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Abstract—Template-matching and discriminative techniques,
like support vector machines (SVMs), have been widely used
for automatic speech recognition. Both methods require that
varying length sequences are mapped to vectors of fixed lengths:
in template-matching, the problem is solved by means of dynamic
time warping (DTW), while in SVM with dynamic kernels.
The supervector and i-vector paradigms seem to represent a
valid solution to such a problem when SVM are employed for
classification. In this work, Gaussian mean supervectors (GMS),
Gaussian posterior probability supervectors (GPPS) and i-vectors
are evaluated as features both for template-matching and for
SVM-based speech recognition in a comparative fashion. All these
features are based on Power Normalized Cepstral Coefficients
(PNCCs) directly extracted from speech utterances. The different
methods are assessed in small vocabulary speech recognition tasks
using two distinct corpora, and they have been compared to DTW,
dynamic time alignment kernel (DTAK), outerproduct of trajec-
tory matrix, and PocketSphinx as further recognition techniques
to be evaluated. Experimental results showed the appropriateness
of the supervector and i-vector based solutions with respect to
the other state-of-the art techniques here addressed.

I. INTRODUCTION

In the majority of automatic speech recognizers, acoustic
models are represented by hidden Markov models (HMM) [1].
Approaches based on template-matching [2] are also widely
studied because of their low storage requirements and their
effectiveness when the amount of training data is limited.
Generally, in template-matching sequences of different lengths
are aligned using dynamic time warping (DTW) [2] and
classification is based on the distance with a set of reference
patterns. The problems with the original DTW formulation
are its high computational burden and the low performance in
speaker independent tasks. In the literature, particular attention
has been devoted to develop efficient versions of DTW for
devices with limited computational resources [3]–[5].

Support Vector Machines (SVMs) have also been exten-
sively employed for recognizing speech [6]. Originally, SVM
has been developed to solve binary classification problems of
sequences of fixed length, but it can be easily extended to
multiclass problems, e.g., using the “one vs one” or the “one vs
all” strategies [7]. Its direct employment in speech recognition
tasks is not possible, since input utterances are composed of
a varying number of feature vectors. The approaches followed
in the literature to solve the problem are either based on
hybrid SVM/HMM architectures [8] or on dynamic kernels
[9]. The latter techniques comprise methods that explicitly
map a variable length sequence to fixed length vector (e.g.,

the Fisher kernel [10], or the outerproduct of trajectory matrix
(OTM) [11]) and alignment kernels, e.g., the dynamic time
alignment kernel (DTAK) [12] or the dynamic time warping
kernel (DTWK) [13].

In this paper, supervectors and i-vectors are evaluated
to model variable length utterances in a small vocabulary
speech recognition task. The resulting fixed-length vectors are
classified with SVM or with a distance metric. Thus, in the
latter case, the method represents an alternative to DTW for
template-matching speech recognition, while in the former to
dynamic kernels for SVM. Mapping is performed by training
a Gaussian mixture model (GMM) that represents the acoustic
space, and then extracting three set of features: Gaussian
mean supervectors (GMS), Gaussian posterior probability su-
pervectors (GPPS), and i-vectors. In particular, i-vectors have
been originally proposed for speaker recognition [14], but
they have been successfully employed for speech emotion
classification [15], accent recognition [16], and acoustic event
categorization [17]. Power Normalized Cepstral Coefficients
(PNCCs) [18] are employed as low-level features, and the
evaluation includes DTW, DTAK, OTM and PocketSphinx [19]
in order to compare the proposed approach to recognizers
based on template-matching, SVM and HMM. Two corpora
have been employed in the experiments: TIDIGITS [20] and
ITAAL [21]. The first has been employed to evaluate the
performance on a single-digit recognition task using a well-
known corpus by the scientific community. ITAAL allows
to assess the performance in a more realistic scenario, since
it contains utterances spoken in Italian acquired with close-
talking and distance-talking microphones. The algorithms have
been evaluated in a speaker-independent task, and in a low-
resourced speaker-dependent task. The results demonstrate
that GMS with SVM outperforms other approaches in the
TIDIGITS task and that in the ITAAL tasks i-vectors, either
coupled with SVM or with distance-based classification, are
able to achieve superior performance respect to DTW, DTAK
and PocketSphinx.

