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Abstract— Outlier ranking methods can provide a quantita-
tive measure to evaluate the outlierness of data instances in
data clustering and attract great interest in pattern recognition
and data mining communities. However, it has been pointed out
that the diverse scaling ranges of these scores bring difficulty to
result interpretation. Moreover, popular outlier ranking scores
based on simple distance measures might not accurately reflect
the complex affinity among data points. In this paper, we
propose a new outlier ranking method based on consensus
affinity of a cluster ensemble. Two new outlier ranking scores
generalized from well-known clustering evaluation measures,
Rvv from the RAND measure and ARIvv from Adjusted Rand
Index (ARI), are adopted for outlierness evaluation. Compared
to other outlierness ranking measures, the two new measures
have the desired bounds without additional transformations.
Consistent with the improvement of Adjusted Rand Index
(ARI) over RAND, we find that ARIvv also significantly
outperforms Rvv. Benefiting from the consensus affinity of a
cluster ensemble, our proposed method with the ARIvv score
provides significant improvement beyond a number of compet-
ing algorithms on public UCI benchmark data sets. Studies with
both theoretical analysis and experimental validation show the
effectiveness of our proposed methods.

I. INTRODUCTION

CLustering techniques have been commonly used to
discover knowledge in a lot of practical applications.

However, due to the lack of supervisory information, clus-
tering results generally suffer degradations from outliers and
noise. The most related work on these kinds of applications is
outlier ranking, whose objective is to identify an outlierness
score for each data point to evaluate their potential to be
an outlier, i.e., to be inconsistent with the other points [1].
The traditional unsupervised outlier ranking methods are
statistics-based, which are obtained through some statistical
characteristics of data [2]–[4], or based on fitting the data to
different distributions [5], [6]. There are also the distance-
based ranking methods [7], which consider the distances
between certain important data points and a fraction of all
other points [8], [9]. Variations to this class of methods use
alternative distances in the K Nearest Neighbor (KNN) step
[10], [11]. Another important class outlier ranking methods is
density-based [12]–[14], which is inspired from the density-
based clustering algorithms. The basic algorithm within this
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category, Local outlier factor (LOF) [12], focuses on the
comparison between the local density of data instances
with those of their neighbors. Although various related
outlier ranking methods have been proposed, applying these
methods to clustering is still an open problem. Specifically,
widely used outlier ranking scores based on simple distance
measures might not accurately reflect the complex affinity
among data points and clusters. It is difficult to select a
uniform distance/similarity measure and set of parameters for
different types of data. In addition, existing outlier ranking
scores are not easily interpretable in the context of clustering,
and they might differ greatly in their scales and ranges [7],
[15].

In view of the mentioned difficulties above, in this paper,
we propose a new outlier ranking method based on consensus
affinity of cluster ensembles. Here, affinity means that a pair
of data points is within the same cluster. Interestingly, affinity
is believed to be closely related to clustering. More specifi-
cally, affinity propagation [16], which iteratively exchanges
similarity information between data points to identify repre-
sentative exemplars for clusters, represents one of the more
recent clustering approaches. In addition, a number of well-
known pair-counting clustering evaluation measures [17]–
[19] can be also regarded as a specific function of affinity.
These measures are usually calculated based on the extent
to which the cluster and class memberships of pairs of data
points agree or disagree. Generalized pair-counting measures
based on affinity also begin to attract great attention in recent
years [19]–[21]. For these measures, affinity could be an
important source of information when the true labels of the
data points are unavailable.

