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Abstract—This paper studies the stability and Hopf bifurca-
tion in a high-dimension neural network involving the discrete
and distributed delays. Such model extends the existing models of
neural networks from low-dimension to high-dimension. There-
fore, our model is much close to large real neural networks.
Here, the delay is chosen as the bifurcation parameter and we
obtain the sufficient conditions for the system keeping stable and
undergoing the Hopf bifurcation. Moreover, the software package
DDE-BIFTOOL is introduced to better display the properties of
the system and the effect of gain parameters of the system and
delay kernel on the onset of the bifurcation. The simulation results
further justify the validity of our theoretical analysis.

I. INTRODUCTION

Neural networks have been attracted many scholars’ re-
search interests since a simplified neural network model was
proposed in [1] due to their wide applications in numerous ar-
eas such as image processing, optimizations, signal processing
and so on. Such important applications motivate scholars to
investigate the dynamical behaviors of neural networks and
there have been some well-known theoretical and practical
results.

The stability has been considered as a kind of representative
dynamical behavior of neural networks and a great deal of
existing work have been carried out on such a hot topic.
Moreover, other dynamics of neural networks such as bifur-
cation and chaos also arouse much concern. For example, the
dynamics of a neural network model involving two neurons
was considered in [2]. Song et al. studied the Hopf bifurcation
on a simplified BAM neural network with three neurons
[3]. Then, a BAM neural network with four neurons with
distributed delays was investigated and sufficient conditions
for the stability and Hopf bifurcation were obtained [4], [5].
However, to the best knowledge of the authors, most existing
works on the Hopf bifurcation focus on neuron networks with
one, two, three or four neurons. Although the research on the
simplified low-dimension neural network models can reflect
the nature of neural networks to some extent, it may neglect
some complex properties of large and real neural network
systems. So it is necessary to discuss the dynamical behaviors
and properties of high-dimension neural networks.

In addition, reference [6] proposed that time delays always
are inevitable in the signal transmission and then put forward
a neural network model with time delay. Subsequently, the
neural network in [3] involving one delay was considered.
Then, there also have been some literatures studying the
stability and bifurcation of neural works with two, three or
four time delays [7], [8], [9]. These above mentioned delays
all are discrete delays. It should be pointed out that neural
networks often have a spatial nature due to the presence of a
great deal of parallel pathways with a variety of axon sizes
and lengths, so a distribution of propagation delays over a
period of time exists [10], [11]. There have been also a few
papers concentrating on the Hopf bifurcation in neural network
models with distributed delays [4], [12], [13].

Although both discrete and distributed delays in modeling
neural networks are of importance, the stability and Hopf bifur-
cation for general neural networks with discrete and distributed
delays have not received much research attention. However,
in this paper, we investigate a problem of the stability and
Hopf bifurcation in a high-dimension simplified BAM neural
network model involving discrete and distributed delays. By
analysing the characteristic equation of the linearized system,
the sufficient conditions for the neural network remaining
stable and undergoing the Hopf bifurcation are obtained.
Besides, we discuss the effect of the number of neurons on
the properties of the bifurcation. Furthermore, the software
package DDE-BIFTOOL, which provides a tool for numerical
bifurcation analysis of systems of delay differential equations,
is introduced to deal with the Hopf bifurcation of neural
networks and better display the effect of parameters on the
onset of the bifurcation. Moreover, we further consider the
influence of the parameter of the delay kernel on the stability
of the network.

The rest of this paper is organized as follows: Section II
discusses the conditions for the stability and Hopf bifurcation
in a high-dimension neural network with discrete and distribut-
ed delays. Some simulation results are given in Section III
to better justify our theoretical analysis. Finally, the paper is
concluded in Section V.
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II. MAIN RESULTS

This paper considers the stability and Hopf bifurcation in a
(n+1)–dimension neural network with discrete and distribute
delays as follows
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ẋ1(t) = −a1x1(t) + f1(
∫ t

−∞ F (t− s)xn+1(s)ds)

ẋ2(t) = −a2x2(t) + f2(
∫ t

−∞ F (t− s)xn+1(s)ds)
...

