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Abstract— In recent years, semi-supervised clustering re-
ceives considerable attention in the pattern recognition and
data mining communities. This type of clustering algorithms
takes advantage of partial prior knowledge, and significant im-
proved performance beyond traditional unsupervised clustering
algorithms is observed. In general, the partial prior knowledge
is mainly in the form of pairwise constraints, which specify
whether point pairs should be in the same cluster or in different
clusters. Moreover, some other forms of constraints also attract
research interests, for example, the balance constraint or the
size constraint. However, it is also important to consider dif-
ferent types of constraints simultaneously, since different types
of prior knowledge might have their own bias when considered
separately. In this paper, we propose an improved algorithm
to incorporate the pairwise and size constraints into a uni-
fied framework. Experiments on several benchmark data sets
demonstrate that the proposed unified algorithm outperforms
previous approaches under a variety of different conditions,
which demonstrates that judicious integration of different types
of constraints can result in improved performance than in those
cases where only a single kind of constraint is used.

I. INTRODUCTION

Recently, partial knowledge of ground truth label infor-
mation is integrated into different clustering methods and is
widely reported to improve performance greatly [1]–[4]. This
new type of semi-supervised clustering methods is usually
referred to as constrained clustering. In general, the clustering
constraints are often in the form of pairwise constraints
between some of the data point pairs. The pairwise constraint
is usually of two types, the Must-Link (ML) constraint and
the Cannot-Link (CL) constraint [1]: for two data points x
and y, a Must-Link (ML) constraint ML(x,y) requires that
these two data points must be assigned to the same class,
while a Cannot-Link (CL) constraint CL(x,y) requires them
to be assigned to two different classes. A number of con-
strained clustering algorithms have recently been proposed
to take advantage of these two kinds of pairwise constraints.
Most of these algorithms focus on the Kmeans algorithm,
since Kmeans is one of the best-known and most widely
used algorithms, and extension work on this algorithm has
attracted great interests [5], [6]. For example, COPKmeans
[1] tries to satisfy each constraint, in addition to considering
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the distance of each data point to the cluster centroids. Partial
Constrained Kmeans (PCKmeans) [4] and Partial closure-
based constrained Kmeans (PCCKmeans) [2] optimize cor-
responding cost functions which take into consideration not
only distances but also constraints. On the other hand, several
authors recently introduce another new constraint, the size
constraint, which emphasizes the size distribution of the
resulting clusters. Here the size of a cluster refers to the total
number of data points in the cluster, and class distribution
refers to the set of cluster sizes in the clustering solution.
The most active issue of this topic is to achieve balanced
clustering, which aims to attain a clustering result, with the
constraint that all of the clusters have comparable sizes [3].
Various approaches are proposed to obtain balanced clusters,
e.g. by including the balance criterion in the clustering
formulation via graph partitioning [7], [8], by adding balance
constraints within an optimization framework [9], or by using
the class of frequency sensitive competitive learning methods
which penalizes clusters with large sizes [10]. However,
imbalanced data sets are also widely observed in practical
applications. Here ”imbalanced data sets” refers to those
data sets where the number of data points are significantly
different across the classes. For example, when performing
classification in medical diagnosis, the number of data points
in the disease class will be much smaller than that in the
normal class. Xiong et al. points out that Kmeans tends
to produce clusters with similar sizes, even if the original
data have clusters of different sizes [11]. In contrast with
the balanced data set case, few works have been performed
to impose size constraints for imbalanced data sets. To our
best knowledge, only a recent work [12] has addressed this
problem by introducing constraints on the number of data
points per cluster based on the fuzzy clustering framework.

