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Abstract—Supervised learning methods have been successfully
used to build classifiers for the identification of promoter regions.
The classifier is often built from a dataset that has examples of
promoter (positive) and non-promoter (negative) regions. Thus, a
careful selection of the data used for constructing and evaluating
a promoter finding algorithm is a very important issue. In this
context, experimentally known promoter regions can be safely
assumed to be positive training instances. In contrast, since
definite knowledge whether a given region represents a non-
promoter is not generally available, negative instances are not
straightforward to be obtained. To make the problem more
complex, for the case of promoter, there is not a unique definition
of what a negative instance is. As a consequence, depending on
which definition of non-promoter region one assumed to build the
data, such a choice could affect significantly the performance of
the classifier and/or yield a biased estimate of the performance.
We present an empirical study of the effect of this kind of problem
for promoter prediction in E. coli. As far as we are concerned,
up to now, there is no such a kind of study for the context of
prokaryotic promoter prediction.

I. INTRODUCTION

The problem with negative sampling is common in many
areas of bioinformatics such as prediction of mRNAs that
are target of miRNAs, regulatory networks, protein-protein
interactions, non-coding RNA finding, among others [1]–[4].
For instance, in the studies of miRNA target the majority
of the methods suffer from high rates of false positives
or false negatives. This happens mostly because systematic
identification of mRNAs not proven to be target of miRNAs
is still not addressed properly. Thus, current machine learning
methods have to rely on artificially generated negative exam-
ples for training [1]. Likewise, regulatory networks modeling
and protein-protein interactions share the problem that definite
knowledge is typically not available that a given pair of genes,
proteins or other products under study do not interact [2], [3].
This problem also arises in the context of prokaryotic promoter
prediction. In fact, in this paper, we present an empirical study
of the effect of this problem – negative sampling – in the
context of prokaryotic promoter prediction.
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Promoter prediction in prokaryotes is often modeled as
a binary classification task: the algorithm should generate a
classifier able to discriminate between promoter (positive) and
non-promoter (negative) regions. These samples are frequently
nucleotide sequences (primary sequence) or features extracted
from them.

There is a great deal of work in this context of promoter
prediction in prokaryotes as a classification problem. In early
studies, Norton [5] made interesting observations about the
methodological issues concerning sequence extraction from
consensus genomes. He developed a probabilistic method to
predict promoters by evaluating uncertainty in the training
data. Helmann [6] analyzed 236 B. subtilis promoters rec-
ognized by σA-RNA polymerase and demonstrated interest-
ing characteristics concerning conserved positions and dinu-
cleotide frequency patterns.

More recently, Dhar [7] reviewed the use of features such
as curvature, bendability and stability to try to build more
accurate classifiers. Wu et al [8] improved the prediction ac-
curacy with a method that considered the correlations between
nucleotides at the construction of position weight matrices
representing the promoters. In another interesting work, the
authors performed neural networks simulations based both
on the primary sequences (nucleotide sequences) and other
features expressing sequences in terms of their free energy [9].

However, independently of the algorithm used to generate
the classifiers or the type of attributes used to represent the
instances in the dataset (primary sequence and/or its features),
one methodological issue that researchers have to account for
is the construction/choice of the negative instances. This is the
main of concern of this paper. For example, currently there are
many experimentally known promoter regions that can safely
be assumed to be positive training instances. In contrast, it
is experimentally complex to prove that a sequence does not
contain a promoter. As a consequence, negative examples have
been obtained in alternative ways, each one of them leading
to different “definitions” for what a negative example is.

Thus, depending on which definition (or criterion) of non-
promoter region one assumes to build the data, such a choice
could affect significantly the performance of the classifier
and/or yield a biased estimate of the performance. In this paper,
as our main contribution, we present an empirical study of the
effect of this kind of problem. In order to do so, we use the
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promoter prediction in E. coli as case study. As far as we are
concerned, up to now, there is no such a kind of analysis for
the context of prokaryotic promoter prediction.

II. RELATED WORKS

As mentioned before, the problem with negative sampling
is common in many areas of bioinformatics. One of the
strategies to deal with it that has provided good results is
the use of positive instances only, with a robust statistical
background [2], [4], [10].