The outline of the paper is the following: Section II in-
troduces the speech recognition problem. Section III describes
the proposed approach to speech utterance classification. Sec-
tion IV briefly describe DTAK and OTM as alternatives to
the proposed approaches. Section V shows the experiments
conducted to evaluate the performance of the approaches.
Finally, Section VI concludes the paper and presents future
developments.

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3562



II. PROBLEM FORMULATION

Consider a set of template utterances T = {(X1, C1),
(X2, C2), . . . , (XK , CK)} where Xk = {xk,1,xk,2, . . . ,
xk,Lk

}, xk,l is the low-level feature vector of utterance k at
the time frame index l and Ck is the corresponding label.
Given a test utterance Y = {y1,y2, . . . ,yLy}, the problem is
finding the corresponding label Cy ∈ {C1, C2, . . . , CK} based
on a certain classification criterion. In this work, two classifiers
are employed: support vector machines, and distance based
classification. Both methods require that sequences of different
lengths are mapped to vectors of the same lengths. This paper
proposes three methods for utterance length normalization for
small vocabulary speech recognition: Gaussian mean super-
vectors (GMS), Gaussian posterior probability supervectors
(GPPS), and i-vectors.

III. THE PROPOSED APPROACH

The general scheme of the approach is shown in Fig. 1.
PNCCs are employed as low-level features in all the processing
steps. A Universal Background Model (UBM) represents the
entire acoustic space and it is modelled by means of a Gaussian
Mixture Model (GMM). The UBM is trained using a corpus
U = {U1,U2, . . . ,UP } where Up is an utterance represented
by its PNCC feature vectors. When i-vectors are considered,
training of the total variability matrix (“TVM” in Fig. 1) is
also required. In the figure, i-vectors related processing blocks
are depicted with dashed lines. In the “Vector Mapping” block,
each template utterance Xk ∈ T is mapped to a GMS, a GPPS
or an i-vector. The set of template vectors can be then directly
employed for classification using a distance metric, or used for
training an SVM. For simplicity, Fig. 1 shows the SVM based
approach.

In the classification phase, an input utterance is mapped to
the fixed length vector as in the training phase, and then it is
classified accordingly.

A. Power Normalized Cepstral Coefficients

Several techniques have been proposed in the literature for
the extraction of low-level features from speech signals. A
popular choice for speech recognition tasks is represented by
Mel-Frequency Cepstral Coefficients (MFCCs) [22]. However,
their recognition performance in noisy and reverberated scenar-
ios is poor, and additional techniques are needed to improve the
accuracy. For example, speech enhancement techniques [23],
such as spectral subtraction [24] or Ephraim & Malah log-
spectral amplitude estimator [25] operate before the feature
extraction pipeline. Other approaches, such as Vector Taylor
Series speech enhancement [26] or single [27] and multi-
channel MFCC-MMSE [28] modify the extraction algorithm,
or directly normalize the features statistics [29], [30]. An
alternative approach consists in using a different set of features
that are intrinsically more robust than MFCCs. Recently,
PNCCs [18] have demonstrated their effectiveness at the cost
of a modest increment of computational burden. PNCCs have
been employed as low-level features in this paper, and they
will be now briefly described.

Fig. 2 illustrates the main steps needed for the extraction
of PNCCs: the main innovations with respect to MFCCs reside
in the replacement of the logarithmic non-linearity with a

(a) Training. (b) Classification.

Fig. 1: Scheme of the proposed approach. i-vector related
processing blocks are shown with dashed lines. TVM denotes
the “total variability matrix”.
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Fig. 2: The PNCC feature extraction pipeline.

power function law and the introduction of the “Medium-Time
Processing”.