We use the consensus affinity of cluster ensembles as the
referenced knowledge for outlier ranking in unsupervised
clustering. To our best knowledge, there are no related
reports on this line of work. Cluster ensemble combines
multiple individual clustering solutions into a consensus one
to improve performance over that of any single clustering
algorithm [22]–[24]. In general, there are two phases in a
cluster ensemble approach: (i) to combine multiple individual
solutions into a consensus one, usually in the form of a
consensus matrix [21], [22], [25], a hypergraph [22], or a
bipartite graph [23], [24]; (ii) to obtain a final partition from
the consensus structure generated in the first phase using
clustering algorithms [25], graph partition algorithms [22]–
[24] or other methods. However, although quite a number of
cluster ensemble methods have been proposed, it is still diffi-
cult to select a suitable cluster ensemble solution for different
data sets with diverse characteristics. In addition, almost all
of the cluster ensemble methods require prior knowledge of
the number of clusters. Unfortunately, this kind of knowledge
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is usually unavailable, which makes application of cluster
ensemble methods difficult. As a result, it is important to take
into consideration these two problems when we make use of
a cluster ensemble. Motivated by our previous studies on the
generalized Adjusted Rand Index between similarity matrices
[20], [21], we propose a new outlier ranking method based
on generalized clustering evaluation measures, without the
need to solve the cluster ensemble problem and to have the
prior knowledge of the number of clusters. The effectiveness
of our new methods and the interpretability of our results
are investigated in detail, from both the perspectives of
theoretical analysis and experimental validation.

Therefore, the most important contribution in this study is
the introduction of an affinity-based outlier ranking method
for clustering. To our best knowledge, there are no related
studies based on consensus affinity of cluster ensembles. As
the concept of affinity is closely related to clustering and
cluster evaluation, it is hopeful that good performance can
be achieved if we choose suitable outlier ranking scores.
The second contribution is our adoption of consensus affinity
without either the need to select a particular cluster ensemble
method, or the prior knowledge of the number of clusters,
which alleviates the main problems that affect previous
methods and makes our approach more readily applicable
to different types of data sets. Another advantage of our
outlier ranking scores is their bounded ranges and their
interpretability, which are important when comparing their
performance with those of other similar competitors.

II. THE PROPOSED FRAMEWORK

As mentioned above, the affinity-based outlier ranking
process includes two main phases: (i) Consensus structure
generation: to compute a consensus structure from a cluster
ensemble, and (ii) score evaluation, to rank each individual
data instance using the affinity-based outlier ranking scores.

A. Consensus structure generation

The ensemble formulation phases include two steps: (i)
generation of multiple clustering solutions using different
settings; and (ii) computation of the consensus structure from
these clustering solutions.

Generation of different clustering solutions
Throughout this paper, we use Kmeans [26] as our clus-
tering algorithm. Considering a data set of N instances,
X = {xi}Ni=1, in which each data instance xi =
{xi1, xi2, · · · , xiD} has D features. In an unsupervised man-
ner, Kmeans assigns each data instance to one of K clusters
and forms a partition P to minimize the total distances from
data instances to their cluster centroid.

An important problem is how to select proper parameters
for these individual clustering solutions, so as to generate a
consensus structure which is as informative as possible. This
problem is still an active topic in cluster ensemble research
[27], [28]. In previous studies, individual clustering solutions
are usually constructed using different numbers of clusters
or different feature subsets. In this paper, we combine these
two methods into one: for each independent clustering trial,

we randomly select the number of clusters in the range of
[
√
N, 2
√
N ], and the number of features from [D/2, D],

where N is the number of data instances, and D is the
number of features. Note that our approach is not dependent
on prior knowledge of the number of clusters.