Although clustering might benefit from either the pairwise
constraints or the size constraints, there are no previous
works to our knowledge which consider the integration of
these two types of constraints into the clustering frame-
work simultaneously. Moreover, different types of constraints
might have their own bias to the resulting solution, and in
some cases these might cause deterioration of the clustering
result when considered separately. Several researches provide
empirical results which show that pairwise constraints are not
always good for clustering [13], [14]. On the other hand, a
practical problem for imposing the size constraint is how
to minimize the difference between the class distribution of
the ground truth and that of the clustering solution, and
there are no ideal solutions to handle this problem. This
problem will be more crucial in imbalanced data sets. For
example, assume the size constraint for a data set with three
classes is {20, 40, 80} (i.e., there are three classes whose
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sizes are 20, 40 and 80 respectively) and a clustering solution
has three clusters {A,B,C}, we need to suitably enforce
the size constraint to control the actual size distribution
of the clusters. Otherwise, the clustering result will not be
satisfactory. This is an important problem in clustering which
is difficult to solve without any supervision information.
In view of these questions, in this paper we propose to
integrate the pairwise constraints and the size constraints
simultaneously into clustering within an optimization frame-
work. Specifically, we perform the clustering assignment
taking into account not only the distance cost but also the
cost of pairwise constraint violations, and we penalize the
inconsistency between the size distribution of the clustering
solution and the size constraints.

Another related problem we consider is the ordering of
the data points in constrained clustering. Although random
ordering is adopted in the original works performed in [1] [4],
there were some recent observations that suitably ordering
the constrained points with a number of heuristics might
improve the clustering performance. For example, Davidson
et al. propose the q-inductive ordering approach to identify
and generate easy constraint sets [15]. Zhang et al. extend
this idea [15] to rank the order of the constrained points using
the Cannot-Link constraint degrees and the sizes of closures
in [2]; Hong et al. propose to rank the data points according
to their clustering uncertainties, which are calculated by
using ensembles of multiple clustering algorithms in [16].
Different from these works, in this paper we propose a new
criterion, in which the size constraint is used, in addition
to the pairwise constraints, in determining the priority of
assignment of each data point to different clusters. This
criterion is more effective since it takes advantage of the
extra information, i.e., the size constraint, which is available.
In addition, the pairwise constraints will help to adjust the
clusters and consequently refine the boundaries according
to the size constraint. Benefiting from the two kinds of
constraints, a more reliable clustering solution will be found.

To evaluate our algorithm, we also consider the scenario
with active (pairwise) constraints. In general, most of the
existing constrained clustering approaches use constraints
chosen at random, i.e., by randomly selecting point pairs and
then querying whether these point pairs come from the same
class. This random selection approach is in most cases neither
effective nor efficient. As an alternative, some recent re-
searches [4] [17] focus on the adoption of active constraints,
which are usually selected using an active mechanism, and
corresponding advantages are reported. On the other hand, a
common assumption on pairwise constraints is that they are
intrinsically correct. However, this assumption is not always
possible to be guaranteed in practice.

This paper therefore makes two main contributions. First,
our proposed algorithm, PCKmeans with Size constraint
(PCS), provides empirical evidence that combination of
different kinds of partial information might improve the
performance in constrained clustering. Second, to our best
knowledge, PCS is the first attempt to incorporate the

pairwise constraints and the size constraints simultaneously.
Experimental results on several benchmark data sets demon-
strate the advantages of our algorithm over the two baseline
constrained algorithms, KmeansS (Kmeans with the Size
constraint) which use the size constraint only, and PCKmeans
which use the pairwise constraint only.

II. PROPOSED ALGORITHMS

In this section, we first briefly describe the two basic
algorithms, i.e., Kmeans and PCKmeans algorithms. In what
follows, we extend these two basic algorithms with the size
constraints.