The first stages of the extraction pipeline are the same
of the MFCC extraction one. The first difference in PNCCs
calculation is the replacement of the mel-spaced filterbank
with a gammatone one [31]. The motivation behind this choice
is that the latter slightly improves the recognition accuracy.
The subsequent steps mark the real difference between PNCCs
and MFCCs. The “Medium-Time Processing” stage exploits a
longer-duration temporal analysis (e.g., 5 frames) to estimate
the noise floor level and to subtract it from the instantaneous
power of the input signal. Instead of directly using the filtered
signal, the output of the “Medium-Time Processing” stage is
a transfer function that modulates the original signal in the
“Time-Frequency Normalization” step. In the “Mean Power
normalization” stage, the signal power is normalized dividing
the input by a running average of the overall power. In MFCCs,
the logarithm non-linearity is applied to the output of the mel
filter-bank. Here, instead, a power function non-linearity with
exponent 1/15 is applied. The motivation arises from studies
on the non-linear curve that relates the sound pressure level in

3563



dB to the auditory-nerve firing rate. Experiments demonstrated
that replacing the logarithmic non-linearity with the power-
function one improves the recognition accuracy [18]. The final
stages of the PNCC pipeline are the computation of the DCT
and the mean normalization as in the MFCC pipeline.

B. Fixed-length vector mapping

1) Gaussian Mean Supervectors: Consider an input utter-
ance X = {x1,x2 . . . ,xL} where L is the number of frames
in the utterance and each xl is a vector of low-level descriptors
(e.g., Mel-Frequency Cepstral Coefficients) of size D×1. The
GMM representing an UBM is given by

p(xl|λ) =
J∑
j=1

wjp(xl|µj ,Σj), (1)

where λ = {wj ,µj ,Σj |j = 1, 2, . . . , J}, wj are the mixture
weights, and p(·|µj ,Σj) is a multivariate Gaussian distribution
with mean vector µj of size D × 1 and diagonal covariance
matrix Σj of size D ×D.

The GMS M of an utterance X is obtained by adapting the
means of the UBM model with maximum a posteriori (MAP)
adaptation and then concatenating the mean vectors:

M = [µT1 ,µ
T
2 , · · · ,µTJ ]T , (2)

where T denotes the transpose operator. Regardless the length
of the input utterance, M is a DJ × 1 vector.

2) Gaussian Posterior Probability Supervectors: Consider
an UBM with J = 1024 gaussians and an acoustic feature
vector with D = 39. The resulting GMS is composed of 39936
elements, and this can result in a significant computational
burden of the classification stage. GPPS [32] is an effective
way of reducing the supervector size, since the final vector
has exactly J elements. The GPPS of an input utterance X =
{x1,x2 . . . ,xL} is given by:

b = [b1, b2, · · · , bJ ]T , (3)

where

bj =
1

L

L∑
l=1

wjp(xl|µj ,Σj)∑J
j′=1 wj′p(xl|µj′ ,Σj′)

, j = 1, 2, . . . , J. (4)

Basically, the GPPS vector b captures the dissimilarity be-
tween the input utterance X and the generic utterance modelled
by the UBM.

3) i-vectors: The i-vector technique was originally devel-
oped for speaker recognition tasks [14]. In particular, it was
noticed that the channel factors estimated in Joint Factor
Analysis (JFA) [33] contain information about speaker voices.

In i-vector modelling, the supervector M of an utterance
is decomposed as follows:

M = m + Tv, (5)

where m is the UBM supervector, T is the total variability
matrix and v is the i-vector, a random variable with zero-mean
and unit-variance normal distribution.

The following Baum-Welch statistics are needed to extract
the i-vector of an input utterance X = {x1,x2 . . . ,xL}:

Nj =
L∑
l=1

p(j|xl, λ), Fj =
L∑
l=1

p(j|xl, λ)xl,

F̃j =
L∑
l=1

p(j|xl, λ)(xl − µj), j = 1, 2, . . . , J.

(6)

Denoting with N a JD × JD diagonal matrix with diagonal
blocks NjI and with F̃ a JD×1 vector obtained concatenating
the F̃j , the i-vector v can be calculated as:

v = (I + TTΣ−1NTT )−1TTΣ−1F̃. (7)

The total variability matrix T is calculated as the eigenvoice
matrix in JFA [34]. The matrix Σ is JD × JD a diagonal
covariance matrix calculated during the total variability matrix
training process.