Generation of the consensus structure
The second step generates a consensus structure from differ-
ent individual clustering solutions constructed above. Note
that there are different possible kinds of consensus structures
derived from a cluster ensemble, such as a consensus matrix
[20], [21], [25], [29], a bipartite graph [23], [24], or a hyper-
graph [22]. We choose to use the consensus matrix generated
from individual clustering solutions as the reference for our
affinity-based outlier ranking scores. Specifically, for each
clustering solution {P (t)}Tt=1 generated by Kmeans in the
first step, we transform it to the corresponding N × N co-
association matrix as follows

M
(t)
ij =

{
1 if ∃ k, xi ∈ P (t)

k and xj ∈ P (t)
k

0 otherwise
(1)

We can construct the consensus matrix of these individual
clustering solutions from their co-association matrices using

M =
1

T

T∑
t=1

M (t) (2)

B. Affinity-based Outlier Ranking Score (AORS)

How to design a suitable outlier ranking score based on
the consensus matrix is the most important problem for this
paper. Intuitively, the entries in the i-th row of the consensus
matrix, i.e., [Mi1,Mi2, · · · ,MiN ], can be viewed as an
affinity measure between the data instance xi and all the
other instances. IfMij is close to one(or zero), the two data
instances xi and xj have a large probability to be inside the
same cluster (or in two different clusters). In other words,
the degree of affinity uncertainty for these two points is
small in this case. On the other hand, when the degree of
affinity uncertainty becomes larger (i.e., the affinity of the
point xi with the other points is only vaguely known), a
desirable measure should result in a significantly different
value from that in the former case. Interesting, preliminary
studies on the overall degree of affinity uncertainty from the
consensus matrix has been investigated in our recent work
[21] based on a generalized formulation of the well-known
Adjusted Rand Index (ARI) measure [18]. In this paper,
we shall design the Affinity-based Outlier Ranking Score
(AORS) in a similar spirit as in [21]. In the following, we
shall first provide a brief introduction of the RAND measure
[17] and the Adjusted Rand Index (ARI) measure [18]. We
then propose the new measures to evaluate the Affinity-
based Outlier Ranking Score (AORS) for each individual data
instance.

C. The RAND and the Adjusted Rand Index (ARI) measures

RAND [17] is a well-known measure to compare the
similarity between two partitions in a pair-counting manner.
For two partitions P and Q on a data set X with N instances,
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let δ() be the indicator function with δ(true) = 1 and
δ(false) = 0, RAND between partitions P and Q can be
represented as

RAND(P,Q) =
a0 + d0
λ0

(3)

where

a0 =
N−1∑
i=1

N∑
j=i+1

δ(P (xi) = P (xj) & Q(xi) = Q(xj))

b0 =
N−1∑
i=1

N∑
j=i+1

δ(P (xi) = P (xj) & Q(xi) ̸= Q(xj))

c0 =
N−1∑
i=1

N∑
j=i+1

δ(P (xi) ̸= P (xj) & Q(xi) = Q(xj))

d0 =
N−1∑
i=1

N∑
j=i+1

δ(P (xi) ̸= P (xj) & Q(xi) ̸= Q(xj))

λ0 = a0 + b0 + c0 + d0
(4)

Note that the four factors can be interpreted in the following
way: a0 is the number of point pairs assigned to the same
class in both partitions P and Q; b0 is the number of point
pairs assigned to the same class in partition P and to different
classes in partition Q; c0 is the number of point pairs assigned
to different classes in partition P and to the same class in
partition Q; d0 is the number of point pairs assigned to
different classes in both partitions P and Q.

RAND is well-known to be affected by the number of
clusters K, and tends to result in inflated scores when K is
large [18], [29]–[31]. An improved measure, Adjusted Rand
Index (ARI) [18], is proposed to alleviate the dependence
on the number of clusters. ARI can also be represented in a
pair-counting manner as follows:

ARI(P,Q) =
a0 − (a0+b0)(a0+c0)

λ0

1
2 (a0 + b0 + a0 + c0)− (a0+b0)(a0+c0)

λ0

(5)

D. The proposed measures

As mentioned above, we can extend RAND and ARI
in a similar spirit as in [21], to evaluate the consistency
between two data points. Specifically, for two data in-
stances xi and xj and the consensus matrix M, denote
u = [u1, u2, · · · , uN ] = [Mi1,Mi2, · · · ,MiN ] and v =
[v1, v2, · · · , vN ] = [Mj1,Mj2, · · · ,MjN ], we can compute
a number of new factors as follows

a =

N∑
i=1

uivi, b =

N∑
i=1

ui(1− vi)

c =
N∑
i=1

(1− ui)vi, d =
N∑
i=1

(1− ui)(1− vi)

