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Abstract—This paper presents a heuristic approach to gen-
erate initial feasible solutions for the Unit Commitment (UC)
problem in electric power generation. The Chemical Reaction
Optimization (CRO) algorithm is implemented to solve this
problem. Multiple generator constraints and system constraints
are considered. We also program the binary PSO and the Elite
PSO (EPSO) for comparison. The proposed heuristic approach is
combined with the three optimization algorithms to form H-CRO,
H-PSO and H-EPSO. We test the performance of all algorithms
on the standard 10-unit system. Simulation results show that
the heuristic can improve the performance and CRO provides
better convergence than the two PSO algorithms. H-CRO is also
tested on a 20-unit and 100-unit system to show its capability. The
results provided in this paper suggest that the proposed heuristic
approach is a better alternative for solving the UC problem. CRO
also has its advantage in optimizing UC problems.

Index Terms—Chemical reaction optimization, heuristic, unit
commitment, power grid.

I. INTRODUCTION

Power supply and demand must be balanced in a power
system. However, the demand varies. For example, the demand
during the daytime is likely to be higher than that at midnight.
Similarly, compared to Saturdays and Sundays, weekdays tend
to require much more power [1]. Hence the power generating
units are required to schedule their power outputs according
to the demand.

Given one particular demand curve, there are many power
generation strategies to accommodate the system constraints
while satisfying the power demand. Of course it is preferable
to select the strategy with the minimum cost. Unit commitment
(UC) is the problem of finding the least cost schedule to satisfy
the power balance. This scheduling problem can be formulated
as an optimization problem with system operating constraints
[2].

In the past few decades, the optimal UC problem has been
addressed with different approaches, ranging from dedicated
heuristics to general-purpose optimization algorithms.

The very early methods applied to solve the UC problem
including Exhaustive Enumeration [3], Priority List [4] and
Dynamic programming [5]. However these approaches are not
satisfactory with the increasing demand on higher accuracy
and shorter computational time.

Evolutionary approaches have shown their capabilities in
dealing with complex problems. Genetic Algorithm (GA) is

one such approach applied to the UC problem. It was tested
on the single day as well as the one-week UC problem and
on small and large size systems [6] [7]. Some other GA-based
approaches have also been developed to provide better results
[8] [9] [10]. However the main drawback of applying GA to
today’s real world problems is its long computational time.
Other popular evolutionary approaches have also been applied
to solve the UC problem, such as Evolutionary Programming
(EP)[11] and Particle Swarm Optimization (PSO) [12] [13]
[14]. The performance in accuracy and efficiency have all been
improved compared to the early GA approaches.

Chemical Reaction Optimization (CRO) is a recently de-
veloped evolutionary algorithm [15]. CRO is inspired by the
molecular behaviors in a chemical reaction to search for
the most stable state with the minimum free energy. The
correspondence between the free energy of a molecule and
the objective function value of a solution makes the simi-
larity between chemical reactions and optimization apparent.
With the molecules representing the solutions, CRO performs
optimization by mimicking the behaviors of molecules in a
chemical reaction. CRO has shown its capability in solving
optimization problems [16] [17].

By studying the previous efforts in solving the UC prob-
lem, three common steps can be identified: finding feasible
schedules, allocating power output to calculate the total cost,
and performing optimization to search for the best solution.
By the first two steps, feasible solutions can be found. The
third step searches for the best feasible solution. Depending
on the optimization algorithm used, the first two steps may be
repeated in the optimization process. For the second step, also
known as Economic Dispatch (ED), many fast and accurate
methods have been developed [18]. The third step can be
solved by evolutionary algorithms.