A. Kmeans and PCKmeans

Formally, given a data set X = {xi}Ni=1, the traditional
unsupervised clustering algorithm Kmeans [18] searches for
a disjoint k partition {Xh}kh=1 (with an associated centroid
µh) of X such that the following cost function is minimized:

JKM =
k∑
h=1

∑
xi∈Xh

∥xi − µh∥2 (1)

Kmeans aims to find the point assignment such that the total
distance between the points and their associated centroids are
minimized. In general, the cost function is minimized when

∂JKM
∂µh

= −2
∑

xi∈Xh

(xi − µh) = 0 (2)

The centroids are then computed as follows:

µh =

∑
xi∈Xh

xi

|Xh|
(3)

where |Xh| is the cardinality of the cluster Xh.
PCKmeans introduces a soft form of optimization to

compromise between the degree of satisfaction of the various
constraints and the minimization of the distances between
the data points and their associated cluster centroids [4].
Specifically, given a data set X , a set of ML constraints S, a
set of CL constraints D, the corresponding penalty weights
ϕij(φij) for violating ML(CL) constraints and the number
k of clusters, PCKmeans aims to find a disjoint k partition
{Xh}kh=1 (each with its associated centroid µh) so as to
minimize the following cost function

JPC =
1

2

k∑
h=1

∑
xi∈Xh

∥xi − µh∥2

+
∑

(xi,xj)∈S

ϕijδ(L(xi) ̸= (L(xj))

+
∑

(xi,xj)∈D

φijδ(L(xi) = (L(xj))

(4)

where δ() is the indicator function defined as follows:

δ(true) = 1, δ(false) = 0. (5)

and L(xi) denotes the estimated cluster label for point xi.
PCKmeans uses a greedy search technique as Kmeans does.
Specifically, it minimizes Eq. (4) so as to assign points to
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(a) NO points (b) FI and VFI points

Fig. 1. Illustration of nearest out-class (NO) points, farthest in-class (FI)
points and virtual paired FI (VFI) points : (a) NO points of the smaller
class with cluster centroid µ1: the NO cost function for µ1 and point xA

can be computed as DNO(xA,µ1) =
d(xA,µ1)[d(xA,µ1)+d(xA,µ2)]

d(xA,µ1)d(xA,µ2)
;

(b) FI points of the larger class with cluster centroid µ3: The FI cost
function for µ3 and the point xA can be computed as DFI(xA,µ1) =
d(xA,µ1)[d(xA,µ1)+d(xA,µ3)]

d(xA,µ1)d(xA,µ3)
. x′

A and x′
B are the virtual paired FI (VFI)

points of xA and xB respectively.

their corresponding clusters, and then computes new cluster
centroids for the clusters in each iteration. Note that the final
performance of PCKmeans is sensitive to the assignment
order of the constrained points, and a random order is
adopted in the original paper [4].

B. Kmeans with size constraints (KmeansS)

For classes {Xh}kh=1, let Eh denote the corresponding
prior knowledge of the class size of the h-th cluster, and
Fh denote its class size, The first problem for incorporating
the size constraints is to find a suitable alignment of the
sizes {E′

h}kh=1 from {Eh}kh=1 for {Fh}kh=1. Intuitively, we
would like to align the sizes so as to minimize the following
difference

Jalign =
∑
h

|Fh − E
′

h| (6)

This problem can therefore be solved when the two class size
distributions are aligned with their sorted sizes. Let S(ph) be
the index of Eh in the ascending sorted list of {Eh}kh=1, the
corresponding alignment for Fh is

E
′

h = Eg,where S(Eg) = S(Fh) (7)

The size difference Uh for class Xh is thus

Uh = Fh − E
′

h (8)

We further consider the above size difference as follows:
We first measure the size difference from the perspective of
an overall size distribution, i.e., between the prior class size
distribution p = {ph : ph = Eh/N}kh=1 and the current
distribution q = {qh : qh = Fh/N}kh=1, with the Jensen-
Shannon divergence [19]:

JSD(p,q) =
1

2
KL(p,q) +

1

2
KL(q,p) (9)

where KL(p,q) is the Kullback-Leibler divergence [20] for
p and q

KL(p,q) =
∑
h

ph log
ph
qh

=
∑
h

Eh
N

log
Eh
Fh

(10)

The overall size divergence cost is defined as

JA = JSD(p,q) ∗N (11)

On the other hand, we also consider the size difference
within each class pair. A penalty JS for clusters which are
too small is imposed when the sizes of the individual classes
are smaller than expected. Similarly, a penalty JL for clusters
which are too large is imposed when their sizes are larger
than expected. Therefore, taking into consideration these size
costs, the original cost function in Eq.(1) is modified as
follows

JKMS = JKM + αJA + βJS + γJL (12)

where α, β, γ are the corresponding non-negative scale pa-
rameters which represent different weights for the different
penalty functions for the cluster sizes.