In [4], for instance, the authors presented an algorithm,
positive sample only learning (PSoL), which combined with
support vector machine (SVM) created a powerful tool for
finding non-coding RNA genes.

Other interesting way to deal with the problem is the
establishment of benchmarks, standardizing the definitions
of negative examples and providing high-quality datasets. In
the context of protein-protein interactions, for example, a
repository (Negatome Database) was constructed containing
proteins that have high probability not to interact [11].

So far, in the context of prokaryotic promoter prediction,
in the lack of more grounded guidelines, the researchers build
their negative samples in different ways. For instance, in
order to create the sample of negative instances, the authors
in [12] take, randomly, fragments that are not included in
the positive sample. In another work, the authors extract at
random sequences from coding and non-coding regions [13],
[14]. There are also studies in which fragments from a related
organism, such as phages, are taken as negatives instances [15],
[16].

III. MATERIALS AND METHODS

We perform an empirical study on the impact of the choice
of negative examples in the performance of classifiers built for
the task of promoter prediction, using a dataset of E. coli as
case study. Such a problem is investigated from the perspective
in which the primary DNA sequences/sequences of nucleotides
are given directly as input to the learning algorithm (scenario
1), as well as in the context in which the input for the learning
algorithms are features extracted from the sequences (scenario
2). These two scenarios were chosen because they span most
of the prokaryotic promoter prediction methods available. In
addition, using this experiment design we are able to address
both categorical and continuous attributes.

In scenario 1, the attributes are categorical and can take
values in {A,C,G, T}, which are the representations of the
nucleotides that compose the DNA. In contrast, the attributes
in scenario 2 are often continuous. More specifically, in the
case of scenario 2, we use the variable-window Z-curve
(vw Z-curve) feature extraction method presented in [17].
This method is used because it addresses distribution of
purine/pyrimidine, amino/keto and strong/weak H-bonds in
a robust manner. Furthermore, it exhibits, as far as we are
concerned, the best accuracies up to now.

In terms of machine learning techniques, for both scenarios,
we apply a rule based system (decision trees) and statistical
learning systems such as naive Bayes classifier and support
vector machines. Additionally, for the scenario in which the

attributes are the features extracted with vw Z-curve method,
we apply the partial least squares algorithm as in [17].

Since the main focus of this work is the comparison of
the impact of the different negative sampling methods on the
classification, we have chosen these techniques as they provide
different learning frameworks. All the learning methods used
in our study were obtained from the Matlab and Statistics
Toolbox release R2012a.

Next, we present the datasets that we use in the exper-
iments. Then, we briefly introduce the vw Z-curve feature
extraction method. Finally, we discuss the methodology used
to evaluate the experiments.

A. Datasets

As previously mentioned, the main focus of this study
is the evaluation of the impact of specific biases associated
with the use of different definitions of negative samples
when building a dataset. In order to do so, based on various
definitions commonly found in the literature of our case
study (prokaryotic promoter prediction), we gathered a
representative collection of negative datasets. As general
guideline to construct our data, we use the work in [14], [17].

Positive Examples. DNA sequences known to be bound by σ
factors (promoters) were built/collected as described in [14],
[17]. Briefly, we obtained 812 sequences around transcription
start sites (TSSs), representing promoters regions, from
RegulonDB [18]. We use promoters from E. coli that contain
motifs recognized by σ19, σ24, σ28, σ32, σ38, σ54 and σ70.
All sequences have 80bp length spanning [TSS-60,TSS+19]
as used in [17]. Only experimentally verified promoters are
used, that is, promoters predicted by transcription initiation
mapping or RNA polymerase footprinting, which, according
to RegulonDB criteria, are the methods that provide strong
evidence. Hereafter, we refer to this dataset as POS.