However, the first step, also known as the unit schedule ini-
tialization, is mostly done by random generation and trial-and-
error. Random search for a feasible schedule is not efficient,
especially when dealing with large scale systems. Very few
efforts focus on initialization. There are some heuristic algo-
rithms aiming at changing a randomly generated schedule into
a feasible one, thus improving the performance of the overall
optimization results [19]. To further improve the performance
of heuristic initialization, instead of changing a randomly gen-
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TABLE I
NOTATIONS

Given variables Description
N Number of units
i Index of unit
T Number of time intervals
t Index of time intervals
Pimax, Pimin Max and min output power
MUTi,MDTi Min up and down time
SUCihot, SUCicold Hot and cold start costs
SDCi Shut down cost
Rupi , Rdowni

Ramp up and down rates
ai, bi, ci Economic coefficients
Ticold Cold start hours
Predurationi Status of Unit i from last UC planning horizon

positive for already online time
negative for already offline time

Control variables Description
Ut
i Operation status of Unit i at time t

0 for offline, 1 for online
Dependent variables Description
P t
i Output power of Unit i at time t

Γt
i Duration of Unit i being online/offline before time t

Positive for online time
Negative for offline time

erated solution to make it feasible, one can directly construct
a feasible solution. In this paper, we propose a constructive
heuristic utilizing the charactistics of the UC problem to
determine the initial population of feasible solutions. With
this domain knowledge-based heuristic intialization, feasible
unit status schedules can be constructed without resorting to
trial-and-error. This constructive approach has been tested on
the 10-unit, 20-unit and 100-unit systems. The rest of the
paper is organized as follows. We introduce the UC problem
formulation in Section II. Then the detailed design of the
proposed algorithm is explained in Section III. The CRO
and PSO algorithms used in our simulation are introduced in
Section IV. The simulation results are stated and compared in
Section V. Finally we conclude the paper in Section VI.

II. PROBLEM FORMULATION

The UC problem aims to find an operation plan for gen-
erating units to achieve the least total cost without violating
the unit operating constraints. As power systems expand, more
accurate and faster UC algorithms are required.

We consider a power system with N generation units and a
given load curve D divided into T time intervals. Let i and t
be the index of the units and time intervals, respectively. We
define all the variables in a UC problem in Table I. To give
a better understanding on Γti, we use the following examples.
Γ5
2 = 3 means that Unit 2 has been online for three time

intervals consecutively till the 5th time interval. Similarly
Γ5
2 = −3 means Unit 2 is said to be offline for three time

intervals consecutively till the 5th time interval.

Fig. 1. Sample UC system

Fig. 2. 24-hour load curve

To better illustrate the relationship between the units and
the load, an example of the system is given in Fig 1. Power
is generated by the generating units, and transmitted through
the transmission and distribution networks to the load. We
aim to balance the power demand at the load side with the
power supply from the generating units. The structures and
constraints of the transmission and distribution networks are
not considered.

The load curve is estimated from past experience. In the
system model, the load curve is divided into T time intervals.
The average value of each interval is used to represent a
constant load level for the whole interval to simplify the
calculation. An example of the load curve model is displayed
in Fig 2, where the planning horizon is one day. One time
interval is set to be one hour and there are two peaks in the
curve, one at the 12th hour and the other at the 20th hour.

The units can be categorized into many types according to
their power sources. In our paper, the units are all assumed to
be the conventional type which can provide stable and fully
controllable power output. There are three kinds of cost for
Unit i: generation cost F (Pi), start-up cost SUCi, shut-down
cost SDCi.

The generation cost F (Pi) of the ith unit is defined as:

F (Pi) = a+ b× Pi + c× P 2
i (1)

where Pi is the output power of Unit i, and a, b and c are
economic coefficients of Unit i.
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The start-up cost is a function of the unit offline time. The
start-up cost of unit i is defined as a piecewise function as
follows [7]:

SUCi(Γi) =

{
SUCihot, if MDTi < Γi < MDTi + Ticold
SUCicold, if Γi ≥MDTi + Ticold

(2)

where Ticold is the cold start hour of Unit i. The shut-
down costs of the conventional units are normally neglected.
Therefore we do not include the term of this cost in our unit
models[7].

