
Improving Robot Vision Models for
Object Detection Through Interaction

Jürgen Leitner, Alexander Förster, Jürgen Schmidhuber

Abstract— We propose a method for learning specific object
representations that can be applied (and reused) in visual
detection and identification tasks. A machine learning technique
called Cartesian Genetic Programming (CGP) is used to create
these models based on a series of images. Our research investi-
gates how manipulation actions might allow for the development
of better visual models and therefore better robot vision.

This paper describes how visual object representations can
be learned and improved by performing object manipulation
actions, such as, poke, push and pick-up with a humanoid robot.
The improvement can be measured and allows for the robot to
select and perform the ‘right’ action, i.e. the action with the
best possible improvement of the detector.

I. INTRODUCTION

COMPUTER VISION has become a more and more
prominent topic of research over the past decades, also

in the field of robotics. Like humans and animals, robots
are able to interact with the world around it. While most
robot vision research tends focus on understanding the world
from just passive observations, these interactions with the
environment provide and create valuable information to build
better visual systems. Connecting manipulation commands
with visual inputs allows for a robot to create methods to
actively explore its surroundings. These connections between
motor actions and observations exist in the human brain and
are an important aspect of human development [1].

An important goal in robotics is to extend the application
of robotic systems from automation tasks in rather fixed
scenarios, to other more complex, domestic contexts. There
a closer coordination between sensing and acting will be
crucial to operate autonomously and adapt. To do so a robust
perception and clear understanding of the surroundings is
critical. From a robot vision point of view, this means that
the robot is required to detect previously unknown objects in
its environment and be able to build models to identify them
in the future.

In infants various specialisations in the visual pathways
may develop for extracting and encoding information relevant
for visual cognition, as well as, information about the loca-
tion and graspability of objects [2]. In this paper we propose
a method for building such specific encodings for objects and
object detection for use with a humanoid robot. We show how
such models for detection can be generated using a machine
learning technique called Cartesian Genetic Programming

The authors are with the Dalle Molle Institute for Artificial Intelligence
(IDSIA), Manno-Lugano, Switzerland, a research institute affiliated both
with the Universitá della Svizzera italiana (USI) and the Scuola universitaria
professionale della Svizzera italiana (SUPSI) in Lugano, Switzerland. The
authors acknowledge the financial support by the EU under FP7 grant
#270247 ‘NeuralDynamics’. (corresponding author email: juxi@idsia.ch).

(CGP). To build more accurate and robust representations,
allowing the detection and identification in a wide range of
settings, interaction is of critical value. We describe how the
models can be improved by performing an action that allows
to gain more information about the specific object. We also
show that we can measure the improvement and therefore
are able to select the ‘right’ action, i.e. the action providing
the best possible improvement of the detector.

II. BACKGROUND AND RELATED WORK

Robotic vision has mainly been focussing on the under-
standing of the passive camera images received, neglecting
the fact that robots are able to interact with these objects.

One of the main approaches to perform object detection in
computer vision is to segment the images, i.e. separate the
object of interest from the background and the rest of the
scene. There is a vast body of work on all aspects of image
processing and segmenting, using both classical and machine
learning approaches [3]. However, image segmentation is
especially challenging when the objects are static, occluded
or the model is uncertain. A variety of feature detectors have
been proposed to detect objects in the scene [4], [5]. These
features are then used in various ways to solve the object
classification problem, e.g. by using simple machine learning
techniques such as simple clustering (e.g. k-means) or even
more complex approaches, like, Artificial Neural Networks
(ANN) [6].

Furthermore researchers started addressing how in robotic
settings a more autonomous fashion to object detection can
be devised [7], as well as, how the need for a human teacher
can be minimised [8]. Yet all these approaches neglect the

Fig. 1. The iCub humanoid robot manipulating a cup to build a better
model for detecting the objects from vision.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3355

possibility of the robot taking actions to improve its ability
to detect objects – i.e. the scene the robot is looking at is
considered static (at least during the learning phase).

In the primate brain visual stimuli and motor commands
are closely intertwined [9], and it has been suggested that
this enables more adaptive, more autonomous behaviours.
For robots to act in such a fashion a higher level of inte-
gration and coordination between perception and control is
necessary. In the last few years robot vision research has been
extended to investigate how the embodiment of the robotic
system can be used to create better visual perception skills.