Negative Examples. With respect to the data representing the
negative examples, as will be explained in the following, we
define different sets taking as basis if the sequences come from
coding regions, non-coding regions or from random segments
of the genome. For certain cases, some sequences needed to be
extracted from E. coli complete genome and coding regions.
This was accomplished using the database at NCBI [19] for
E. coli K-12 MG1655. All the negative sequences, as in the
case of the positive ones, consist of 80 nucleotides. In order to
exclude any problems due to class imbalance and to facilitate
specificity comparisons, all negative datasets were restricted to
contain 812 sequences. In all cases where the datasets were
obtained in previous studies and contained more than 812
examples, sequences were randomly drawn in order to fulfill
this criterion.

• Coding Negative Examples. As pointed in [14],
81% of known E. coli K-12 TSSs are located in
the intergenic non-coding regions and 19% in the
coding regions. Based on this, we decided to include
the coding data present in [14], [17]. Basically, they
picked genomic sequences at random from the start
of open reading frames (ORFs) in E. coli known
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coding regions. We denote such dataset as COD1.
For reasons that we will discuss later, we propose a
second coding dataset (COD2) consisting of sequences
randomly drawn from any part of the coding regions,
not only from the start of the ORFs as in [14], [17].

• Non-coding Negative Examples. Like [14], [17],
we also decided to include in our analysis the non-
coding examples from a random sample of non-coding
convergent intergenic spacers [20]. We will refer to
this dataset as NCOD.

• Random Negative Examples. Following the method-
ology in Bland et al [12], we created these data
from sequences chosen at random. In order to do so,
we extracted at random fragments from the E. coli
genome, but with the constraint that these sequences
cannot have any overlap with the sequences from the
positive set (POS). Comparing our methodology to
the one in [12], as the latter chooses the sequences
completely at random, the sequences could belong to
coding or non-coding regions. It is important to point
out that since 89% of E. coli genome corresponds to
coding regions [21], this dataset will be approximately
89% coding and 11% non-coding. Such dataset will
be denoted by RAND.

• Miscellaneous Negative Examples. The methodology
used to generate each of the previous negative datasets,
with exception, to a certain degree, of RAND, will not
include sequences from different parts of the genome.
For example, COD1 and COD2 will not present any
fragment from non-coding convergent intergenic spac-
ers (NCOD). However, from a practical point of view,
when one scans a genome looking for promoters,
the systems will have as input fragments from any
part of the genome. Motivated by this, we propose
to create two additional negative datasets. The first
dataset consists of a random sampling of 50% of
the sequences from COD1 and 50% of the sequences
from NCOD, which will be denoted by MIX1. The
second dataset, denoted by MIX2, follows the same
procedure, but using COD2 and NCOD.

• Control Negative Examples. To put the results into
perspective, we created a “synthetic” negative dataset.
Such a dataset is composed of sequences that were
generated completely at random, that is, they were
not picked from any part of a genome. In order to
correct for CG content, the nucleotide frequencies
considered to generate this dataset followed the
background distribution for E. coli genome. We will
denote this dataset as CTRL.

The datasets previously defined include most of the defini-
tions of positive and negative examples used in the literature
of prokaryotic promoter prediction analysis. A summary of
all these datasets is presented in Table I. The first column
represents the name of the dataset, the second column provides
a short description and the remaining columns represent the
frequencies of the nucleotides in each dataset.

B. Variable-window Z-Curve Feature Extraction

The variable-window Z-curve (vw Z-curve) feature ex-
traction, developed by Song [17], consists of a variation
of the regular Z-curve approach proposed by Zhang [22].
They can both be used to extract numerical features from a
nucleotide sequence. The main idea of the original Z-curve
theory is that a 3D curve (or point) representation for a DNA
sequence can be created in the sense that each can be uniquely
reconstructed given the other. The original Z-curve is calcu-
lated from the frequencies of the four bases occurring in the
sequence and considers three main components: distribution of
purine/pyrimidine, distribution of amino/keto and distribution
of strong/weak H-bonds. The regular Z-curve parameters are
only derived from the frequencies of mononucleotides occur-
ring in a DNA sequence. Song claims this is a limitation
for the case of promoter recognition and modified this idea
by introducing a variable-window that allows the point to be
in a much higher dimension. More formally, the vw Z-curve
method can be defined as follows [17].