ẋn(t) = −anxn(t) + fn(
∫ t

−∞ F (t− s)xn+1(s)ds)
ẋn+1(t) = −an+1xn+1(t) + g1(x1(t− τ))

+g2(x2(t− τ)) + · · ·+ gn(xn(t− τ))
(1)

where xi, (i = 1, 2, · · · , n+1) denotes the state of the neuron
i, the active functions fj and gj satisfy fj(0) = gj(0) = 0 and
fj , gj ∈ C1(j = 1, 2, · · · , n), ai represents the stability of
internal neurons processing, and the delay kernel F describes
the influence of the neuron from the past to the current time
t.

Remark 1: If F (t− s) = δ(t− s− τ), where is the delta

function , it is obvious that F (s) satisfy
∫ +∞
0

F (s)ds = 1,
then system (1) becomes one only involving the discrete delay
which has been studied in [14]. Here, we extend the stability
and Hopf bifurcation of high dimensional neural networks to
that of systems with the discrete and distributed delays.

Remark 2: At present, the analytical methods of Hopf
bifurcation mainly depend on the distribution of the charac-
teristic roots of the corresponding linearized system [3], [5],
[7], [14]. This paper uses this method as well since making an
advance in the analytical method is quite difficult and needs
considerable work. However, our contribution is that we tackle
the stability and Hopf bifurcation analysis problems for a
class of general neural networks with discrete and distributed
time-delays, and at the same time the software package DDE-
BIFTOOL is introduced to better display the distribution of the
characteristic roots and the effect of parameters on the onset
of the bifurcation.

In this paper, we choose a weak delay kernel as follows

F (t) = σe−σt, σ > 0, (2)

and let

xn+2(t) =

∫ t

−∞
F (t− s)xn+1(s)ds, (3)

then, Eq. (1) turns to be
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ẋ1(t) = −a1x1(t) + f1(xn+2(t))
ẋ2(t) = −a2x2(t) + f2(xn+2(t))
...
ẋn(t) = −anxn(t) + fn(xn+2(t))
ẋn+1(t) = −an+1xn+1(t) + g1(x1(t− τ))

+g2(x2(t− τ)) + · · ·
+gn(xn(t− τ))

ẋn+2(t) = σxn+1(t)− σxn+2(t).

(4)

Its corresponding linearized system is
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ẋ1(t) = −a1x1(t) + f ′1(0)xn+2(t)
ẋ2(t) = −a2x2(t) + f ′2(0)xn+2(t)
...
ẋn(t) = −anxn(t) + f ′n(0)xn+2(t)
ẋn+1(t) = −an+1xn+1(t) + g′1(0)x1(t− τ)

+g′2(0)x2(t− τ) + · · ·
+g′n(0)xn(t− τ)

ẋn+2(t) = σxn+1(t)− σxn+2(t).

(5)

and the associated characteristic equation is

λn+2 + P1λ
n+1 + P2λ

n + · · ·+ Pn+1λ+ Pn+2

−σe−λτ [Q1λ
n−1 +Q2λ

n−2 + · · ·+Qn] = 0 (6)

where

Pk =
∑

1≤i1<i2<···<ik≤n+2

ai1ai2 · · · aik;

Q1 =

n
∑

j=1

bj ;

Qm =

n
∑

j=1

⎡

⎢

⎢

⎣

bj
∑

1 ≤ i1 < · · · < im−1 ≤ n;

i1, i2, · · · im−1 �= j

ai1ai2 · · · aim−1

⎤

⎥

⎥

⎦

;

with k = 1, 2, · · ·n + 2, m = 2, 3, · · · , n, an+2 = σ and
bj = f ′j(0)g

′
j(0).

Thus, iω (ω > 0) is the root of Eq. (6) if and only if

(iω)n+2 + P1(iω)
n+1 + P2(iω)

n + · · ·+ Pn+1(iω) + Pn+2

−σe−iωτ [Q1(iω)
n−1 +Q2(iω)

n−2 + · · ·+Qn
]

= 0.

For convenience, in the following, we only consider the case
of n = 4k. When n = 4k+1, 4k+2 and 4k+3, the analysis
is similar, so it is omitted here.