The objective is to minimize the sum of the generation cost
and the start-up cost [2], i.e.,

minimize
T∑
t=1

N∑
i=1

P ti U
t
i + SUCi(1− U t−1i )U ti (3)

The constraints include:
1. Power balance constraints. In each time interval, the sum

of the supply power should balance the demand:

N∑
i=1

P ti U
t
i = Dt, t = 1, 2, ..., T (4)

2. Output power limits on Unit i at time t. The power output
of every unit should be within its upper and lower bounds, i.e.,

Pimin < P ti < Pimax. (5)

3. Spin reserve requirement at time t. For safety consider-
ations, there should be some spare power to cover possible
unexpected extra demand. The sum of the maximum output
power of every online unit should be larger than the total
demand plus the spin reserve (SR) which is normally set to
10% of the demand, i.e.,

N∑
i=1

PimaxU
t
i > Dt + SR (6)

4. Minimum up and down time requirements for Unit i.
Once a unit i is online, it has to be kept online for MUTi
time intervals. Similarly once a unit i is offline, it has to be
offline for MDTi time intervals.

Γti ≥MUTi, if Γti > 0 and U ti = 0 (7)

−Γti ≥MDTi, if Γti < 0 and U ti = 1 (8)

5. Ramp rate constraints for Unit i. The change rate of the
output power for Unit i between two consecutive time intervals
is limited by

P t−1i −Rdowni ≤ P ti ≤ P t−1i +Rupi (9)

Hence the UC problem is defined as follows:

minimize
T∑
t=1

N∑
i=1

F (P ti , U
t
i , SUC

t
i ) (10)

=
T∑
t=1

N∑
i=1

P ti U
t
i + SUCi(1− U t−1i )U ti (11)

subject to (2), (4), (5), (6), (7), (8), and (9)

III. ALGORITHM DESIGN

A. Background

Solving the UC problem mainly includes three steps: finding
feasible unit status schedules U = [U ti , i = 1, .., N, t =
1, ..., T ], performing Economic Dispatch (ED), and searching
for the optimized solution among the feasible ones. There are
basically two ways to represent a feasible status schedule. One
is to use an integer number sequence to represent the schedule
for every unit. For example, sequence [3,−2, 4] means that the
unit is online for 3 time intervals then offline for 2 intervals and
again online for 4 intervals. The other way is using an N ×T
binary matrix to represent the schedule for the whole system,
where 0 means the unit is offline at that time interval and 1
otherwise. Our proposed heuristic initialization algorithm is
based on the second approach.

First we give a detailed explanation about how our algorithm
works and why it can lead to a feasible solution in an efficient
manner. It is followed by the design of the CRO algorithm,
focusing on the operator designs. Detailed information for
CRO can found in [15].

B. Initialization Heuristic Design

The proposed heuristic basically produces in five steps
a feasible unit status matrix scheduling solution. The UC
problem knowledge and the corresponding empirical rules are
applied to design the heuristic. We first define the Unit Check
Sequence (UCS) as

UCS = [u1, u2, ..., uN ] (12)

Each integer uk, where k = 1, 2, ..., N , represents the ukth
unit. UCS is used to help construct the initial solutions. The
detailed steps are given as follows:

Step 1) Initialization of the status matrix. We set all com-
ponents in the status matrix to zero, i.e. U tuk

= 0, k =
1, 2, ..., N, t = 1, 2, ..., T .

Step 2) Peak load time preset. Every demand curve has peak
load periods. A peak load always requires the most online
units to satisfy the reserve constraint. Hence we satisfy the
reserve constraints at peak load times first. Suppose there are
two peaks and they occur at times t1 and t2. At t = t1, we
start with k = 1 and check if the reserve constraint for time
t = t1 is satisfied:

N∑
i=1

(Pmaxuk
× U t1uk

) ≥ Dt1 + SR

If not, set Unit u1 to online, i.e. U t1u1
= 1, then update k =

k+1. Repeat the reserve constraint check until k = N . During
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TABLE II
EXAMPLE DEMAND

Time 1 2 3 4 5 6
Demand 800 600 700 750 1000 800

this process, if the reserve constraint is satisfied or k = N ,
we continue to commit the same units in the time intervals
surrounding t1 to satisfy the MUT constraint. Suppose tr
is a random integer and let tr ∈ [0,MUTuk

]. If U t1uk
= 1,

according to the minimum up time constraint, we set all U tjuk =
1, tj ∈ [t1−trandom, t1−trandom+MUTuk

]. Then we change
the time interval from t = t1 to t = t2 where t2 is the next
peak load time. Repeat this until all peak load time intervals
satisfy the reserve and the minimum up time constraint.