Let Si
w be a string constructed by picking w elements from

the set {A,C,G, T} with order and repetition, where w is
defined as the window length and i = 1, ..., w4. For example,
when w = 2, S1

2 = AA, S2
2 = AC, ..., S16

2 = TT . Let the
frequency of the pattern Si

wX be denoted by p
(
Si
wX

)
, where

X ∈ {A,C,G, T}. The following equation shows the uniform
definition of the vw Z-curve variables.

xSi
w

= [p
(
Si
w−1A

)
+ p

(
Si
w−1G

)
]−

[p
(
Si
w−1C

)
+ p

(
Si
w−1T

)
]

ySi
w

= [p
(
Si
w−1A

)
+ p

(
Si
w−1C

)
]−

[p
(
Si
w−1G

)
+ p

(
Si
w−1T

)
]

zSi
w

= [p
(
Si
w−1A

)
+ p

(
Si
w−1T

)
]−

[p
(
Si
w−1C

)
+ p

(
Si
w−1G

)
]

where : w ∈ N and i = 1, 2, ..., 4w−1

(1)

Each window w generates 3 ∗ 4w−1 features. For example,
given a certain sequence (independently of its length), if we
generated its respective vw Z-curve, with w = 1, ..., 6, such
a sequence will be represented by a real-valued vector with
4095 attributes.

C. Evaluation

In order to compare the impact of the datasets on the
performance of the classifiers we will perform a 10-fold cross
validation using four supervised learning techniques: support
vector machine (SVM), naive Bayes classifier (NB), decision
trees (DT) and partial least squares (PLS) [17], [23]. In
every fold, classifiers are generated by training the supervised
learners with a combination of the positive dataset (POS) with
every other negative dataset.

We investigate the performance of classifiers in two differ-
ent scenarios. The first scenario regards the performance results
yielded by the usual 10-fold cross validation procedure. For
example, given the dataset (POS + COD1), by applying 10-
fold cross validation, we can build 10 classifiers. Then, the
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TABLE I. LIST OF DATASETS

Dataset Description A C G T
POS Known promoters 29.04 20.48 20.00 30.48
COD1 Start of coding regions 26.62 22.29 24.88 26.21
COD2 Random part of coding region 24.19 24.58 27.21 24.02
NCOD Non coding region 23.94 25.01 26.78 24.27
RAND Random non-promoter region 24.46 25.79 25.34 24.41
MIX1 50% COD1 + 50% NCOD 25.47 23.35 25.83 25.35
MIX2 50% COD2 + 50% NCOD 24.02 24.69 27.14 24.15
CTRL Completely random sequences 24.62 25.42 25.37 24.59

result will be the average of the performance of each one of
these classifiers tested with its respective testing set drawn
from (POS + COD1).

In the second scenario, we test classifiers generated with
a given dataset with different negative examples sets. For
example, given the dataset (POS + COD1), by applying 10-
fold cross validation, we build 10 classifiers. Then, we can
test the performance of these classifiers with, for instance, the
dataset POS + NCOD. Obviously that, in terms of the positive
examples, the performance will be the same for both cases.
However, in terms of negative examples, as the classifiers were
trained with COD1, they could have more difficulty in correctly
assigning examples coming from completely different dataset
(NCOD).

In summary, in terms of challenging the classifiers, the first
scenario should be “easier” than the second one, since the
testing examples are taken from the same distribution used to
create the classifiers. Hereafter, we refer to these two scenarios,
respectively, as Case study 1 and Case study 2.

We used three metrics to evaluate the performance of the
classifiers: correct rate (Cr), sensitivity (Sn) and specificity
(Sp). Table II presents these statistics, assuming TP, FP,
TN and FN are, respectively, the number of true positives,
false positives, true negatives and false negatives. In order
to evaluate whether performance variations between different
methods were significant, we applied a two-tailed paired t-test
using a confidence level of 95%.