λ = a+ b+ c+ d

(6)

We now propose two new measures, which are expressed in
terms of the above factors as follows:

Rvv(u,v) =
a+ d

λ
(7)

ARIvv(u,v) =
a− (a+b)(a+c)

λ

0.5(a+ b+ a+ c)− (a+b)(a+c)
λ

(8)

Compared to the original clustering evaluation measures
(3) and (5), the difference of these two new measures
comes from the factors a, b, c and d, which are based
on only one row of the consensus matrix M for each
data point, e.g., u = [Mi1, · · · ,MiN ] for xi and v =
[Mj1,Mj2, · · · ,MjN ] for xj . These two proposed mea-
sures, Rvv(u,v) and ARIvv(u,v), can be used to evaluate
the consistency of the two corresponding data points xi and
xj in terms of the extent of their agreements in clustering
assignments, similar to the cases in our recent work [21].
However, in this paper, we focus on estimating the outlierness
of the data points. Intuitively, Rvv(u,u) and ARIvv(u,u),
can be regarded as the evaluation of the extent of agreement
of clustering assignments between the data point x and itself.
Similar to the original measures in cluster evaluation, data
points with larger Rvv(u,u) values or ARIvv(u,u) values
can be regarded as more likely to be non-outliers. On the
other hand, data points with small score values are likely to
be outliers. Details of the interpretation and proofs of these
two new scores are presented in the following section.

The complete Affinity-based Outlier Ranking Score
(AORS) approach is summarized in Algorithm 1.

Algorithm 1: AORS

input : N ×D matrix of data set X = {xi}Ni=1;
input : number of individual partitions T ;
output: data instance importance score list s.

1 Kmax ← ⌈2
√
N⌉;

2 for each individual clustering solution t← 1 to T
do

3 sample a feature size D(t) from {D/2, · · · , D};
4 generate a reduced subset X(t) of D(t) features

sampled at random;
5 sample a cluster number K(t) from 2 to Kmax;
6 cluster X(t) with kmeans;
7 compute co-association matrix M (t) using (1);
8 end
9 compute the consensus matrix M using (2);

10 select a similarity measure (ARIvv or Rvv);
11 for each row in the consensus matrix
u = [Mi1, · · · ,MiN ] do

12 compute the outlier ranking:
13 si = ARIvv(u,u) using (8) or
14 si = Rvv(u,u) using (7) ;
15 end
16 return outlier ranking score list s;
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III. INTERPRETATION OF PROPOSED SCORES

During these few years, the interpretation of outlier scores
begins to attract great interests from leading research groups
[4], [7], [15]. Specifically, the ranges of the output score
values of many outlier detection methods may differ greatly
among different data sets or even among different categories
within a single data set. As a result, a consistent range for
outlier scores is regarded as important, and various methods
are proposed to transform different outlier scores to a unified
range [0, 1] for better interpretation [7]. On the other hand,
our proposed affinity-based outlier ranking scores, ARIvv
and Rvv, are already in this range. We shall discuss these
in detail in this section with the related proofs.

Proposition 1: For a data point x associated with the
i-th row in the consensus matrix u = [Mi1, · · · ,MiN ],
the affinity-based outlier ranking score ARIvv(u,u) has a
bounded range of [0, 1].