Step 3) First time interval preset. Since every unit is already
online or offline for several time intervals in the last UC
planning horizon, we check the status of every unit i from
the last UC planning horizon, Predurationi to see if any
MUT /MDT constraints are not satisfied at the first time in-
terval. That is, for any Unit i, if 0 < Predurationi < MUTi,
then commit U ti = 1 for t = 1, ...,MUTi − Predurationi.
Else if −MDTi < Predurationi < 0, then set U ti = 0 for
t = 1, ...,MDTi − Predurationi.

Step 4) Overall schedule check. Repeat Step 2 from t = 1
to t = T . If any U ti is already set online or offline by the
previous steps, it will be kept unchanged. Otherwise, U ti will
be set according to the rule used in Step 2.

Step 5) MDT check. Since we separately commit the peak
and other time intervals, the statuses in between may violate
the MDT constraints. For each Unit i at time interval t, if
U ti = 1, U t+1

i = 0, check if any U t+2
i to U t+MDTi

i is already
set to 1 previously. If so, suppose Uki = 1 where t+1 < k <
t + MDTi then all U t+1

i to Uki is set to 1 and set t = k.
Otherwise, set t = t+ 1 and repeat this until t = T .

After these 5 steps, a feasible status matrix is determined.
With different UCS, we can generate different matrices.
Hence the UCS can be used as the manipulative agents (main
control factors) when we apply optimization algorithms to find
the final solution for the UC problem. For better illustration,
a flowchart of the initialization heuristic is displayed in Fig 3.

An example with 4 units and 6 time intervals is provided
as follows for illustration. Demand is given in Table II. The
output power limits for every unit and the MUT/MDT is
given in Table III.

For this example:

UCS = {1, 2, 4, 3}

The steps are illustrated in Fig 4.

C. Economic Dispatch (ED)

Once the feasible unit status schedule is found by the heuris-
tic, we use Lambda Iteration to perform the ED allocating the
output power for every online unit.

Fig. 3. Initialization heuristic algorithm

TABLE III
EXAMPLE UNIT LIMITS

Unit 1 2 3 4
Pmax 550 250 150 150
Pmin 200 100 50 50
MUT 4 3 1 2
MDT 4 3 1 2

Preduration 3 -3 -1 -2

Fig. 4. Solution matrix update of the example

In every time interval t, the generation cost is given by

F (P ti ) =
N∑
i=1

(ai + bi × P ti + ci × P ti ). Suppose

λt =
∂F

∂P
= bi + 2ciP

t
i (13)

Hence P ti can be calculated by

P ti =
λt − bi
2ci

(14)

916



To find the proper λt, we start from a λtlow and a λthigh and
run the iteration to find the result.

In every iteration, if
∣∣∣λthigh − λtlow∣∣∣ > ε, where ε is a preset

tolerance value, then λtmean is calculated by

λtmean =
λtlow + λthigh

2
(15)

The output power for all units in time interval t is calculated
by

P ti =
λtmean − bi

2ci
(16)

If the calculated P ti > Pimax or P ti < Pimin, P ti is set
to the corresponding boundary value. Then λthigh or λtmin is
updated according to the difference between the sum of output

power and the demand
N∑
i=1

(P ti U
t
i )−Dt.

If
N∑
i=1

(P ti U
t
i )−Dt > 0

λthigh = λtmean

If
N∑
i=1

(P ti U
t
i )−Dt < 0

λtlow = λtmean

Repeat the iteration until
∣∣∣λthigh − λtlow∣∣∣ ≤ ε and calculate

the final λtmean. The output power for all units in time interval
t is determined by (16).

IV. OPTIMIZATION ALGORITHMS

In this section, a brief introduction of the Chemical Reaction
Optimization and the Particle Swarm Optimization is given.

A. Chemical Reaction Optimization
1) Manipulated Agents: The basic manipulated agents of

CRO are molecules. For discrete problems such as UC, there
are three major operands for each molecule: the molecular
structure (ω), potential energy (PE, also known as the objective
function value of the molecule) and kinetic energy (KE). ω
contains the control variables for a feasible solution.1 The
control variable in a molecular structure ω is UCS.