TABLE II. PERFORMANCE METRICS IN TERMS OF TRUE POSITIVES
(TP), TRUE NEGATIVES (TN), FALSE POSITIVES (FP) AND FALSE

NEGATIVES (FN)

Correct Rate Sensitivity Specificity
TP + TN

TP + FP + TN + FN

TP

TP + FN

TN

TN + FP

IV. EXPERIMENTS AND RESULTS

In our experiments we use (1) the primary sequence
datasets (categorical attributes) and (2) datasets whose at-
tributes and characteristics were extracted by the vw Z-curve
method (numeric attributes). For the latter, following the
guidelines in [17], we first generated their respective vw Z-
curve datasets, with w = 1, ..., 6. This yields 4095 features
for each sequence. Then, we selected 300 features from the
4095 using the PLS-based feature selection described in [17].

This number of selected features was chosen based on the
accuracies reported by Song under different number of features
for E. coli datasets.

In terms of machine learning techniques, for both contexts,
we apply decision trees (DTs), naive Bayes classifier (NB)
and support vector machines (SVMs). Also, for the scenario
in which the attributes are the features extracted with vw
Z-curve method, we apply the partial least squares (PLS)
algorithm as in the work in [17]. In addition, a two-tailed
paired t-test at the 5% significance level is performed in order
to assess the statistical significance of the results obtained.
All the learning methods used in our study were obtained
from the Matlab. We use the default parameters for DTs,
NB and PLS. For the case of SVMs, after performing some
pre-experiments, we chose to use the polynomial kernel with
the exponent set to 3 and the complexity factor (C) set to 0.5.

In some further analyses, the Multiple EM for Motif
Elicitation (MEME) algorithm was used [24] in order to find
enriched motifs within the studied datasets. We searched for
the top 5 enriched motifs with length between 3 and 10,
which were enriched in a minimum of 100 instances. All other
parameters were set to default values.

Case study 1: the performance assessment with the usual
10-fold cross validation procedure

Figure 1 illustrates the performance metrics (correct rate,
sensitivity and specificity) for all classifiers obtained by per-
forming the usual 10-fold cross validation procedure on the
primary sequence datasets and features extracted with vw Z-
curve.

Looking at Figure 1A, at first glance, one can observe that
the SVM performed better than the other classifiers (p-value
regarding correct rate ranging from 2.5×10−3 to 3.4×10−9).
Except for COD1, the specificity of the SVM was usually lower
than its sensitivity. Differently, for NB and DT, the difference
between sensitivity and specificity was not large.

The most noticeable result is the significant (p-value re-
garding specificity < 10−5) large values for the statistics
obtained by training and testing with COD1. This can be
explained by the fact that COD1 was created by extracting
sequences from the start of gene ORFs. That is, such a negative
example dataset is the only one that has a highly conserved
ATG motif (MEME E-value = 1.3 × 10−8). It is important
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A

B

Fig. 1. Correct rate (Cr), sensitivity (Sn) and specificity (Sp) for all classifiers obtained by performing the usual 10-fold cross validation procedure according
to case study 1 on the primary sequence datasets (A) and features extracted with vw Z-curve (B).

to notice that, although the ATG motif is present in the top-
scored MEME result for the POS dataset, its position varies
within the sequence, differently from COD1, which explains
the large MEME E-value of 1.3 × 1019. In this categorical
scenario, this explains the highly optimistic results for COD1,
since no other dataset contained an ATG motif among the top
5 enriched motifs based on MEME E-values (see Figure 2).

Now, we turn our analysis to the same data, but, instead of
using directly the primary sequences, we consider as attributes
the features extracted via the vw Z-curve (Figure 1B). NB,
SVM and PLS performed statistically similarly for all the
datasets (p-value > 0.1). On the other side, DT had much lower
rates in comparison to the other methods (p-values ranging
from 4.4×10−4 to 5.7×10−8). As DT is not very appropriate
to deal with numeric attributes, this is an expected result.

Comparing the results in Figure 1A and B, one can observe
slightly lower (p-value regarding specificity < 10−3) results
for COD1 (and MIX1, which consists of 50% of COD1).
The explanation for this phenomenon probably also lies in
the enriched ATG motif present in COD1. Since the vw Z-
curve captures features in the DNA sequences, the positional
information of this ATG motif is diluted in a numerical rep-
resentation of such triplet. Since both POS and COD1 contain
ATG motifs, the classifiers have more difficulty in separating
these datasets with similar features. This result supports our
idea that the COD1 dataset provides biased results.