Proof: For easier expression, we first use a simpler
notation for the measure ARIvv as follows

A = a,B = 0.5(a+ b+ a+ c)

C =
(a+ b)(a+ c)

λ
,ARIvv(u,v) =

A− C
B − C

(9)

For the numerator of the affinity-based outlier ranking
score ARIvv(u,u) in Eq. (8), we can obtain

A− C = a− (a+ b)(a+ c)

λ

=
aλ− (a+ b)(a+ c)

λ
=
a(a+ b+ c+ d)− (a+ b)(a+ c)

λ

=
(a2 + ab+ ac+ ad)− (a2 + ab+ ac+ bc)

λ
=
ad− bc
λ

(10)

As λ > 0, we can focus on the numerator as follows:

ad− bc

=
N∑
i=1

uiui

N∑
i=1

(1− ui)(1− ui)−
N∑
i=1

ui(1− ui)
N∑
i=1

(1− ui)(ui)

=
N∑
i=1

ui
2
N∑
i=1

(1− ui)2 − (
N∑
i=1

ui(1− ui))2

(11)

We can obtain ad−bc ≥ 0 from the Cauchy-Schwarz inequal-
ity |⟨u,v⟩|2 ≤ ⟨u,u⟩⟨v,v⟩, and therefore the numerator of
ARIvv(u,u) is not less than zero.

On the other hand, we can easily see that

B −A =0.5(a+ b+ a+ c)− a = 0.5(b+ c)

=0.5(b+ b) = b ≥ 0
(12)

The third step uses the fact that b = c for ARIvv(u,u)
between u and itself. Therefore, for the factors A, B, and C
defined in Eq. (9), we can obtain

C ≤ A ≤ B (13)

Thus, we can obtain

0 ≤ ARIvv(u,u) = A− C
B − C

≤ 1 (14)

The condition for the lower bound of ARIvv(u,u) can be
derived directly from Eq. (11) as follows

ui = (1− ui), ∀i⇒ ui = 0.5, ∀i (15)

which means that under this condition the assignment of the
point x to a cluster becomes the most difficult, considering
that the probabilities for x and all the other points to be
in the same cluster or different clusters are all 0.5, i.e., all
random). In this case, x has the maximum uncertainty in
cluster assignment.

The upper bound of ARIvv(u,u) can be derived directly
from Eq. (12) and Eq. (20) as follows

ARIvv(u,u) =
A− C
B − C

=
A− C
B − C

=
A− C

A+ b− C
(16)

Thus, the maximum condition turns out to be

b =
N∑
i=1

ui(1− ui) = 0 (17)

As 0 ≤ ui ≤ 1, we can obtain the maximum condition as

ui = {0, 1}, ∀i (18)

which means that the point x is certain to be in the same
cluster or in different clusters with all the other points in
the cluster ensemble, i.e., x has the minimum uncertainty in
cluster assignment.

Thus, the affinity-based outlier ranking score for the data
point x, ARIvv(u,u), has a bounded range of [0, 1].

Proposition 2: The affinity-based outlier ranking score
Rvv(u,u) has a bounded range of [0.5, 1].

Proof: As in the case of ARIvv(u,u), we have b = c.
Thus

Rvv(u,u) =
a+ d

λ
=

a+ d

a+ b+ c+ d
=

a+ d

a+ 2b+ d
(19)

Since a ≥ 0, b ≥ 0, d ≥ 0, we have

0 < Rvv(u,u) =
a+ d

a+ 2b+ d
≤ 1 (20)

As in the case of ARIvv(u,u), the maximum condition is

ui = {0, 1}, ∀i (21)

Since a and d are dependent, the minimum case is different
from that in the case of ARIvv(u,u). Note that the denom-
inator in the measure Rvv(x,x) is a constant

λ = a+ b+ c+ d = N (22)

Thus, the minimum value of Rvv(u,u) is dependent on its
numerator

a+ d =

N∑
i=1

uiui +

N∑
i=1

(1− ui)(1− ui)

=
N∑
i=1

u2i +
N∑
i=1

(1− 2ui + u2i ) =
N∑
i=1

(2u2i − 2ui + 1)

=

N∑
i=1

2(ui − 0.5)2 + 0.5N ≥ 0.5N

(23)
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We can also observe that the minimum condition is the same
as that in ARIvv(u,u)

ui = 0.5, ∀i (24)

Thus,

Rvv(u,u) =
a+ b

λ
≥ 0.5N

N
= 0.5 (25)

i.e., the minimum value of Rvv(u,u) is 0.5, which is
different from that in ARIvv(u,u).