The ALIZE toolkit [35] has been employed to extract i-
vectors and to train the total variability matrix.

C. Classification

1) Support Vector Machines: SVMs are binary classifiers
that discriminate whether an input vector x belongs to class +1
or to class −1 based on the following discriminant function:

f(x) =
N∑
i=1

αitiK(x,xi) + d, (8)

where ti ∈ {+1,−1}, αi > 0 and
∑N
i=1 αiti = 0. The

terms xi are the “support vectors” and d is a bias term that
together with the αi are determined during the training process
of the SVM. The kernel function K(·, ·) can assume different
forms [36]. In this work, the radial basis function (RBF) kernel
K(x,xi) = exp(−γ‖x−xi‖2) has been employed. The input
vector x is classified as +1 if f(x) ≥ 0 and −1 if f(x) < 0.

In this work, the multiclass problem has been addressed
using the “one versus all” strategy. LIBSVM [37] has been
employed both in the training and testing phases of the SVM.

2) Distance-based classification: SVM is a powerful clas-
sification technique, but it can require a significant amount
of training data in order to achieve satisfactory performance.
An alternative solution is deciding whether an input utterance
belongs to a class based on the distance between the test
utterance and the templates. In this work, a cosine distance
scoring has been employed. The cosine distance DC between
two vectors x and y is defined as:

DC(x,y) =
x · y
‖x‖‖y‖

, (9)

where · indicates the dot-product between two vectors.

As stated in Section II, in the template training set T the
same class can be associated to one or more utterances. To
obtain a single template vector for one class, all the vectors
extracted from utterances belonging to the same class are aver-
aged. Classification is then performed selecting the reference
pattern whose distance with the input utterance vector is the
smallest.
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IV. ALTERNATIVE APPROACHES

In this section, two alternative methods to the approaches
previously described will be briefly reminded. DTAK belongs
to the family of dynamic kernels for SVM, and it operates
modifying the kernel function of the classifier to deal with
variable length input sequences. OTM transforms variable
length inputs in fixed-lengths ones, thus it operates similarly
to the approaches described in the previous section.

A. Dynamic-Time Alignment Kernel (DTAK)

DTAK has been originally proposed in [12], and basically
it consists in modifying the expression of an SVM kernel
introducing the DTW distance between two input sequences
in the kernel feature space.

More in details, denoting with X = {x1,x2 . . . ,xLx} and
Y = {y1,y2 . . . ,yLy} two input sequences, the DTAK kernel
K(·, ·) coupled with and RBF kernel KRBF (·, ·) is given by

K(X,Y) = max
ψX ,ψY

1

Mψ

L∑
k=1

m(k)KRBF (xψX(k),yψY (k)),

(10)
where ψX(k) and ψY (k) are two warping functions subject to

1 ≤ ψX(k) ≤ ψY (k + 1) ≤ Lx, (11)
1 ≤ ψY (k) ≤ ψY (k + 1) ≤ Ly, (12)

the term m(k) is a non-negative path weighting coefficient,
and Mψ is a normalization factor usually set to Lx + Ly .

As in DTW, the optimization problem of equation (10) is
solved by dynamic programming. In particular, the following
recursion formula is defined

D(i, j) = max

{
D(i, j) +KRBF (xi,yj),
D(i− 1, j − 1) + 2KRBF (xi,yj),
D(i, j − 1) +KRBF (xi,yj)

}
.

(13)
Notice that differently from DTW, in (13) the “min” operator is
replaced with the “max” one, and the euclidean distance with
the RBF kernel. This means that differently from DTW that
finds the optimal path that minimizes the accumulated distance,
here the algorithm finds the optimal path that maximizes the
accumulated similarity [12]. It is worth pointing out that DTAK
is a positive semi-definite kernel only under certain conditions
[38].