Besides the above statement, no great variations can be

observed. Methods based on the use of different features
(properties) extracted from the primary sequence as attributes,
instead of using directly the sequence, have been gaining
popularity. These results also suggest that, in addition to
improving prediction power by providing a wider range
of information, this methodology minimizes the biases
originating from sequence alignment issues.

Case study 2: the performance assessment with different
negative datasets

In this scenario, we compare the performance of the
classifiers when the datasets used for training and testing differ.
This case study reflects, for instance, exploratory analyses
in which not much information is known for a particular
organism and researchers usually apply classifiers built with
a particular negative dataset in a genome-wide fashion. Since
this comparison generates many performance measurements,
we will focus our attention to the SVM classifier, which was
shown to provide the best performance in our first case study.
Table III provides specificity rates obtained by the application
of SVM classifier to all combinations of training and testing
sets. The upper part of the table regards the primary sequences
datasets, whereas the lower part contains the results for vw Z-
curve datasets.

For primary sequence datasets, the bias generated by the
presence of ATG motif in COD1 is now evident: the specificity
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TABLE III. SPECIFICITY FOR TRAINING AND TESTING WITH SVM CLASSIFIER – CASE STUDY 2

Testing
COD1 COD2 NCOD RAND MIX1 MIX2 CTRL

Tr
ai

ni
ng

Se
qu

en
ce

COD1 94.14 39.43 38.30 35.83 68.80 41.93 31.26
COD2 52.79 79.55 78.08 75.11 64.07 87.39 69.93
NCOD 50.36 77.98 77.21 72.87 73.33 87.87 68.81
RAND 47.98 75.73 73.67 71.67 58.39 74.80 66.06
MIX1 95.25 67.61 82.39 63.88 79.04 75.76 58.40
MIX2 54.90 87.79 87.83 73.88 70.40 78.55 69.47
CTRL 48.22 73.74 74.76 71.93 59.75 74.27 68.23

vw
Z

-c
ur

ve

COD1 85.29 91.91 84.88 82.14 91.84 88.29 72.98
COD2 71.44 91.51 85.16 80.11 77.84 92.66 62.13
NCOD 61.69 84.84 85.58 80.50 79.72 92.08 56.43
RAND 69.00 87.39 89.25 85.10 78.84 88.81 69.77
MIX1 87.33 91.06 93.60 84.96 83.49 91.96 68.15
MIX2 68.76 94.00 91.85 80.25 79.57 89.64 64.84
CTRL 63.18 75.73 79.52 79.27 70.17 76.12 96.06

rates suffer a dramatic drop when COD1 is used as a training
set and other datasets are used as testing set (first row of the
upper part of the table). An interesting result is the fact that, for
certain contexts, we can observe higher rates for testing with
other dataset rather than the one used to build the classifier.
For example, in the case of MIX2, the classifiers presented
better performance when tested either with COD2 and NCOD.
Since the application of novel methodologies will be done in
a much noisier environment that the controlled 10-fold cross-
validation, this could be seen as an evidence that using multiple
datasets is essential for any study.

In addition to the training bias, the use of COD1 also makes
clear a testing bias that can be seen by verifying the low
specificity rates when training with other datasets and testing
with COD1 (first column of the upper part of the table). At this
context, mixing datasets methodology has proven to minimize
this kind of bias, though it is still noticeable its preference for
its own instances when testing.

In contrast to what we have discussed previously for pri-
mary sequence datasets, the results of the vw Z-curve datasets
did not present the training bias generated by the conserved
ATG in COD1. Indeed, the behavior observed was the opposite.
When training with COD1, the values for testing with COD2,
MIX1 and MIX2 were moderately larger. This unexpected fact
led us to conduct a more careful analysis of the structure of
these datasets.