Thus, we have proved that the affinity-based outlier rank-
ing scoreRvv(u,u) has a bounded range of [0.5, 1].

IV. EXPERIMENTS

A. Experiment setup

In this section, we verify the effectiveness of AROS using
a number of public data sets. We begin by describing the data
sets we have used, the parameter selection process, the list
of previous algorithms for comparison with our algorithm,
and the evaluation metrics.

Data sets: We use a number of well-known benchmark
datasets from the UCI machine learning repository1, includ-
ing UCI-BCW, UCI-Chart, UCI-HandWritingDigit, UCI-
Pendigits, UCI-Vertebral, and UCI-Wine.

Parameter selection: Kmeans with the Euclidean distance
is used as the basic clustering algorithm. There is only
one parameter to be considered: T , the number of different
clustering solutions in (2). We set T = 100 as in related
cluster ensemble studies [29], [32]. We also investigate the
dependence of the results on different T values in the
experiments.

Competing algorithms: The following outlier ranking
methods are used for the comparison in this study:(1)
Random removal. A certain proportion of data points are
selected at random and excluded from clustering. Statistical
evaluation results of this method should not differ too much
and they can serve as the baseline references for the other
methods; (2) Outlier ranking methods based on K Nearest
Neighbors (KNN) [10]. The number of nearest neighbors
is set to 10 as in [10]; (3) Outlier ranking methods based
on the aggregates of K Nearest Neighbors (KnnAgg) [11].
The number of nearest neighbors is also set to 10. (4) Local
outlier factor (LOF) [12], which uses a range of MinPts
values rather than a specific number of nearest neighbors.
The lower bound of MinPts is also set to 10 as suggested in
the original paper [12], and the upper bound of MinPts is set
to 40 (In the original paper [12], no explicit selection of the
upper bound of MinPts is provided, and different data sets
are discussed with MinPts values from 35 to 45). (5) Our
affinity-based outlier ranking methods with the Rvv score
(Rvv). (6) Our affinity-based outlier ranking methods with
the ARIvv score (ARIvv).

Evaluation metrics: Three popular measures, i.e., RAND
[17], Adjusted Rand Index (ARI) [18], and Normalized Mu-
tual Information (NMI) [22] are widely adopted to evaluate
clustering performance. We use all these three measures for

1http://archive.ics.uci.edu/ml/

the comparison between our methods with the other ones,
to avoid the possible bias of any single measure. For further
comparison between the two proposed methods, i.e., Rvv and
ARIvv, only NMI is used as the evaluation measure, in order
to remove the possible dependence between RAND and Rvv
and that between ARI and ARIvv.

For all the experiments, the results are based on averaging
across 50 trials if not otherwise specified.

B. Comparison of AORS with competing algorithms

We compare AORS with a number of competing algo-
rithms on six UCI data sets, with different proportions of
removed samples. Specifically, the removed proportions of
samples range from 1% to 10%, and we evaluate the Kmeans
clustering performance on the remaining data. Results on the
three different measures, RAND [17], Adjusted Rand Index
(ARI) [18], and Normalized Mutual Information (NMI) [22],
are shown in Figures 1, 2, and 3, respectively. Although they
have similar formulations, ARIvv significantly outperforms
Rvv in all the data sets based on the three different measures.
The RAND measure is believed to have less discrimination
power when the number of clusters increases [18], [21],
[30], [31], which motivates the adoption of an alternative
measure such as ARI. Interestingly, ARIvv shows similar
advantage when compared to Rvv in these experiments. From
the figures, we can see that ARIvv has better performance in
most cases when compared to the other competitors. Also,
we can find that the performance of ARIvv tends to increase
as the portion of removed data increases, which suggests that
the removed samples have an adverse effect on the clustering.