How to do motion planning for a high DOF is another
issue that needs to be tackled to perform useful actions.
There has been a extensive research on this in the past (see
e.g. [10], [11], [12]. A commonly used approach is based on
Rapidly Exploring Random Trees (RRT) [13]. For example,
Vahrenkamp et al. [14], used a variant of RRT for both
planning the reach and the grasp on a high DOF humanoid
robot. Few have been investigated on how to plan for a good
action to allow better visual recognition.

One of the first to investigate robot actions for robot
vision were Metta and Fitzpatrick [15]. They showed that
performing actions can lead to a simple object segmentation
based on using optical flow information. Their work extracts
visual information through autonomous exploration of the
environment. When the robot hits an object placed on a plane
in front of it, a binary segmentation is performed based on
the object’s motion. The authors highlight that following the
causal chain from the robots action allows to develop visual
competence. While the theoretical impact is large it does
not go into the details of how to generate suitable object
representations for online object search and recognition.

With the rise of cheaper stereo vision systems and depth
sensors most of the object recognition seems to focus on 3D
geometry, or shape-based, detection. Welke et al. [16] showed
an implementation that allows one to build visual detection
based on a depth information and a 3D view sphere concept.
Using a static camera setup they are able to generate a motion
of the arm to rotate and cover as much of a 3D sphere as
possible, allowing to build a model of the object from these
multiple views. A similar approach by Gonzalez-Aguirre et
al. [17] tried to overcome some of the issues when trying to
detect general objects based on their 3D shapes purely from
vision. By fusing multiple views and vantage points a more
robust detection was generated. In contrast our work does
not require or even try to build 3D models of the objects.

A complex, humanoid robot, with its extra DOF, allows
for more and different types of ‘interaction’ with the environ-
ment, also with respect to robot vision applications. Yet little
work has investigated these extended possibility, such as in
our LEAN action (see Section III). Stasse et al. [18] suggest
that using the hip can extend the view area and therefore the
possibility for detecting known objects. Their work, based
again on a next-best geometric view point approach, can
derive motions of the hip to change view points. It is not clear
though how their technique can handle redundant DOFs.

Object Segmentation, by itself, is a very challenging prob-
lem in computer vision. It has been extensively investigated
over the last decades. Also the use of a robot to perform
actions to help with the segmentation, similar to the approach
mentioned above, has been used. Schiebener et al. [19] used
a push action to detect and segment an object based on set
of geometrical shapes and a hypothesis on how they push
will change the view thereof. Building on these works we
investigate multiple actions on how they provide a better
classification and segmentation of objects without the use
of any prior shape or 3D object knowledge.

III. ROBOT, OBJECTS AND ACTIONS

Our research platform is the iCub humanoid [20], pro-
viding a 41 degree-of-freedom (DOF) open-system robotic
platform. It comprises of an upper-body, two arms, a head
and a torso (see Fig. 1). The iCub is currently used in
more than 20 research labs worldwide and is considered an
interesting experimental platform for the study of embodied
Artificial Intelligence and cognitive, as well as, sensorimotor
development [21].

We focus on developing models for the detection of four
distinct objects from vision (Fig. 2) only, without the use
of any 3D or shape models or other priors. Each model
shall uniquely detect one object, also solving the object
identification problem at the same time. The aim is to create
models that can be run, in parallel, on the real robot and allow
for robust detection and identification of these objects in
changing environments even when other objects are present.
We propose a machine learning method to build those models
in Section IV.

To learn robust models of the objects our humanoid robot
needs to perceive the objects in various poses and from
various angles. For example, the tea boxes (in Fig. 2), differ
visually between the front and back side. To learn better
models for the detection of these objects, a pre-selected
action set is available to the humanoid robot. These actions
allow to see the object from various angles.
The available, scripted actions are the following:

Fig. 2. The objects to be detected and distinguished in this scenario are:
a soda can, a yellow-red tea box, a blue plastic cup and a green tea box.

3356

• Action LEAN: this simple action using 1 DOF, changes
the position of the torso, by performing a hip motion.
The robot will lean about 30◦ to its left and then 30◦

to the right, while keeping its gaze fixed at the position
of the object on the table (Fig. 3).