When Uh < 0, i.e., class Xh is smaller than expected, we
must increase the cost function with the penalty for small-
sized clusters. We use the set of nearest out-class points from
other classes to determine this penalty. The point x is called
a nearest out-class (NO) point for class Xh if it minimizes
the following function, which we call the NO cost function

DNO(x,µh) =
d(x,µh)[d(x,µh) + d(x,µj)]

d(x,µj)d(µh,µj)
,

∀x ∈ Xj , j ̸= h

(13)

where
d(x,y) = ∥x− y∥ (14)

is the Euclidean distance function between two points x and
y.

The nearest out-class point sets for all classes are then
used to measure the small-size penalty as follows:

JS =
k∑
h=1

∑
xi∈NO(Xh)

∥xi − µh∥2 (15)

It is easy to observe that the penalty JS for class Xh will
force the centroid µh to move toward the set of nearest out-
class points NO(Xh).

When Uh > 0, i.e., Xh is larger than expected, we also
need to increase the cost function with the penalty for large-
sized clusters. We first find the set of farthest in-class points
for each class. The point x is called a farthest in-class (FI)
point if it minimizes the following function

DFI(x,µj) =
d(x,µj)[d(x,µh) + d(x,µj)]

d(x,µh)d(µh,µj)
,

∀x ∈ Xh, j ̸= h

(16)

We use FI(Xh) to denote the |Uh| farthest in-class points
for class Xh. In contrast to the penalty for small-sized
clusters, the penalty for large-sized clusters will result in a
movement of the centroid away from the set of farthest in-
class (FI) points FI(Xh). Considering Eq.(2) and Eq.(3), the
penalty for large-sized clusters cannot be directly measured
using the FI points FI(Xh) (otherwise, the centroids will be
forced to move toward the farthest in-class points, which is
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opposite to the original objective). In this case, we use the
virtual paired FI (VFI) points. For a FI point y ∈ FI(Xh)
in class Xh, a VFI point z is defined as

z = 2

∑
x∈{Xh−FI(Xh)} x

|{Xh \ FI(Xh)}|
− y (17)

where {Xh\FI(Xh)} is the point set for class Xh when the
FI points FI(Xh) are removed. Similarly, we use V FI(Xh)
to denote the Uh VFI points for class Xh. The penalty for
large-sized clusters can then be defined as

JL =
k∑
h=1

∑
xi∈V FI(Xh)

∥xi − µh∥2 (18)

Illustrative examples of the NO points, FI points and VFI
points are shown in Figure 1: In Figure 1(a), the cluster with
centroid µ1 has a smaller number of points than expected.
We might search for NO points to improve the size of the
cluster; in Figure 1(b), the cluster with centroid µ3 has a
larger number of points than expected. We might search for
VFI points to reduce the size of the cluster.

Similar to Kmeans, the KMeansS centroids can be com-
puted by setting the partial derivative to zero. The centroid
µh can be computed as

µh =

∑
xi∈Xh

xi + β
∑

xi∈NO(Xh)
xi + γ

∑
xi∈V FI(Xh)

xi

|Xh|+ β|NO(Xh)|+ γ|V FI(Xh)|
(19)

where NO(Xh) and V FI(Xh) can be computed from
Eq.(13) and Eq.(17) respectively.