C. Comparison of ARIvv and Rvv scores

We have further investigated the correlation between
ARIvv and Rvv in Figure 4. For each sample in each trial,
its ARIvv score is used as the x-axis value and its Rvv score
as the y-axis one. The overall correlation of ARIvv and Rvv
for all the samples in each data set is shown above each
scatter plot. Interestingly, we can observe that different data
sets could result in very different distributions of the (ARIvv,
Rvv) points. The largest correlation value is 0.8457 while the
smallest is 0.1981. This suggests that the ARIvv scores do
not have a strong correlation with the Rvv scores. In addition,
we can observe that the Vertebral data set has a number of
samples appearing in the top left, which indicates that these
samples have large Rvv scores but small ARIvv ones. Also,
we can find ARIvv have a wider distribution than Rvv, which
is consistent with the well-recognized understanding that the
ARI measure value has greater discrimination power than the
RAND measure in clustering performance evaluation [18],
[21], [31].

D. Performance studies of ARIvv with different ensemble
sizes.

Note that our AORS method with ARIvv score has only
one parameter, i.e., the ensemble size T . Thus, it is inter-
esting to study the effect of this parameter on the resulting
performance. We use different ensemble sizes from 50 to 500
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Fig. 1. Performance on UCI data sets: RAND. ARIvv outperforms all the other competitors.
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Fig. 2. Performance on UCI data sets: ARI. ARIvv outperforms all the other competitors.

with a step value of 50. Clustering performances of each data
set under different numbers of ensembles are shown in Figure
5. In the figure, each column corresponds to one ensemble
size. The colors of the columns vary smoothly from cyan to
magenta, in accordance with the results from the worst to
the best. We can also observe that the performance variation
is quite small with respect to different ensemble sizes. Also,
we can find that the standard deviation, indicated by the error
bar at the top of each column, is very small when compared
to the column height. These observations suggest that our
method is quite robust and not affected too much by the
value of T .

V. CONCLUSION

It is important to identify and exclude outliers in data
clustering. However, existing outlier ranking methods are
generally based on simple distance measures tailored for
particular data sets, and cannot accurately reflect the complex
affinity among data points for different data types. In this pa-
per, we propose a new affinity-based outlier ranking method
with two new outlier ranking scores, in a similar spirit of
well-known generalized clustering evaluation measures. Our
methods are based on the affinity between data points and
thus can be universally applicable to different data sets of
diverse characteristics. To our best knowledge, our work
is the first effort in making effective use of the consensus
affinity of a cluster ensemble to achieve this objective. We
also propose to generalize well-known pair-counting clus-
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Fig. 3. Performance on UCI data sets: NMI. ARIvv outperforms all the other competitors.

Fig. 4. Comparison of ARIvv and Rvv scores. ARIvv has a wider range than Rvv.

tering measures, including the Rand Index measure and the
Adjusted Rand Index (ARI) measure, to compute the outlier
ranking scores. This approach alleviates the main problems
of traditional clustering ensembles by avoiding the need to
obtain a final consensus solution and the prior knowledge
of the number of clusters. In addition, our proposed outlier
ranking scores have bounded ranges and straightforward
interpretation, which are verified through theoretical analysis.
Experiments on a number of UCI benchmark data sets show
that our method based on the adjusted rand index (ARIvv)
significantly outperforms competing algorithms.

In future, we would like to study the generalized forms of
other clustering evaluation measures. We have demonstrated
the importance of selecting suitable outlier ranking scores in

this paper, and it will be interesting to study which measures
can be used to further improve the performance of our
methods. In addition, it is also important to investigate how
we can adapt the various measures for different data sets with
diverse characteristics.
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