• Action POKE: the extended index finger of the end-
effector is used to poke the object from the right side.
A (more or less) linear movement of about 10cm in
operational space is performed, while the robot gazes
at a fixed location (Fig. 4).

• Action PUSH: the palm of the right hand is used by the
robot to push the object from right to left. This is again
a linear movement, but with higher velocity and longer
path. The gaze is controlled to continuously look at the
end-effector (Fig. 5).

• Action CURIOUS: is the most complex action available
and is modelled after a child curiously exploring an
object. The object is grasped, picked-up (from a fixed
location using a predefined grasp primitive) and then
brought closer to the face while being rotated in various
ways. These rotations involve almost all DOF of the
wrist, elbow and shoulder. The gaze during this whole
motion is continuously adjusted to look at the hand and
the object it is holding (Fig. 6).

Camera pictures are recorded in a fixed interval of 2s,
while the robot is performing these actions. These are then
used to improve the visual models. To allow for a fair
comparison, as the actions have different runtimes, only 5
images are taken from each action for the experiment.

Fig. 3. An example of a series of images collected during a LEAN action
with the iCub robot.

Fig. 4. An example of a series of images collected during a POKE action
with the iCub robot.

Fig. 5. An example of a series of images collected during a PUSH action
with the iCub robot.

IV. LEARNING A MODEL FOR VISUAL
OBJECT DETECTION & IDENTIFICATION

We are interested in building object representations that
allow for fast and robust detection in visual inputs. For
the object detection (and identification) a novel approach
using a model based on feed-forward graphs is proposed.
The partially-connected graph consists of nodes, which
perform specific image processing operations. The output,
when executing the model on an input image, should be a
binary-segmentation separating the object of interest from
the rest of the scene. While such a graph can be derived
and designed by hand, the real strength is the ability to learn
these visual object representations autonomously. It allows to
create unique models for specific objects, whenever a new
one is encountered.

Herein we are using Cartesian Genetic Programming
(CGP) [22], [23] method to find a model performing the
visual detection and identification. CGP is a variation of
Genetic Programming (GP), a search technique inspired by
concepts from Darwinian evolution [24]. It can be used to
generate formulae or programs to solve specific problems. It
has been applied successfully in many areas [25][26].

The basic algorithm works as follows (see also Fig. 7 for
reference): At first, a population of individuals is randomly
generated (Fig. 7a). Each of these individuals is a candidate
solution with its object detection program being represented
by its genome. In the next step all these individuals are
tested. This step generates a fitness value by testing how
well each one of them solves the given (detection) problem.
The individuals in the population are then ranked according
to this value (Fig. 7b). New individuals are created from the
best ranked, therefore the best performing individual, using
functions analogous to recombination and mutation (Fig. 7c).
(In the case of CGP it previously was shown that mutation
works well enough without the need of recombination)
The best individual with its offsprings turn into the next
population (Fig. 7d). The process of testing and generating
of new populations is repeated until a sufficient solution is
found or a maximum of individuals have been evaluated.

Our implementation, named CGP for Image Processing
(CGP-IP) [27], is inspired by previous work using CGP
in the field of computer vision. In CGP-IP the model is

Fig. 6. An example of a series of images collected during a CURIOUS
action, which enables the iCub to closer inspect the object.

3357

encoded in the genotype, where each gene represents a
node in the graph. The contents of the gene represent the
node’s functionality and describe which nodes the incoming
edges are connected to (Fig. 8). CGP was chosen as it

(a) The first population with its randomly generated individuals. The
gene values are represented by the vertical line thickness.

(b) The ranked individuals with their respective fitness values.

(c) Offsprings are created from the best individual by mutating each
gene with a given probability.

(d) The offsprings and the best individual from the previous round
created the new population.

Fig. 7. Illustration of a typical iteration for an evolutionary search using
(Cartesian) Genetic Programming.

offers some nice functionalities, for instance, not all of the
nodes of a solution representation (the genotype) need to
be connected to the output node of the program, a feature
known as ‘neutrality’. This has been shown to be very useful
in the evolutionary process [28]. Another feature is the graph
encoding of the genotype allowing reuse of nodes making the
representation distinct from classic GP.

