior of the
true balanced accuracy by evaluating the type I error rate and
power at different levels of relative noise. The analysis showed
that the type I error rate of the prediction theoretic test never
exceeded the significance level, whereas the posterior-based
test sometimes showed a slight inflation of type I error rates.
However, while not guaranteeing strict type I error rates, the
Bayesian posterior based test had slightly more power than
the test derived from prediction theory. So if strict type I error
control is desired, the more conservative prediction theoretic
test might be preferred, at the cost of slight losses in power.

For classifier-based tests the power will depend on the
suitability of the classification model, the performance of the
learning algorithm, the size of the training and test data sets,
and the relative noise level in the data. If the classification
model is not flexible enough to capture the underlying de-
pendency, than it is unlikely that the null hypothesis can be
rejected, and the power of the test will be low. If the model
is too flexible, it is likely to adapt to any noise in the data,
and again, the power of the test will be reduced. Usually, if
given some arbitrary data set, it is not a priori known what a
suitable classification model will be. Therefore a good strategy
would be to start with a simple model, for example a linear
classifier, and test whether the null hypothesis can be rejected.

If this fails one can try a more flexible classification model.
Multiple testing issues resulting from such a procedure can
be taken into account by family-wise error correction or by
controlling the false discovery rate. Alternatively, one could
select the model complexity using an inner cross-validation
loop.

Both tests assume that the Bernoulli trials are independent,
which is only the case if the test set is completely indepen-
dent from the training set. They cannot be applied to cross-
validation results, since the overlap of the training sets and
the fact that the test points of one fold are contained in the
training sets of the other folds induce a dependency structure
that increases the variance of the point estimates [3], [10].

ACKNOWLEDGMENT

This work was supported by the BMBF (grant numbers
01GQ0911 and 01ZX1311D).

References:
[1] R. Simon, M. D. Radmacher, K. Dobbin, and L. M. Mcshane,

“Pitfalls in the use of DNA microarray data for diagnostic and
prognostic classification.” J Natl Cancer Inst, vol. 95, no. 1, pp.
14–18, Jan. 2003.

[2] U. W. Bolin, H. Goransson, M. Fryknas, M. Gustafsson, and
A. Isaksson, “Improved variance estimation of classification
performance via reduction of bias caused by small sample
size,” BMC Bioinformatics, vol. 7, no. 1, p. 127 pp., Mar. 2006.
[Online]. Available: http://dx.doi.org/10.1186/1471-2105-7-127

[3] A. Isaksson, M. Wallman, H. Goransson, and M. Gustafsson,
“Cross-validation and bootstrapping are unreliable in small
sample classification,” Pattern Recognition Letters, vol. 29,
no. 14, pp. 1960–1965, Oct. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2008.06.018

[4] F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning
classifiers and fMRI: A tutorial overview,” NeuroImage, 2009.

[5] K. H. Brodersen, T. M. Schofield, A. P. Leff, C. S. Ong, E. I.
Lomakina, J. M. Buhmann, and K. E. Stephan, “Generative
embedding for model-based classification of fmri data.” PLoS
Computational Biology, vol. 7, no. 6, 2011.

[6] J. Langford, “Tutorial on practical prediction theory for clas-
sification,” Journal of Machine Learning Research, vol. 6, pp.
273–306, 2005.

[7] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buh-
mann, “The balanced accuracy and its posterior distribution,” in
2010 International Conference on Pattern Recognition. IEEE
computer society, 2010, pp. 3121–3124.

[8] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.
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TABLE I
TEST BASED ON BAYESIAN POSTERIOR

δ

m1/m2 0.01 0.02 0.03 0.04 0.05

Type I error rate 0.0100 0.0202 0.0289 0.0394 0.0522

ν = 1 0.9131 0.9474 0.9605 0.9703 0.9778
100/100 Power ν = 2 1 1 1 1 1

ν = 3 1 1 1 1 1

Type I error rate 0.0104 0.0210 0.0308 0.0410 0.0516

ν = 1 0.8268 0.8865 0.9144 0.9311 0.9438
140/60 Power ν = 2 1 1 1 1 1

ν = 3 1 1 1 1 1

Type I error rate 0.0108 0.0220 0.0318 0.0424 0.0522

ν = 1 0.6423 0.7337 0.7819 0.8144 0.8401
160/40 Power ν = 2 0.9999 0.9999 1 1 1

ν = 3 1 1 1 1 1

Type I error rate 0.0114 0.0219 0.0329 0.0436 0.05488

ν = 1 0.2818 0.3649 0.4299 0.4771 0.5175
180/20 Power ν = 2 0.9606 0.9766 0.9838 0.9875 0.9900

ν = 3 0.9998 1 1 1 1

TABLE II
TEST BASED ON PREDICTION THEORY

δ

m1/m2 0.01 0.02 0.03 0.04 0.05

Type I error rate 0.0099 0.0142 0.0286 0.0390 0.0390

ν = 1 0.9126 0.9318 0.9604 0.9701 0.9701
100/100 Power ν = 2 1 1 1 1 1

ν = 3 1 1 1 1 1

Type I error rate 0.0100 0.0188 0.0283 0.0374 0.0490

ν = 1 0.8179 0.8757 0.9065 0.9241 0.9387
140/60 Power ν = 2 1 1 1 1 1

ν = 3 1 1 1 1 1

Type I error rate 0.0087 0.0180 0.0275 0.0353 0.0474

ν = 1 0.6008 0.6979 0.7505 0.7836 0.8195
160/40 Power ν = 2 0.9997 0.9999 0.9999 0.9999 1

ν = 3 1 1 1 1 1

Type I error rate 0.0090 0.0167 0.0266 0.0361 0.0458

ν = 1 0.2304 0.3007 0.3651 0.4152 0.4525
180/20 Power ν = 2 0.9112 0.9413 0.9583 0.9682 0.9738

ν = 3 0.9972 0.9986 0.9992 0.9995 0.9996
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