From Eq.(19), we can see that the centroids will be
forced toward the nearest out-class points (e.g., NO(Xh)) for
smaller classes, or toward the VFI points (e.g., V FI(Xh))
and thus away from the FI points (e.g., FI(Xh)).

From the above, we can see that an important condition
for the KmeansS algorithm is to find a moderately good
initialization assignment. Otherwise the alignment between
the current assignment and the size constraint will not be
satisfactory, which will in turn result in a reduction of
its performance. We use a simple filter-refinement scheme
to address the problem. Specifically, we apply Kmeans to
obtain the initialization assignment, and then perform further
iterations to refine the solution. The complete KmeansS
algorithm is summarized in Figure 2.

C. PCKmeans with size constraints (PCS)

To make use of both pairwise and size constraints, the
natural generalization from KmeansS and PCKmeans is to
unify their cost functions Eq. (12) and Eq. (4). The resulting
cost function can therefore be formulated as

JPCS = JPC + αJA + βJS + γJL (20)

Also, if we use the filter-refinement scheme, we will first use
PCKmeans for clustering the data with pairwise constraints,
and then perform clustering with both kinds of constraints.

An interesting benefit from the size constraints is that it is
now possible to detect the points which will be transferred

Algorithm 1: KmeansS
INPUT:

data set X ,
cluster number ks;
prior knowledge of the size distribution {E1, E2, · · · , Ek};
maximum iteration T ;

OUTPUT:
clustered label result Y of X .

METHOD:
1. initialize cluster centroids {µi}ks

i=1 at random or otherwise;
2. if the filter-refinement scheme is used, perform Kmeans with {µi}ks

i=1;
3. Repeat
4. assign label Y of points to their closest centroids;
5. update centroids according to Eq. (19);
6. Until Y converges or maximum iteration T reaches
7. return Y .

Fig. 2. The KmeansS algorithm

from larger clusters to smaller clusters through the movement
of the cluster centroids. Therefore, when considered in the
context of pairwise constraints, the constrained points within
the set of transferred points shall have a smaller priority than
the other constrained points, since they are less stable in
terms of which cluster they are assigned to. In other words,
they are closer to the boundaries of the current set of clusters.
In PCS, random values r sampled from a uniform distribution
are assigned to individual constrained points as their priority
values, and a penalty threshold value t is imposed on those
points which belong to the set of transferred points

pr(xi) =

{
r if xi ∈ XC and xi /∈ XT

r + t if xi ∈ XC and xi ∈ XT
(21)

where
XC = {xi : xi ∈M or xi ∈ C} (22)

is the constrained point set, and

XT = {xi : xi ∈
∪
h

NO(Xh) or xi ∈
∪
h

FI(Xh)} (23)

is the transferred point set. The constrained points are thus
assigned to their clusters in ascending order of their priority
values. The smaller their priority values are, the greater
the possibility that they will be considered in advance. The
complete PCKmeansS algorithm is summarized in Figure 3.

III. EXPERIMENTS

A. Data sets

We apply our proposed approach to a number of public
data sets. The first two are 2-D artificial data sets, Petals and
Half-ring, which can be downloaded from the web 1. We
also perform experiments on several public benchmark data
sets obtained from the well-known UCI machine learning
repository2, including Iris, Wine, Balance Scale, and Digits.
The Digits data set is constructed by extracting the numerals
0, 7 and 8 from the Pen-Based Recognition of Handwritten

1http://www.bangor.ac.uk/m̃as00a/activities/artificial data.htm
2http://archive.ics.uci.edu/ml/
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Algorithm 2: PCS
INPUT:

data set X ,
cluster number ks;
must-link constraints S and cannot-link constraints D;
prior knowledge of the size distribution {E1, E2, · · · , Ek};
maximum iteration T ;

OUTPUT:
clustered label result Y of X .