Since
T∑
t=1

N∑
i=1

F (P ti , U
t
i , SUC

t
i ) is the objective function

value of the UC problem, the PE of the molecule ω is defined
as follows:

PEω =
T∑
t=1

N∑
i=1

F (P ti , U
t
i , SUC

t
i ) = F (ω) (17)

where P ti , U
t
i are the components in the solution matrix

obtained from the UCS in ω, SUCti is the start up cost of
Unit i.

KE is defined as the tolerance to generate a molecule with a
worse structure (i.e. a solution with a higher objective function
value).

1Theoretically, a candidate solution should be composed of both the control
and the dependent variables. Since the latter can be calculated from the former
in the process of solving the UC problem, the dependent variables are removed
from ω for simplicity.

2) Elementary Reactions: There are four kinds of elemen-
tary reactions defined in CRO. We use examples to illustrate
the four reactions as follows:

On-wall Ineffective Collision
An on-wall ineffective collision is a collision of a molecule

with the wall of the container. It causes a small change in
the molecular structure. An example of the on-wall collision
where the molecular structure ω corresponds to 6 units, that
is, N = 6, is given as:

[1, 2, 4, 3, 5, 6]︸ ︷︷ ︸
ω

→ [1, 4, 2, 3, 5, 6]︸ ︷︷ ︸
ω′

Decomposition
A decomposition of one molecule results in two new

molecules. It will bring a dramatic change and the resultant
molecules will have significantly different structures and en-
ergies from the original one. The decomposition is illustrated
by the following example:

[1, 2, 4, 3, 5, 6]︸ ︷︷ ︸
ω

→ [3, 5, 6, 4, 2, 1]︸ ︷︷ ︸
ω1

+ [6, 5, 3, 1, 2, 4]︸ ︷︷ ︸
ω2

Inter-molecular Ineffective Collision
An inter-molecular ineffective collision is caused by two

molecules hitting each other and bouncing back.
The following 6-unit example is given for illustration:

[1, 2, 4, 3, 5, 6]︸ ︷︷ ︸
ω1

→ [1, 3, 4, 2, 5, 6]︸ ︷︷ ︸
ω′

1

, [1, 2, 4, 3, 5, 6]︸ ︷︷ ︸
ω2

→ [5, 2, 4, 3, 1, 6]︸ ︷︷ ︸
ω′

2

Synthesis
A synthesis of two molecules results in one combined

molecule. The change is vigorous.
An example is given:

[1, 2, 4, 3, 5, 6]︸ ︷︷ ︸
ω1

+ [5, 1, 4, 6, 5, 2]︸ ︷︷ ︸
ω2

→ [1, 3, 4, 2, 5, 6]︸ ︷︷ ︸
ω′

3) The Overall Algorithm: The overall algorithm includes
three stages: initialization, iterations, and the final stage.

In initialization, we set the values of the CRO parameters,
i.e., PopSize, InitialKE, MoleColl and KELossRate. We create
PopSize number of molecules with randomly generated UCS
with KE equal to InitialKE and PE calculated from the UCS.
We go through a number of iterations until a preset number
of function evaluations (FEs) is reached.

At the end of each iteration, any newly found better objec-
tive function value will be recorded. When the maximum FEs
have been reached, the best overall result will be output. More
details of implementing CRO can be found in [20].

B. Particle Swarm Optimization

1) Manipulated Agents: The basic manipulated agents of
PSO are particles. Considering the UC problem with binary bit
representing the unit on/off state, we use the binary version of
PSO instead the original one. The control variables are formed
as a binary matrix.
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Let p stands for an individual particle at ith iteration,
suppose the problem is a D-dimension problem, there are
three vectors composed in each p: the position of the particle
Xi
p = (xip1, x

i
p2, ..., x

i
pD), the best position found by this

individual particle Bp = (bp1, bp2, ..., bpD) and its velocity
V ip = (vip1, v

i
p2, ..., v

i
pD). In the UC problem, D = N × T

where N is the number of units and T is the number of time
intervals. In a new iteration i + 1, the position and velocity
vectors are updated as follows:

vi+1
pd = vipd + c1(bpd − xipd) + c2(bgd − xipd)
xi+1
pd = xipd + vipd
d = 1, 2, ..., D

where gd is the dth variable of the global best solution ever
found in the optimization process.