An important difference to previous GP approaches is the
ability to include domain knowledge, i.e. each node can
contain a high-level operation by itself (e.g. a Gabor filter)
not just a simple mathematical operator. In fact each node
in CGP-IP is performing a certain functionality from the
OpenCV image processing library [29]. Around 60 unique
functions are available to CGP-IP to automatically generate
computer programs to perform the detection. A complete list
can be found in Harding et al. [27]. While this function set
is larger than the typical setup for CGP it does not seem to
hinder evolution, on the contrary, the higher number of func-
tions seems to provide greater flexibility. The efficacy of our
CGP-IP implementation has been shown for several different
domains by Harding et al. [27] and Leitner et al. [30], [31].

To execute a filter evolved with CGP-IP a genotype-
phenotype mapping has been performed first. This is pretty
straightforward, by starting at the output node and following
the links to its inputs the active nodes are identified. Then a
forward pass of the phenotype is done generating the output
image at each node. To do so the inputs are collected and
the function encoded in the genotype is applied to generate
the node’s output. The genome also contains the specified
parameters required by the function. Our implementation of
CGP-IP generates human-readable code based on OpenCV
functions, during the forward pass (e.g. Listing 10). Due
to the high quality, high speed implementation of OpenCV
CGP-IP individuals are evaluated at the rate of hundreds per
second on a single core CPU. This makes it both efficient to
evolve solutions and run the final programs. Our existing
computer vision framework enables this code to be used
directly with our robots [32].

To establish the fitness of each individual in the population
the Matthews Correlation Coefficient (MCC) [33] between
the output from the run of the model, i.e., a binary image,
and a target segmentation (’mask’), is computed. It was
previously observed that MCC is a useful metric for CGP

Fig. 8. Example illustration of a CGP-IP genotype. In this example, the first
three nodes obtain the first three input image channels, the grey scale, the
red and the green channels, respectively. The fourth node adds two inputs
together. The output is then dilated by the fifth node. The sixth node (min)
is not relevant for the output (i.e. it is neutral) and is ignored. The last node
averages the fifth node and the grey scale input to generate the output.

3358

TABLE I
PARAMETERS OF CGP-IP ENCODED AT EACH NODE.

Parameter Type Range
Function Int # of functions
Connection 0 Int # of nodes and inputs
Connection 1 Int # of nodes and inputs
Parameter 0 Real no limitation
Parameter 1 Int [−16,+16]
Parameter 2 Int [−16,+16]

approaches to classification problems [34]. The coefficient is
based on the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) at a pixel-level. It
is computed as follows:

c =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

As we are doing binary segmentation, coefficients of 1 (a
perfect classifier) and −1 (a perfect classifier just switching
the two classes) are both valid solutions. The fitness f of an
individual is hence given by

f = 1− |c| (1)

with values closer to 0 representing more fit individuals, i.e.
representations performing a better classification.

CGP-IP provides single channel images to each node,
expecting to output again a single channel image. It splits
the incoming colour images from the robot into both RGB
and HSV channels and provides these as inputs. Furthermore
a grey-scale version of the image is provided. Evolution
selects which inputs will be used for each detector. To select
a specific channel of the input image special functions are
provided. These functions return the current input channel
(INP) or can be used to decide which input image channel
is used (e.g. SKIP).

CGP implementations require a low number of parameters
for configuration. The main parameters in CGP-IP are:

• number of nodes in the genotype (graph length): 50
• mutation rate (and size), fraction of all genes that are

mutated when an offspring is generated: 10%
• number of separate populations, also known as islands,

providing a distributed evolutionary process, which has
been shown to improve the overall performance [35]: 8

• number of individuals per island: 5
• interval of synchronisation between islands: 10
Currently these values are set by casual experimentation.

Improving the performance may be possible by parameter
tweaking, especially the values for mutation rate, genotype
size and number of populations. Like with every CGP
implementation every gene encoding a node contains a set of
parameters (Table I), in addition to these global parameters.
Connection elements contain the relative address of the
node used as inputs. Parameter values are required for
OpenCV functions. Certain of these functions have specific
requirements, as to the type and range of the parameters used.
The genotype contains also an additional parameter used for
thresholding the output.