METHOD:
1. initialize clusters centroids {µi}ks

i=1 at random or otherwise;
2. if the filter-refinement scheme is used, perform PCKmeans

with {µi}ks
i=1, S and D;

3. initialize the priority values of the constrained points pr at random;
4. initialize last cost Jlast = +∞;
5. Repeat
6. order the constrained points in ascending order of pr;
7. assign label Y to the points according to Eq.(4);
8. compute the cost function J according to Eq. (20);
9. if J < Jlast
10. update centroids according to Eq. (19);
11. Jlast = J ;
12. update pr according to Eq. (21);
13. else
14. update pr with random values sampled from a uniform distribution;
15. Until Y converges or maximum iteration T reaches
16. return Y .

Fig. 3. The PCS algorithm

Digits as in [21]. These data sets are widely used in evaluat-
ing clustering or constrained clustering algorithms, such as
in [21]–[25].

B. Evaluation Measures

We use Normalized Mutual Information (NMI) [26] as the
main measure to evaluate the performance of the proposed
approach. It will also be important to evaluate how well
the final clustering solution agree with both the aligned size
constraints and the ground truth label. To our best knowledge,
there is not yet a standard measure for this purpose. As
a result, we introduce a new measure, Alignment Score
(AS), in addition to the standard NMI. Specifically, for a
clustering solution X = {Xh}kh=1 with its ground truth
label Y and its aligned size constraints E′ = {E′

h}kh=1, we
first detect the dominant class for each cluster, say Ph (i.e.,
the points from the class Ph form the majority in cluster
Xh). Denoting these points from each dominant class as
Vh = {x : x ∈ Ph and x ∈ Xh}, AS is defined as follows

AS(X,Y,E′) =
|Y |
k

k∑
h=1

|Vh|/|Ph|
|E′
h − |Vh||+ ||Ph| − |Vh||+ 1

(24)
where |Y | is the cardinality of a set Y , and |p′

h − |Vh||
represents the absolute value of the difference between p

′

h

and |Vh|. Higher values of AS will result if the majority
class of a cluster is more dominant . For a perfect clustering
solution, AS will be equal to |Y |, the number of points in
the data set.

C. Methodology

Note that the performance of the Kmeans-like algorithms
is sensitive to their initialization conditions. Therefore, to
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Fig. 4. Performances under moderate number of constraints: Normalized
Mutual Information (NMI).

have a fair comparison, we use the same random initialization
conditions for all the algorithms, i.e., the same initialized
set of centroids. Corresponding parameters for the different
algorithms are set to identical values: the penalty weights
for violating ML/CL pairwise constraints are set to the
square root of the number of dimensions D (i.e.,

√
D),

the three parameters α, β, γ for size constraints are set to
1. The penalty threshold value t in Eq. (21) is set to 0.8.
The maximum iteration number T is set to 400 for all the
algorithms. The incurred penalty weights ϕij and φij are set
to 1 according to the setting for UCI data sets in the original
paper [4]. Forty independent trials for each experiment are
conducted and the mean results are reported.

D. Results and Discussion

1) Performances under moderate number of constraints:
First, we compare our algorithms with the standard un-
supervised Kmeans algorithm, and the partial constrained
PCKmeans algorithm under a moderate number of con-
straints. We also compare our algorithms with the alternative
versions without filter-refinement. As a result, six algorithms
are compared in this experiment and their performances are
shown in Figure 4: Kmeans (KM), KmeansS without filter-
refinement (KMS1), KmeansS with filter-refinement scheme
(KMS2), PCKmeans (PC), PCS without filter-refinement
scheme (PCS1), and PCS with filter-refinement scheme
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Fig. 5. Performances under moderate number of constraints: Alignment
Score (AS).