When n = 4k, then the above equation can be rewritten as

−ω2n+4 + iP1ω
2n+2 + P2ω

2n + · · ·+ iPn+1ω
2 + Pn+2

−σ(cos (ωτ)− i sin (ωτ))[−iQ1ω
2n−2 −Q2ω

2n−4

+ · · ·+Qn] = 0,

that is
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σ[−Q2ω
n−2 +Q4ω

n−4 + · · ·+Qn] cos (ωτ)
+σ[−Q1ω

n−1 +Q3ω
n−3 + · · ·+Qn−1ω] sin (ωτ)

= −ωn+2 + P2ω
n + · · ·+ Pn+2

σ[−Q1ω
n−1 +Q3ω

n−3 + · · ·+Qn−1ω] cos (ωτ)
−σ[−Q2ω

n−2 +Q4ω
n−4 + · · ·+Qn] sin (ωτ)

= P1ω
n+1 − P3ω

n−1 + · · ·+ Pn+1ω

(7)

so we can obtain

cos (ωτ) =
M

N
(8)

with M = (P1ω
n+1 − P3ω

n−1 + · · ·+ Pn+1ω)(−Q1ω
n−1 +

Q3ω
n−3 + · · · + Qn−1ω) + (−ωn+2 + P2ω

n + · · · +
Pn+2)(−Q2ω

n−2 +Q4ω
n−4 + · · ·+Qn), N = (−Q2ω

n−2 +
Q4ω

n−4+· · ·+Qn)2+(−Q1ω
n−1+Q3ω

n−3+· · ·+Qn−1ω)2.
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According to Eq. (7), we have

ω2n+4 +A1ω
2n+2 +A2ω

2n + · · ·+An+1ω

+An+2 = 0 (9)

in which

A1 = P 2
1 − 2P2;

A2 = P 2
2 + 2P4 − 2P1P3;

A3 = P 2
3 − 2P6 − 2P2P4 + 2P1P5 − σ2Q2

1;
...

Am = P 2
m + 2[

∑

s1 + s2 = 2m
0 ≤ s1 < s2 ≤ n + 2

(−1)m+s1Ps1Ps2 ]

−σ2[Q2
m−2 + 2(

∑

t1 + t2 = 2m − 4
1 ≤ t1 < t2 ≤ n

(−1)m+t1Qt1Qt2)]

...

An+2 = P 2
n+2 −Q2

n

in which P0 = 1.

Let z = ω2, then

h(z) = zn+2 +A1z
n+1 +A2z

n + · · ·
+An+1ω +An+2. (10)

1) If An+2 > 0 and h′(z) > 0, then Eq. (10) has no
roots. That means Eq. (6) doesn’t have a pair of pure
imaginary roots.

2) If An+2 < 0, since limz→+∞ h(z) = +∞, then Eq.
(10) at least has a positive root, which implies Eq.
(6) has a pair of imaginary roots. Without loss of
generality, we assume that Eq. (10) has n+2 positive
roots labeled as zi, (1 ≤ i ≤ n + 2), then ωi =

√
zi,

and τ
(j)
i = (arccos (M/N)+2jπ)/ωi, (j = 1, 2, · · · ).

Furthermore, we definite that

τ0 = τ
(0)
i0

= min{τ (0)i |i = 1, 2, · · · , n+ 2},

and ω0 = ωi0 .

When τ = 0, then Eq. (6) becomes

λn+2 + P1λ
n+1 + P2λ

n + (P3 − σQ1)λ
n−1 + · · ·

+(Pn+1 − σQn−1)λ+ (Pn+2 − σQn) = 0. (11)

All roots of the above equation (11) have positive real parts if
and only if

(H1)

D1 = P1 > 0;

D2 =

∣

∣

∣

∣

P1 P3 − σQ1

1 P2

∣

∣

∣

∣

> 0;

D3 =

∣

∣

∣

∣

∣

P1 P3 − σQ1 P5 − σQ3

1 P2 P4 − σQ2

0 P1 P3 − σQ1

∣

∣

∣

∣

∣

> 0;

...
Dn+2

=

∣

∣

∣

∣

∣

∣

∣

∣

P1 P3 − σQ1 P5 − σQ3 · · · 0
1 P2 P4 − σQ2 · · · 0
...

... · · · · · · ...
0 0 · · · · · · Pn+2 − σQn

∣

∣

∣

∣

∣

∣

∣

∣

> 0.