V. EXPERIMENTS AND RESULTS

A. Learning a Simple Model Using CGP-IP

In this first experiment we use CGP-IP and supervised
learning to generate a model for visual detection.

We define an area of interest in the camera image and
place the object within this mask. This is used as training
set to build the visual object representation. The mask does
not precisely segment the image from the background, but
highlights the area in the image the object is visible. The
exact segmentation of the object is part of the first learning
phase. Herein we use a fixed mask and manually place the
object to be within. In the future this preliminary mask could
very easily be generated from stereo vision information [36].
In this experiment the robot is static. Yet to not simply detect
objects on simple visual cues, e.g. blue cup vs. red tea-box,
we scatter a variety of objects (kids toy blocks) with different
colours in the scene (visible in the background in Fig. 9). We
use just one input image with a fixed mask for all objects
as training set to start with. In this case we assume a static
environment where the input images will not change over
time.

Though only one training image is used, and the mask is
not very accurate, our CGP-IP approach learns to segment
and detect the object quite accurately. The simple mask used
for all objects does not specify the detailed outline of the
item, nevertheless the detectors manage to come close to a
precise segmentation. A specific detector is trained for each
object individually therefore allowing identification as well.

The learned detection model for the visually rather simple
blue cup object (see Fig. 2) is used as a representative exam-
ple here. The object representation, converted into executable
code is shown in the listing in Fig. 10. The representation
also allows for manual improvement by a skilled engineer.
The solution was found after only 1214 individuals were
evaluated, taking a few seconds on a standard desktop
computer. The detection is shown in the middle of Fig. 9,
where the binary segmentation is used as a red overlay in
the input image. The execution of the code takes 140ms for
a 320× 240 pixel image.

The resulting fitness values from this first experiments are
not particularly high. There are multiple reasons for this, first
the mask or predefined segmentation is not very accurate, due
to fact that it is the same mask for every object. Secondly
the CGP approach is limited in its training time (to around
20k evaluations). This limit is chosen as to avoid over-fitting
to the single input image available.

To show this we ran another experiment for the red tea-
box for over 2.6m individuals. The found solution was very
fit with f = 0.06. To achieve this the detector tried to
artificially increase the found area to match the input mask
as precisely as possible. This is in comparison to another
solution evaluating only about 22.7k individuals to find a
detector with f = 0.27 (see Table II for more details).

3359

Fig. 9. The mask (left) used as input to the supervised training, next to two
frames showing learned detection (as red overlay) for two distinct objects,
the blue cup and the green tea box respectively.

1 icImage BlueCupFilter::RunFilter() {
2 icImage *node43 = InputImages[4];
3 icImage *node49 = node43->LocalAvg(15);
4 icImage *out = node49->threshold(81.53244f);
5 return out;
6 }

Fig. 10. The generated C++ code from the first learned object representation
for the blue cup. This detector is rather simple. Although it detects the blue
cup in all test images it has also a few false positives, due to its simplicity.
icImage is a wrapper class for the OpenCV functionality and memory
management within our framework [32].

TABLE II
COMPARING THE VARIOUS VISUAL DETECTION MODELS DERIVED FROM

MANIPULATING THE OBJECTS USING A SET OF ACTIONS.

Detector f 1 Ind2 Runtime3 Accuracy4

BlueCup Start 0.28 1214 140.69 100%
BlueCup LEAN 0.31 1835 234.03 100%
BlueCup POKE 0.18 1214 5.04 100%
BlueCup PUSH 0.39 12110 162.75 93%
BlueCup CURIOUS 0.42 2445 156.34 100%

GreenTbox Start 0.18 10122 73.08 93%
GreenTbox LEAN 0.29 3524 64.00 100%
GreenTbox POKE 0.28 1432 73.11 100%
GreenTbox PUSH 0.26 1374 119.29 100%
GreenTbox CUR. 0.33 3678 71.12 100%

RedTeabox Start 0.27 22697 121.05 100%
RedTeabox LEAN 0.45 1426 141.40 100%
RedTeabox POKE 0.35 2090 70.11 87%
RedTeabox PUSH 0.45 2011 53.96 100%
RedTeabox CUR. 0.36 738 114.45 100%