B. Outerproduct of trajectory matrix (OTM)

This method for equalizing the length of speech utterances
has been originally proposed in [11]. Given an input utterance
composed of L feature vectors of dimension D, the trajectory
matrix is an L×D matrix defined as:

U = [uT1 ,u
T
2 , . . . ,u

T
L]
T . (14)

The outerproduct trajectory matrix is then defined as:

Z = UTU. (15)

Regardless the number of frames L in the input utterance, Z is
a D×D matrix. Note, also, that Z is symmetric, thus it contains
D(D + 1)/2 unique elements. The final feature vector z is a
D(D+ 1)/2× 1 vector obtained vectorizing the outerproduct
trajectory matrix and choosing the unique elements.

Differently from DTAK that directly modifies the SVM
kernel, OTM maps each variable length utterance to a fixed-
length vector before the classification stage, and thus it can
be employed both for training an SVM and for distance-based
classification. In the experiments, the first approach will be
denoted as “OTM - SVM” and the second “OTM - Distance”.

V. EXPERIMENTS

The proposed approaches have been evaluated on two
corpora: TIDIGITS [20] and ITAAL [21]. In TIDIGITS, the
task consists in recognizing isolated digits. ITAAL is a re-
cently presented corpus of distress calls and home automation
commands in Italian, and it has been employed to assess the
performance in a more realistic scenario. In both experiments,
the speech signals have been downsampled to 16 kHz and
silence portions have been removed using the voice activity
detector of the Audio Segmentation Toolkit1.

Regarding the parameters of feature extraction pipelines,
the PNCC pipeline has been configured as follows:

• pre-emphasis coefficient (µ): 0.97;

• frame-size/frame-shift: 25 ms/10 ms;

• number of filters in the gammatone filterbank: 40.

The remaining parameters have been set as in [18].

The evaluation metric employed for evaluating the system
performance is the “sentence recognition accuracy”, i.e., the
ratio between the number of correctly recognized sentences
and the total number of sentences.

A. Experiments on the TIDIGITS corpus

The adult set of the TIDIGITS corpus is divided in two
subsets, one for training and one testing. The training set
contains 112 speakers and it has been further divided in two
subsets: one set, T , with single-digits utterances having a total
duration of 39.68 s, and the other, U , with sequences of digits
utterances having a total duration of 210.80 s. The validation
set contains the single-digit utterances of 20 speakers (half
males, half females) of the original TIDIGITS test set. The test
set of the experiment contains the single-digit utterances of the
remaining 83 speakers. The validation set has been employed
to obtain all parameters of the algorithms.

The UBM is composed of 8 gaussians and it has been
trained on the set U . GMS, GPPS and i-vectors have then been
extracted from the set T with i-vectors having 70 elements.
The values of the penalty parameter and the RBF coefficient
in all SVM-based approaches (DTAK included) have been
selected on the validation set using a grid search as suggested
in [37]. The acoustic model in PocketSphinx has been trained
on the entire TIDIGITS adult training set (i.e., the set U ∪T ).
Each phone is modelled with a 3 states HMM without skip
and 8 gaussians per state. The number of tied states has been
set to 500. DTAK has been trained on the set T .

TABLE I shows the recognition results. The lowest per-
forming algorithms are DTW and GPPS-based approaches.
DTW performance can be explained considering that the

1http://gforge.inria.fr/projects/audioseg/
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TABLE I: Sentence recognition accuracy on the TIDIGITS
single-digit utterances.

Accuracy (%)
DTW 62.56
DTAK 99.73
PocketSphinx 98.90
GMS - SVM 99.81
GMS - Distance 93.58
GPPS - SVM 64.07
GPPS - Distance 45.24
OTM - SVM 99.42
OTM - Distance 95.33
i-vectors - SVM 99.50
i-vectors - Distance 96.60

algorithm suffers in speaker-independent tasks [2]. Regarding
GPPS, given the same UBM, these features are not capable of
capturing a sufficient amount of information for speech recog-
nition tasks. Experiments have demonstrated that increasing
the number of gaussians in the UBM indeed results in better
performance for GPPS. “GMS - SVM” and “i-vectors - SVM”
provide similar performance and comparable to DTAK and
PocketSphinx. “GMS - Distance” and “i-vectors - Distance”
accuracies are respectively 6.23% and 2.90% below their SVM
counterparts. Note that “GMS - Distance” and “i-vectors -
Distance” give superior performance respect to DTW, demon-
strating that they are more able to deal with speaker variability.