Lemma 1: Consider the exponential polynomial

P (λ, e−λR1 , . . . , eλRm)

= λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ+ p

(0)
n + [p

(1)
1 λn−1 + · · ·

+p
(1)
n−1λ+ p

(1)
n ]e−λR1 + · · ·+ [p

(m)
1 λn−1 + · · ·+ p

(m)
n−1λ

+p
(m)
n ]e−λRm

where Ri ≥ 0 (i = 1, 2, . . . ,m) and pij (i = 0, 1, . . . ,m;
j = 1, 2, . . . , n) are constants. As (R1, R2, . . . , Rm) vary, the
sum of the order of zeros of P (λ, e−λR1 , . . . , e−λRm) on the
open right half plane can change only if a zero appears on or
crosses the imaginary axis.

Lemma 2: If h(zi) �= 0, then the following inequality
holds:

Re

(

dλ

dτ

)∣

∣

∣

∣

τ=τ
(j)
i

�= 0. (12)

Proof: Differentiating both sides of Eq. 6 with respect to
τ , we obtain

[(n+ 2)λn+1 + (n+ 1)P1λ
n + · · ·+ Pn+1λ

+Pn+2]
dλ

dτ
+ σ[τe−λτ

dλ

dτ
+ λe−λτ ][Q1λ

n−1

+Q2λ
n−2 + · · ·+Qn]− σe−λτ [(n− 1)λn−2Q1

+(n− 2)λn−3Q2 + · · ·+Qn−1]
dλ

dτ
= 0.

Here, we also only consider the case of n = 4k, in fact, other
three cases can be dealt with by the same method. Then

(

dλ

dτ
(j)
i

)−1∣
∣

∣

∣

∣

∣

τ
(j)
i

=
σ[(n− 1)Q1ω

n−2
i + i(n− 2)Q2ω

n−3
i + · · ·+Qn−1]

σ(iωi)(−iQ1ω
n−1
i −Q2ω

n−2
i + · · ·+Qn)

+
[i(n+ 2)ωn+1

i + (n+ 1)P1ω
n
i + · · ·+ Pn+1])

σ(iωi)(−iQ1ω
n−1
i −Q2ω

n−2
i + · · ·+Qn)

·(cos (ωiτ (j)i ) + i sin (ωiτ
(j)
i )− τ

(j)
i

iωi
.

By using Eq. (7), we have

Re

(

dλ

dτ
(j)
i

)−1∣
∣

∣

∣

∣

∣

τ
(j)
i

=
zih
′(z)
Δ

(13)
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with Δ = σ2[(Q1ω
n−Q3ω

n−2+· · ·+Qn−3ω4−Qn−1ω2)2+
(Q2ω

n−1 −Q4ω
n−3 + · · ·+Qn−1ω3 −Qnω)2].

Obviously, Δ and zi are positive.
Moreover,

sign

⎛

⎝Re

(

dλ

dτ
(j)
i

)∣

∣

∣

∣

∣

τ
(j)
i

⎞

⎠ = sign

⎛

⎜

⎝
Re

(

dλ

dτ
(j)
i

)−1∣
∣

∣

∣

∣

∣

τ
(j)
i

⎞

⎟

⎠
.

Thus, this lemma has been proved.

Theorem 1: For system (1), the following results hold:

(1) if An+2 > 0, h′(z) > 0 and (H1) hold, then the
equilibrium of system (1) is asymptotically stable for
τ ≥ 0;

(2) if An+2 < 0, and (H1) hold, then the equilibrium
of system (1) is asymptotically stable for τ ∈ [0, τ0];
meantime, system (1) undergoes the Hopf bifurcation

when τ = τ
(j)
i .

III. SIMULATION RESULTS

In this section, we will consider such a model of the neural
network (1) with 8 neurons in wich a1 = a2 = · · · = an =
a = 1, a9 = b = 2, f(x) = c tanh (x) = tanh (x), g(x) =
d tanh (x) = −1.2 tanh (x) and σ = 2.

Firstly, we choose τ = 0.2. From Fig. 1, it is obvious that
the characteristic equation of system (1) has positive roots. Fig.
2 depicts the change of the real parts of system (1) versus τ .
Moreover, we can easily know that it has a root with zero real
part when τ ∈ [0, 0.2) and at the 22th point in Fig. 3. Then
we use the software package DDE-BIFTOOL to compute the
values of ω0 and τ0 which are 2.079 and 0.197 respectively.
When τ = 0.197, the characteristic equation indeed has a pair
of pure imaginary roots (see Fig. 4).

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℜ(λ)

ℑ
(λ

)

Fig. 1. The distribution of the characteristic roots of system (1) with τ = 0.2
whose real parts are computed up to Re(λ) ≥ −1.5.