SodaCan Start 0.46 1882 107.79 60%
SodaCan LEAN 0.38 6581 140.62 67%
SodaCan POKE 0.68 3673 3.68 87%
SodaCan PUSH 0.38 1049 223.28 80%
SodaCan CUR. 0.31 16078 213.50 87%

B. Learning Better Models Trough Interaction

To improve the visual models for the object detection
the robot can choose to perform an action. The images
collected during these interactions are used for learning a
better detector. The learning experiment is started by placing
the object to be learned in a specific position, as in the
first experiment. Similar to the first experiment a single
input image is collected to generate a preliminary detector.
After this the robot selects one out of four possible actions
described in Section III.

The robot observes the object while performing the action.
As described above, images in fixed intervals are collected.
From these new observations – masks are provided by
hand for the supervised learning step – together with the

image from the start, a new object representation is learned.
Depending on the action and its duration the number of
images collected varies. The LEAN action, being the shortest,
allows only for the collection of 3 new, different images,
whereas the CURIOUS action can be used to collect 12
images.

Trials are performed for each combination of one object
and an action and separate detectors are trained. Table II
shows the learning and performance details of the various
detectors. Learning in CGP-IP, like in other evolutionary
methods, is non-deterministic, therefore the results shown
are based on the best out of five runs. For each of these
detectors the fitness during training is reported, as well as,
the number of individuals evaluated.

The runtime reported is the average of three runs over
the 15 images. These images have been collected separately
and build a validation set, as they have not been seen during
training. The accuracy reported in the last column refers to
this training set. It specifies the number of times the object
was detected in those images. From this performance we can
conclude the ‘right’ action to chose. For all of the four objects
in this paper the CURIOUS action seems to be the best choice
for improving the detector. This is not too surprising, as this
action allows to perceive the object from various viewing
angles.

Even for objects like the blue cup, where detection should
be easy, the action allows for an improvement in the detector.
There is no increase in the number of times the object is
detected, but there is a signification increase on how much
of the object is detected. An increase is also visible in the
precision of the segmentation, i.e. the improved detector finds
matches that are very close to the contours of the objects. The
improvement after the CURIOUS action is visible in Fig. 11.
The figure also shows the vanishing of the false positive of
the red tea box (a red block in the camera image, visible
on the table in the background). The changes of the object
representation, after observing the execution of a CURIOUS
action, can be seen in the listing shown in Fig. 12 (compared
to the code above in Fig. 10).

The detection of the soda can, made of quite reflective

Fig. 11. Comparing the generated segmentation of an input image (left),
using the detector at the start — using one image (middle), with the detector
trained after the CURIOUS action (right). The first row shows an example
from the red tea box the second from the green.

3360

1 icImage BlueCupFilter::RunFilter() {
2 icImage node0 = InputImages[4].Exp();
3 icImage node5 = InputImages[0];
4 icImage node16 = node0.Gabor(-8, 14, 1, 13);
5 icImage node17 = InputImages[4].LocalAvg(6);
6 icImage node18 = node16.Laplace(5);
7 icImage node19 = node5.Sobel(13,9);
8 icImage node24 = node17.Erode(5);
9 icImage node28 = node19.Min(node18);

10 icImage node29 = node28.Min(node24);
11 icImage node41 = node29.LocalAvg(7);
12 icImage node49 = node41.LocalMax(7);
13 icImage out = node49.Threshold(68.03109f);
14 return out;
15 }

Fig. 12. The generated C++ code for detecting the blue cup after performing
the CURIOUS action. Compared to the detector in Fig. 10, this more
complicated model reduces the number of false positives to only 1 in the
15 images of the test set.

aluminium, is not as good as for the other objects. One
issue here is the visual similarity of the material with the
fingers and other parts of the humanoid’s body. This issue
is reinforced by the use of simple masks. The fingers are
quite often within the masked area, especially during the
CURIOUS action. One possibility we are investigating for
future research is the use of a disparity map, optical flow
or similar approaches to help generating the first masks.
Another idea is to use the model learned in one action as
the mask for another data collection.