However in terms of binary variables, xipd and bpd are both
integers in [0, 1] and vipd should also be constrained to the
interval [0.0, 1.0] representing the possibility that the value of
xipd is changed in the next iteration. The updating equation is
defined as follow:

if (rand() < G(vipd)) then x
i+1
pd = 1

else xi+1
pd = 0

Where G(vipd) is a function to restrict the velocity in the
interval [0.0, 1.0]. A sigmoid limiting function is selected to
do this restriction. The rand() is a random number selected
from a uniform distribution in [0.0, 1.0].

For detailed instructions about the binary PSO, readers are
suggested to refer to [21].

V. SIMULATION RESULTS

The simulation is implemented in the Visual studio 2012
environment executed on a 2.4 GHz Intel i5-2430M dual
core personal computer with 4GB RAM. To demonstrate the
effectiveness of the proposed heuristic algorithm, 10-unit, 20-
unit and 100-unit power system models are tested using CRO
and CRO with heuristic (H-CRO). A standard binary PSO
version and a EPSO version are programmed based on [21]
and [19]. The proposed initialization heuristic is combined
with these two PSOs to form PSO with heuristic (H-PSO) and
EPSO with heuristic (H-EPSO). All the above six algorithms
are tested on the three systems to show the capability of the
heuristic initialization algorithm.

The CRO and PSO parameters are set as shown in Table
IV, Table V and Table VI. Ep and Eg are the number of elite
groups of the best positions for each particle and the swarm.
c1, c2, cp,1, cp,2, cg,1, cg,2 are the acceleration coefficients.

For the 10-unit system, the parameters for the CRO and the
H-CRO are the same. Since the UCS is used as the control
variables, with an increasing number of units, the number of
possible choices of the UCS increases dramatically. Hence we
apply larger MoleColl for bigger system so that the search is
more efficient. The increasing InitialKE is also due to the
larger objective function value for the bigger system.

TABLE IV
CRO PARAMETER SETTINGS

Variables 10-unit 20-unit 100-unit

PopSize 3 3 3
InitialKE 100 10000 100000

KELossRate 0.5 0.5 0.5
MoleColl 0.001 0.1 0.5

TABLE V
PSO PARAMETER SETTINGS

Variables 10-unit 20-unit 100-unit

Numofparticles 20 20 20
Maxgen 500 2000 5000

w Rand[0,1] Rand[0,1] Rand[0,1]

c1 and c2
c1=2.8
c2=1.2

c1=2.8
c2=1.2

c1=2.8
c2=1.2

TABLE VI
EPSO PARAMETER SETTINGS

Variables 10-unit 20-unit 100-unit

Numofparticles 20 20 20
Maxgen 500 2000 5000

Ep 1 1 2
Eg 2 2 2

cp and cg

cp=2.0
cg,1=1.2
cg,2 = 0.8

cp=2.0
cg,1=1.2
cg,2 = 0.8

cp,1=1.2
cp,2=0.8
cg,1=1.2
cg,2 = 0.8

In the 10-unit system, the maximum, minimum power
output, minimum up and down times of every unit, the status
from the last UC planning horizon (Preduration, Pre) and the
economic coefficients are given in Table VII and the demand
curve of one day is given in Table VIII. The 20-unit and 100-
unit system are the combination of 2 and 10 10-unit systems.

The detailed comparison is shown in Table IX. The run
time and Function Evaluation (FE) used per run is shown in
the Table IX. The best, worst, mean results are recorded.

The big differences occured in PSO and EPSO worst
and mean results for 20-unit and 100-unit are due to the
convergence of the two algorithms. There is a possibility that
PSO and EPSO have not get converged within the designed
FEs.