Besides, it can be easily seen that the equilibrium of system
(1) is asymptotically stable (see Fig. 5 and Fig. 6) when τ <
τ0 = 0.2. However, as the τ increases and exceeds the critical
value τ0, then the system undergoes the Hopf bifurcation (see
Fig. 7 and Fig. 8).

Next, we investigate the effect of the number of neurons
and parameters of system (1) on the critical value τ0. To begin

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

τ

ℜ
(λ

)

Fig. 2. Real parts of the characteristic equation versus τ .

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Point number
ℜ

(λ
)

Fig. 3. Real parts of the characteristic equation versus the point number
along the branch.

with, Table I reveals that the value of τ0 decreases as we
increase the number of neurons. It can be computed that the
values of τ0 are 4.094, 0.7262 and 0.197 respectively at n = 2,
4 and 8. This implies that the region of stability of the system
will be smaller with the increase of n. It may be because
higher dimensional systems have more complicated properties
so that the change of time delay τ has a greater influence on
the stability of the system.

TABLE I. THE EFFECT OF THE NUMBER OF NEURONS ON THE VALUE

OF ω0 AND τ0 WITH a = 1, b = 2, c = 1, d = −1.2 AND σ = 2

n ω0 τ0
2 0.5158 4.094

4 1.361 0.7262

8 2.079 0.197

What’s more, the relationship between parameters of sys-
tem (1) and the critical value τ0 will be discussed. Fig. 9 and
Fig. 10 show the similar trend, that is, the critical value τ0
increases as the gain parameter a or b increases with other
parameters remaining the same. Besides, we also find that τ0
goes to zero when a tends to zero or b goes to 1 which means
the system is unstable for all τ > 0 with a sufficiently small
positive parameter a or b being close to 1. There is a downward
trend on the value of τ0 as d increases (see Fig. 11) while
the increase of d leads to τ0 being increasing (see Fig. 12).
Note that regardless of whether c going from the right part
of coordinate axis to zero or d going from the left part of
coordinate axis to zero, the value of τ0 tends to infinite. That
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−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
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−1.5

−1
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1.5

2

2.5

ℜ(λ)

ℑ
(λ

)

Fig. 4. The distribution of the corrected characteristic roots of system (1)
with τ = 0.197 whose real parts are computed up to Re(λ) ≥ −1.5: a pair
of pure imaginary eigenvalues is clearly visible.
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−0.2

−0.1
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0.2

t

x i(t
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i=
1,

2,
⋅⋅⋅

,8

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

t

x 9(t
)

Fig. 5. The trajectories of system (1) with τ = 0.18 < τ0: the equilibrium
is asymptotically stable.

implies that system (1) is asymptotically stable for all τ > 0.
Furthermore, we consider the effect of the gain parameter of
the delay kernel on the stability of system (1). It is revealed in
Fig. 13 that the critical value τ0 becomes much smaller as σ is
much bigger. Therefore, the stabilized zone can be modulated
properly by choosing appropriate parameters of the system and
the gain parameter of the delay kernel.

IV. CONCLUSIONS

The stability and Hopf bifurcation of a class of high
dimensional neural networks have been investigated in this
paper. Such models involve the discrete and distributed delays
which make our model close to large and real neural networks
with n neurons and mix delays. By analysing the characteristic
equation of the corresponding linearized system, we have
obtained the sufficient conditions for the system keeping stable
and undergoing the bifurcation. Further, the software package
DDE-BIFTOOL has been proposed to study the dynamics
of such a class of high dimensional system and has better
displayed the distribution of characteristic roots and the effect
of gain parameters of the system and delay kernel on the onset
of the bifurcation. Furthermore, the Hopf bifurcation analysis
for neural networks is a well-studied area and thus making an
advance in the problem will need considerable work.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
i
(t),i=1,2,⋅⋅⋅,8

x 9(t
)

Fig. 6. The phase plot of system (1) with τ = 0.18 < τ0: the equilibrium
is asymptotically stable.

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2

t

x i(t
),

i=
1,

2,
⋅⋅⋅

,8
0 200 400 600 800 1000

−1

−0.5

0

0.5

1

t

x 9(t
)

Fig. 7. The trajectories of system (1) with τ = 0.2 > τ0: bifurcating periodic
solutions occur.
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