Once the models are learned they can be used on the iCub
to detect objects in the environment. The system can be fully
integrated in the currently available frameworks available in
the iCub community. Running the detector for both ‘eyes’
the object’s location can be determined [37], [38] to update
the robot’s world model [39]. By combining all these the
iCub is able to learn object representations of unseen items,
then localise and plan around them.

VI. CONCLUSIONS

We showed that our iCub humanoid robot is able to create
object representations using a machine learning approach
to computer vision which we call Cartesian Genetic Pro-
gramming for Image Processing (CGP-IP). By interacting
with the objects, the robot was able to further improve
its object detection and identification skills. It did so by
collecting observations during action execution. These new
observations allowed to learn a better object detection model.
An advantage of our model is that it can be directly mapped
into human read-able source code and instantly be compiled
to run on the real hardware.

Furthermore, we demonstrated that our system can learn
to select the right action, i.e. the action leading to the
largest improvement in detection. Our experiments show
that our CURIOUS action, which contains a pick-up and
a variety of rotations to inspect the object, allows for the
best improvement. During this action the object can be
viewed from almost every angle allowing to build a robust
model. This has been observed to be especially useful for

visually complex objects, e.g. a tea box. A video of the
experiments is attached available on the author’s webpage at
http://Juxi.net/projects/iCub/#wcci2014.

Although we have a limited number of actions, we showed
that a closer integration of actions with vision allows for
more information gained from the environment. We believe
that in the future a better sensorimotor coordination can be
achieved using this approach. We are especially interested
in evaluating possible machine learning, e.g. reinforcement
learning, techniques to learn the best possible action directly
on the robot. We would also like to extend the number of
actions and their granularity, as well as, their robustness, e.g.
in non-static environments.

REFERENCES

[1] N. Berthier, R. Clifton, V. Gullapalli, D. McCall, and D. Robin, “Visual
information and object size in the control of reaching,” Journal of
Motor Behavior, vol. 28, no. 3, pp. 187–197, 1996.

[2] M. H. Johnson and Y. Munakata, “Processes of change in brain and
cognitive development,” Trends in cognitive sciences, vol. 9, no. 3, pp.
152–158, 2005.

[3] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” 2006, pp. 404–417.

[5] D. Lowe, “Object Recognition from Local Scale-Invariant Features,”
in Proceedings of the International Conference on Computer Vision.
IEEE Computer Society, Sep. 1999.

[6] H. Bischof, W. Schneider, and A. Pinz, “Multispectral classification
of landsat-images using neural networks,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 30, no. 3, pp. 482–490, 1992.

[7] H. Kim, E. Murphy-Chutorian, and J. Triesch, “Semi-autonomous
learning of objects,” Computer Vision & Pattern Recognition Work-
shop, 2006.

[8] Y. Gatsoulis, C. Burbridge, and T. M. McGinnity, “Online unsuper-
vised cumulative learning for life-long robot operation,” in Proc. of
the Intl. Conference on Robotics and Biomimetics, 2011.

[9] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu.
Rev. Neurosci., vol. 27, pp. 169–192, 2004.

[10] S. LaValle, Planning algorithms. Cambridge University Press, 2006.
[11] T. Li and Y. Shie, “An incremental learning approach to motion

planning with roadmap management,” Journal of Information Science
and Engineering, vol. 23, no. 2, pp. 525–538, 2007.

[12] J. Peters and S. Schaal, “Learning to control in operational space,”
The International Journal of Robotics Research, vol. 27, no. 2, p.
197, 2008.

[13] J. J. Kuffner Jr and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[14] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous grasp and
motion planning: humanoid robot armar-iii,” Robotics & Automation
Magazine, IEEE, vol. 19, no. 2, pp. 43–57, 2012.

[15] G. Metta and P. Fitzpatrick, “Better vision through manipulation,”
Adaptive Behavior, vol. 11, no. 2, pp. 109–128, 2003.

[16] K. Welke, J. Issac, D. Schiebener, T. Asfour, and R. Dillmann, “Au-
tonomous acquisition of visual multi-view object representations for
object recognition on a humanoid robot,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, 2010, pp. 2012–
2019.

[17] D. Gonzalez-Aguirre, J. Hoch, S. Rohl, T. Asfour, E. Bayro-
Corrochano, and R. Dillmann, “Towards shape-based visual object
categorization for humanoid robots,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, 2011, pp. 5226–
5232.