(PCS2). Mean and standard deviation values of Normalized
Mutual Information (NMI) and Alignment Score (AS) for
each algorithm are reported in the form of error bar plots
in Figure 4 and Figure 5 respectively. Note that the size
constraints are not used in Kmeans (KM) and PCKmeans
(PC), so the corresponding bars for these two algorithms do
not appear in Figure 5. From the resulting figures, we can
obtain several interesting observations: (1) In terms of the
mean NMI values, clustering with only the size constraints,
i.e., KMS1 and KMS2 in Figure 4, shows little improvement
of clustering quality over the standard unsupervised cluster-
ing algorithm Kmeans. For the imbalanced Half-rings data
set, the results of KMS1 and KMS2 are even less satisfactory
than KMeans. On the other hand, we can observe that a
clustering algorithm which uses the pairwise constraints, e.g.,
PCKmeans (PC in Figure 4), performs in general better
than Kmeans except for the case of the Petals data set.
These observations show that the pairwise constraints are
in general more useful than the size constraints, but cluster-
ing with only a single kind of constraint does not always
outperform the standard unsupervised Kmeans. For all the
cases, our new algorithm with the filter-refinement scheme,
i.e., PCS2, which incorporates both pairwise constraints and
size constraints, is consistently better than Kmeans. This
suggests that it is meaningful to consider different kinds
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Fig. 6. Performances under different numbers of constraints.

of constraints simultaneously and suitable combinations of
this partial information might achieve a better solution. (2)
It is interesting to observe that, for the two imbalanced data
sets, Half-rings and Balance Scale, PCKmeans outperforms
Kmeans significantly, while for the other four balanced data
sets, the improvement of PCKmeans over Kmeans is smaller
than those in the two imbalanced data sets. We believe that
this is due to the tendency of Kmeans to produce balanced
results, while PCKmeans could find clustering solutions
which are relatively more imbalanced due to the pairwise
constraints. Another interesting observation is that the size
constraint in KMS1 and KMS2 do not provide significant
contributions. From Figure 5, we can also observe that PCS1
and PCS2 have higher Alignment Score (AS) values than
KMS1 and KMS2 respectively. We believe that the reason
lies in the uncertain alignment of the current clustering
solution with the size constraints, and a better alignment with
these constraints may improve the result. However, in PCS2,
which is initialized with PCKmeans, the pairwise constraints
are made use of to provide a comparatively better clustering
solution in the filtering step, such that it can benefit more
from the size constraints. Therefore, we can observe that
PCS2 can be applied to different kinds of data sets, either
balanced or imbalanced. It is also notable to observe that
the results based on PCS2 in general have smaller standard
deviations than PCKmeans (PC in Figure 4), which suggests
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Fig. 7. Performances under different numbers of active constraints.

that it might be more stable against different initialization
conditions. (3) We also study the different performances of
the algorithms with and without filter refinement, and we
observe that, with the filter-refinement scheme, KMS2 is
generally better than KMS1 for all the data sets except for
the Half-rings data set, while PCS2 is consistently better
than PCS1 for all the cases. Specifically, while PCS2 is
consistently better than PC for all the cases, PCS1 is less
satisfactory than PC. We believe that the main reason is due
to the capability of the filter-refinement scheme to search for
better initial centroids. On the other hand, if filter-refinement
is not used, the search space will be limited by both the
pairwise constraints and size constraints at the same time.
In general, we can see that the filter-refinement scheme
plays an important role in improving the performance of our
algorithm. (4) Finally we study the clustering results based on
the Alignment Score (AS) in Figure 5, and we obtain similar
conclusions as in Figure 4. Specifically, the adoption of the
filter-refinement scheme will result in better AS values with
pairwise constraints, i.e., PCS2 is consistently better than
PCS1. In addition, PCS2 tends to have better results than
others. However, it is interesting to observe a number of
different results. Although PCS1 results in better AS values
than KMS2, as shown in Figure 5(f), it does not outperform
KMS2 in terms of NMI, as shown in Figure 4(f). Also, KMS2

has less satisfactory AS values when compared with KMS1
in Figure 5(f), while it is better than KMS1 in terms of NMI
in Figure 4(f). These observations show that the different
measures serve to complement each other in characterizing
the clustering results.