Next we compare the rates of convergence. In Fig 5 and
Fig 6, the test system is the 10-unit system and we run up
to 5000 FEs. It can be concluded that when the initialization
heuristic is not used, CRO gains a faster convergence com-
pared to PSO and EPSO. When the heuristic is used, H-CRO
also converges faster than H-PSO and H-EPSO.

In Fig 7, Fig 8 and Fig 9, the major goal is to stress the
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TABLE VII
UNIT PARAMETERS

Unit Pmax Pmin MUT MDT SUChot SUCcold Pre Ticold a b c
1 455 150 8 8 4500 9000 8 5 1000 16.19 0.00048
2 455 150 8 8 5000 10000 8 5 970 17.26 0.00031
3 130 20 5 5 550 1100 -5 4 700 16.6 0.002
4 130 20 5 5 550 1100 -5 4 680 16.5 0.00211
5 162 25 6 6 900 1800 -6 4 450 19.7 0.00398
6 80 20 3 3 170 340 -3 2 370 22.26 0.00712
7 85 25 3 3 260 520 -3 2 480 27.74 0.00079
8 55 10 1 1 30 60 -1 0 660 25.92 0.00413
9 55 10 1 1 30 60 -1 0 665 27.27 0.00222

10 55 10 1 1 30 60 -1 0 670 27.79 0.00173

TABLE VIII
DEMAND

Time 1 2 3 4 5 6 7 8 9 10 11 12
Demand 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Time 13 14 15 16 17 18 19 20 21 22 23 24
Demand 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

TABLE IX
COMPARISONS AMONG CROS AND PSOS

System Method Best re-
sult ($)

Worst
result
($)

Mean
result
($)

FE per
run

run

10-unit CRO 596257 607011 602221 5000 50
H-CRO 564748 565554 564941 5000 50
PSO 582567 2588100 879988 10000 50
H-PSO 582943 604201 592137 10000 50
EPSO 585954 1624190 713682 10000 50
H-
EPSO

579135 597106 583172 10000 50

20-unit CRO 1187890 1197800 1194200 10000 50
H-CRO 1117960 1132020 1125710 10000 50
PSO 1209950 4256330 2063720 20000 50
H-PSO 1220000 1240000 1233000 20000 50
EPSO 1200070 3267260 1954750 20000 50
H-
EPSO

1114000 1220000 1170000 20000 50

100-
unit

CRO 6000000 6130000 6040000 20000 20

H-CRO 5593150 5708840 5656900 20000 20
PSO - - - 100000 20
H-PSO 6168000 7185000 6187000 100000 20
EPSO - - - 100000 20
H-
EPSO

6080000 7120000 6520000 100000 20

merits of the proposed heuristic initialization algorithm. In
terms of the PSO and EPSO cases, the application of the
heuristic leads to significant convergence rate improvements.
In the CRO case, the heuristic also returns a better optimization
result.

Fig. 5. Convergence without our proposed heuristic in 10-unit system

Fig. 6. Convergence with our proposed heuristic in 10-unit system

VI. CONCLUSION

The UC problem schedules the power generating units in
order to minimize the cost and is one of the basic problems in
power system engineering. There are many algorithms aiming
at improving the optimization process of the UC problem.
However the feasible solution initialization part is somehow
ignored.

In this paper, we propose a constructive method to find
feasible initial UC solutions. In previous work, a feasible
solution is always obtained by changing a randomly generated
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Fig. 7. Convergence comparision of CROs in 20-unit system

Fig. 8. Convergence comparision of PSOs in 20-unit system

Fig. 9. Convergence comparision of EPSOs in 20-unit system

solution to make it feasible, which is very inefficient.
When comparing CRO, H-CRO, PSO, H-PSO, EPSO and

H-EPSO, the simulation results show that with the proposed
initialization scheme, both the overall results as well as the
convergence rates are improved.

In the future, we plan to study larger systems to see the
capability of the constructive initialization algorithm. The
Security Constrained Unit Commitment (SCUC) is another
problem we plan to study. By using our algorithm, we hope
we can construct a faster and more efficient solution. Another
direction is to generalize the initialization analysis. We want
to find some principles in determining the initialization algo-
rithms that will work best for different types of problems.
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