[18] O. Stasse, T. Foissotte, D. Larlus, A. Kheddar, K. Yokoi et al., “Trea-
sure hunting for humanoids robot,” in humanoids’ 08: International
Conference on Humanoids Robots, Workshop on Cognitive Humanoid
Vision, 2008.

3361

[19] D. Schiebener, A. Ude, J. Morimotot, T. Asfour, and R. Dillmann,
“Segmentation and learning of unknown objects through physical
interaction,” in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS
International Conference on. IEEE, 2011, pp. 500–506.

[20] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. J. Ijspeert, M. C. Carrozza, and D. G.
Caldwell, “iCub: the design and realization of an open humanoid
platform for cognitive and neuroscience research,” Advanced Robotics,
vol. 21, pp. 1151–1175, 2007.

[21] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano, “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Networks, vol. 23, no.
8-9, pp. 1125–1134, 2010.

[22] J. F. Miller, “An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,” in Proc.
of the Genetic and Evolutionary Computation Conf., 1999, p. 1135.

[23] J. F. Miller, Ed., Cartesian Genetic Programming, ser. Natural Com-
puting Series. Springer, 2011.

[24] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[25] S. Handley, “Automatic learning of a detector for alpha-helices in
protein sequences via genetic programming,” in Proc. of the Intl.
Conference on Genetic Algorithms, 1993, pp. 271–278.

[26] M. Oltean, “Evolving evolutionary algorithms using linear genetic
programming,” Evolutionary Computation, vol. 13, no. 3, p. 387, 2005.

[27] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-
gramming for image processing,” in Genetic Programming Theory and
Practice X (in press). Springer, 2013.

[28] J. F. Miller and S. L. Smith, “Redundancy and computational effi-
ciency in cartesian genetic programming,” in IEEE Transactions on
Evoluationary Computation, vol. 10, 2006, pp. 167–174.

[29] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[30] J. Leitner, S. Harding, A. Förster, and J. Schmidhuber, “Mars terrain
image classification using cartesian genetic programming,” in 11th
International Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (i-SAIRAS), September 2012.

[31] J. Leitner, S. Harding, M. Frank, A. Forster, and J. Schmidhuber,
“Humanoid learns to detect its own hands,” in IEEE Congress on
Evolutionary Computation (CEC), 2013, pp. 1411–1418.

[32] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber,
“An integrated, modular framework for computer vision and cognitive
robotics research (icVision),” in Biologically Inspired Cognitive Archi-
tectures 2012, ser. Advances in Intelligent Systems and Computing,
2013, vol. 196, pp. 205–210.

[33] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme.” Biochimica et Biophysica Acta, vol.
405, no. 2, pp. 442–451, 1975.

[34] S. Harding, V. Graziano, J. Leitner, and J. Schmidhuber, “Mt-cgp:
Mixed type cartesian genetic programming,” in Proc. of the Genetic
and Evolutionary Computation Conf., 2012, pp. 751–758.

[35] D. Izzo, M. Ruciński, and F. Biscani, “The generalized island model,”
Parallel Architectures and Bioinspired Algorithms, pp. 151–169, 2012.

[36] J. Leitner, A. Bernardino, and J. Santos-Victor, “A benchmark on stereo
disparity estimation for humanoid robots,” in Robotica, 8th Conference
on Autonomous Robot Systems and Competitions, 2008.

[37] U. Pattacini, “Modular Cartesian Controllers for Humanoid Robots:
Design and Implementation on the iCub,” Ph.D. dissertation, RBCS,
Italian Institute of Technology, Genova, 2011.

[38] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber,
“Transferring spatial perception between robots operating in a shared
workspace,” in Proc. of the Intl. Conference on Intelligent Robots and
Systems, 2012.

[39] J. Leitner, P. Chandrashekhariah, S. Harding, M. Frank, G. Spina,
A. Foerster, J. Triesch, and J. Schmidhuber, “Autonomous learning
of robust visual object detection on a humanoid,” in Proc. of the
Intl. Conference on Developmental Learning and Epigenetic Robotics
(ICDL), 2012.

3362