2) Performance under different number of constraints:
After performing investigation on the performance of the
observed algorithms with a moderate number of constraints,
it is also important to see their performance under dif-
ferent number of constraints. Since the KMS2 and PCS2
algorithms with the filter-refinement scheme are in general
better than their non-filter-refinement versions (i.e., KMS1
and PCS1), we do not consider KMS1 and PCS1 further
in these experiments. NMI results for the four algorithms
on the various data sets are shown in Figure 6: Kmeans
(KM), KMS2, PCKmeans (PC) and PCS2. Note that Kmeans
and KMS2 are independent of constraints, so we use their
mean values in all the cases, which results in two horizontal
lines in Figure 6. Several interesting observations can be
obtained from Figure 6: (1) As in the previous experiments
in Figure 4, we can observe that KMS2 and PCKmeans may
not be better than the standard Kmeans for all the cases.
Specifically, for the Half-rings data sets, the KMS2 curve
is below that of Kmeans. PCKmeans and PCS2 tend to
improve their performances correspondingly with increasing
numbers of constraints. For the data sets of Petals, Wine
and Digits, when the number of constraints is very small,
the results based on PCKmeans are even less satisfactory
than those of Kmeans, while PCS2 has comparable or better
performances as those of Kmeans and KMS2. In addition,
PCS2 improves its performance consistently with increas-
ing number of constraints and it outperforms all the other
competing algorithms. Interestingly, we can also observe
that PCKmeans performs as good or even slightly better
than PCS2 when the number of constraint becomes very
large. This can be explained by the capability of a large
number of constraints to restrict the sizes of different clusters
in balanced data sets. In general, the number of available
constraints will not usually be too large for most clustering
problems, and within this range of constraint numbers, PCS2
performs better or sometimes at least as good as the other
algorithms. (2) Another interesting observation is that PCS2
and PCKmeans tend to perform much better than Kmeans in
imbalanced data sets, e.g., Half-rings and Balance Scale. In
addition, with a large number of constraints, PCS2 tends to
benefit from the size constraints and outperforms PCKmeans
in imbalanced data sets. This suggests that incorporating
different kinds of constraints might be a better alternative
for imbalanced data sets rather than using a single kind of
constraint.

3) Performance under different numbers of active con-
straints: We also conduct experiments based on different
numbers of active pairwise constraints. In this experiment,
we use the Explore and Consolidate approach (EC) [4]
to select active constraints. For a particular data set with
k classes, the EC approach is used to find a disjoint k
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closure (a closure is a point set belonging to the same class)
based on querying constraints between selected candidate
points. The interested reader is referred to [4] for further
information. Performances of PCKmeans and our proposed
algorithm PCS2 are shown in Figure 7. The performance of
the standard Kmeans algorithm serves as a baseline, which
is represented as a horizontal line since it is independent of
constraints. From Figure 7, we can observe that: (1) Different
from the case when random constraints are used, this time
the improvement of the performance of PCS2 over that of
PC becomes significant for most of the balanced data sets.
However, for the Half-rings data set, the improvement is less
significant than that in the case of random constraints, as
shown in Figure 6. (2) PCS2 results in the best performance
among all the data sets. In particular, while PCKmeans is less
satisfactory than Kmeans in the cases of the Petals and Wine
data sets, PCS2 is consistently better than Kmeans. This
suggests that PCS2 can perform clustering effectively under
different conditions, i.e., with different constraints generated
by different approaches.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose PCS, a new semi-supervised
algorithm which incorporates pairwise constraints and size
constraints into clustering. We have experimentally compare
our new algorithm with different clustering algorithms, in-
cluding (i) Kmeans which is a standard clustering algorithm;
(ii) KmeansS in which the size constraints are used and
(iii) PCKmeans which is a partial constrained clustering
algorithm with pairwise constraints. Experimental results on
several benchmark data sets demonstrate that by incorporat-
ing prior information in the form of both kinds of constraints,
the new algorithm generally outperforms all the previous
algorithms.
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