B. Experiments on the ITAAL corpus

ITAAL2 is an Italian corpus of home automation com-
mands and distress calls spoken by 20 native Italian speakers
(10 males, 10 females) [21]. Each utterance has been acquired
with a close-talking microphone and with an array composed
of four microphones. The acquisition room had a reverberation
time of 0.72 s, the average signal-to-noise ratio of the close-
talking microphone signals is 51.46 dB, and the one of the
distant microphone signals is 34.08 dB. Each person spoke the
corpus sentences standing in front of the microphone array at a
distance of 3 m. The corpus is composed of 15 home automa-
tion commands, 5 distress calls, each repeated three times and
uttered both in normal and shouted conditions. The vocabulary
is composed of 24 words. The recognition performance has
been evaluated on the close-talking microphone signal and on
the central microphone signal of the array. Results are reported
separately for commands and distress calls.

Due to the limited amount of data in ITAAL, the UBM has
been trained on the “speaker independent” set of the APASCI
corpus [39]. This set has a total duration of 174 minutes and
it is composed of 2170 phonetically rich sentences uttered by
100 speakers.

1) Speaker independent task: In this task, algorithms have
been tested using leave-one out cross-validation with a three-
way data split, i.e., using iteratively one speaker for validation,
one for testing and the remaining for creating reference pat-
terns. Since speakers in the test set are not included in the
training set, the algorithms operate in a “speaker independent”
manner as in the previous TIDIGITS experiment.

The number of gaussians in the UBM has been set to 16,
and the i-vectors dimension to 250. The PocketSphinx acoustic

2Audio samples are available at http://www.a3lab.dii.univpm.it/projects/itaal

TABLE II: Recognition accuracy (%) in the ITAAL speaker in-
dependent task. “H”: headset microphone signals. “D”: distant
microphone signals.

Commands Distress calls Average
H D H D

DTW 67.38 40.49 65.87 48.31 55.51
DTAK 84.28 88.46 91.48 93.96 89.55
PocketSphinx 95.94 37.41 97.67 78.84 77.46
OTM - SVM 85.70 62.99 96.81 85.42 82.73
OTM - Distance 41.76 32.70 62.92 52.22 47.40
GMS - SVM 95.83 79.92 98.61 93.47 91.96
GMS - Distance 81.67 65.32 89.87 83.55 80.10
GPPS - SVM 61.01 54.40 83.09 77.96 69.12
GPPS - Distance 50.79 27.99 70.09 50.33 49.80
i-vectors - SVM 98.05 85.66 99.21 99.10 95.51
i-vectors - Distance 93.40 80.14 97.69 95.94 91.79

TABLE III: Recognition accuracy (%) in the ITAAL speaker
dependent task. “H”: headset microphone signals. “D”: distant
microphone signals.

Commands Distress calls Average
H D H D

DTW 94.33 89.13 98.39 93.85 93.93
DTAK 33.54 31.72 28.57 27.82 30.41
PocketSphinx 98.50 30.90 99.73 55.88 71.25
OTM - SVM 95.71 85.36 99.58 98.75 94.85
OTM - Distance 92.32 90.18 100.00 98.75 95.31
GMS - SVM 97.14 91.43 100.00 99.58 97.04
GMS - Distance 95.13 94.40 100.00 100.00 97.38
GPPS - SVM 74.11 69.58 91.73 77.60 78.25
GPPS - Distance 63.64 60.73 85.51 67.01 69.22
i-vectors - SVM 97.46 94.19 100.00 100.00 97.91
i-vectors - Distance 97.59 95.20 100.00 100.00 98.20

model has been trained on the same set used to train the
UBM. Each phone is modelled with a 3 states HMM without
skip and 4 gaussians per state. The number of tied states has
been set to 200. In addition, since the proposed approaches
operate in matched acoustic conditions, the PocketSphinx
acoustic model has been adapted with maximum likelihood
linear regression (MLLR) on the same utterances employed
for creating templates. Experiments have been performed in
matched conditions, i.e., with reference and test sentences
uttered with the same vocal effort and acquired with the same
microphone. SVM hyper-parameters have been tuned using a
grid search on the validation set.

The recognition results are shown in TABLE II. Regarding
the proposed approaches, GPPS is the lowest performing as
in TIDIGITS. As expected, DTW performs poorly since it
operates in a speaker independent task, while DTAK outper-
forms “OTM - SVM” by 6.82%. On average, the “i-vectors -
SVM” solution is the best performing, and in general all the
SVM-based approaches outperform the distance-based ones.
Notice, however, that differently from the TIDIGITS exper-
iment, DTAK and OTM performance are constantly below
“GMS - SVM” and “i-vectors - SVM”. The reasons behind this
is probably due to the limited amount of data for training the
SVM in DTAK, which is compensated by the a-priori knowl-
edge provided by the UBM in GMS and i-vectors approaches.
Compared to PocketSphinx, the accuracy of the “i-vectors -
SVM” approach is similar when the headset microphone is
employed, while is below in the distant microphone case.
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2) Speaker dependent task: Each sentence in the ITAAL
corpus is repeated three times by each speaker. In this exper-
iment, reference patterns are created from two of the three
repetitions and testing is performed on the third. Reference
and test repetitions are varied iteratively and the results are
averaged. This means that reference and test utterances belong
to the same speaker. The objective of this experiment is
to assess the performance of the algorithms in a speaker
dependent scenario and with a limited amount of training data.
The algorithms parameters are the same as in the previous
ITAAL experiment.

TABLE III shows the obtained results. Due to the limited
amount of data for training the SVM, DTAK performance
is considerably below the other approaches. Notice, however,
that the same does not hold for “OTM - SVM”: this can
be explained with the good discriminative capabilities of the
OTM features, which are confirmed by the results of “OTM
- Distance” approach. A similar behaviour can be observed
for “GMS - SVM” and “i-vectors - SVM”, whose accuracies
are above 90%. This means that they are more robust when
the amount of training data is low. Regarding distance-based
approaches, DTW accuracy is now significantly better, since
it operates in a speaker dependent task, while on average “i-
vectors - Distance” performs better then the other algorithms.
With the only exception of GPPS, distance based approaches
perform better than SVM-based ones. In addition, they perform
considerably better than DTW, thus confirming the i-vectors
and GMS represent a more effective way to map variable
length utterances to fixed-length vectors in template-matching
techniques.

VI. CONCLUSION

In this paper, Gaussian posterior probability, Gaussian
mean supervectors and i-vectors have been evaluated in a small
vocabulary speech recognition task. PNCCs represent the low-
level features that are firstly extracted from the speech signal,
and GMM-based background model is trained to map the
sequence of PNCCs to a fixed length supervector. In the case of
i-vectors, the total variability matrix is trained using the same
corpus employed for training the background model. Classifi-
cation of input utterances has been performed using support
vector machines and with cosine-distance. The experiments to
assess the performance of the algorithms have been conducted
on the TIDIGITS and on the ITAAL corpora. In the first, the
performance has been assessed in the single-digit recognition
scenario. In the second, the algorithms have been assessed on
a smart-home scenario, and with signals acquired both with a
close-talking and a distant-talking microphone. Both speaker
dependent and speaker independent tasks have been tested.
The algorithms have been compared to three popular speech
recognition approaches: DTW, DTAK, and PocketSphinx. The
results demonstrated the effectiveness of i-vectors and GMS
both when classification is performed with SVM and with
cosine-distance.

Future works, will consider supervectors and i-vectors
extracted from UBM modelled as hidden Markov models
instead of Gaussian mixture models [40]. In addition, the
algorithm capability to reject out-of-domain sentences will
be evaluated. Finally, the robustness of the approaches in

mismatched acoustic and vocal effort conditions will be also
addressed.
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