In order to do so, we calculated the centroid (average
vector) for each dataset in Table I. Then, we computed the
Euclidean distance between the centroids of each dataset
– inter-dataset distance (see Table IV). Based on this, a
probable explanation for the “inverse” COD1 bias for vw
Z-curve datasets is that the distance between the centroids of
POS and COD2 is greater than that of between POS and COD1
(respectively, 2.77 and 2.13), while the distance between
COD1 and COD2 is much lower (1.62). From a geometrical
point of view, whatever the decision boundary between
POS and COD1 is, this same boundary would be able to
correctly classify examples from COD2, which are closer to the
instance in COD1, but more distant from the examples in POS.

POS
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Fig. 2. Top enriched motifs for all datasets studied according to MEME
algorithm. Below each dataset name it can be seen the MEME E-value score
and, on the right, that dataset’s top enriched motif logo. The enriched ATG
motifs for the POS and COD1 datasets are marked with a black square.
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TABLE IV. DISTANCE BETWEEN THE CENTROIDS OF VW Z-CURVE
DATASETS

POS COD1 COD2 NCOD RAND MIX1 MIX2
COD1 2.13
COD2 2.77 1.62
NCOD 2.67 1.78 1.42
RAND 2.48 1.71 1.55 1.17
MIX1 2.26 1.00 1.36 1.09 1.31
MIX2 2.67 1.65 0.89 0.93 1.30 1.16
CTRL 2.55 2.43 2.75 2.56 2.38 2.42 2.59

Discussion

Having analyzed the results of our experiments, we point
out to the fact that when applying any methodology in real
biological datasets, the learners face data that do not behave
so well as in in silico experimental pipelines. “Real world”
data consists of general and specific biases and noises that may
differ depending on simple actions such as parameter setting.
In addition, there are several types of methodological details
that, when incorrectly treated, often lead to biased results.
For instance, the dataset COD1, used in [14], [17], contains
a conserved motif. Such a motif, in terms of methods that use
primary sequence as input, leads the classifiers generated to
classify incorrectly negative examples coming from different
distributions.

Moreover, since the goal of any genome-wide prediction
technique is to run a classifier and retrieving the regions that
are more likely to be enriched for what is expected it to be,
using coding and non-coding negative samples in separate does
not necessarily addresses the actual problem. In this context,
although our analysis has shown no significant bias related
to the RAND dataset, the original definition made in [12]
excluded, from the negative dataset, regions within 50bp from
the TSS. These regions are known to have lower stress-
induced duplex destabilization (SIDD) profile levels, which is
a characteristic of a promoter region. Thus, in generating their
negative examples in this way, they somehow prevent getting
into the dataset segments of genomes that could make the
classification, in this context of SIDD profile features, harder.
In fact, as demonstrated in our experiments, when considered
out of the SIDD profile context, picking sequences at random
from the genome could lead to a dataset that provides a
pessimistic view of the classifiers generated.

In summary, we suggest that in studies that the negative
examples are hard to determine or supporting evidence is not
present, the performance assessment should be accomplished
by spanning the largest possible number of scenarios. This
includes (1) training and testing with different datasets corre-
sponding to different interpretations of negative samples, (2)
generating other datasets, such as combinations of the origi-
nal datasets, (3) assessing the performance through a wider
range of statistics, and (4) exploring other methodological
possibilities such as semi-supervised learning and positive only
prediction.

V. FINAL REMARKS

In this work, we discussed a number of different biases
and misinterpretations that often occur in bioinformatics stud-
ies concerning the use of supervised learners when negative
instances are hard to obtain or define. More specifically, we
present an empirical study of the effect of this kind of problem
for promoter prediction in E. coli. To support our discussion
we created two evaluation scenarios where a 10-fold cross-
validation was applied to 14 different datasets, composed
of sequences and features extracted from these sequences,
using four machine learning methods. We showed specific and
general biases that happened under these circumstances and
suggested evaluation criteria to assess the actual performance
of novel algorithms over a wide range of bioinformatics fields.

This study can be further expanded to encompass other
evaluation scenarios. For example, other features extracted
from the sequences can be used such as SIDD profile [12]
or DNA stability based on free energy [9]. Moreover, the
extension of the analyses made in this study to other organisms
would probably generate further insights. In this case, more
complex negative datasets could be explored such as the ones
generated by higher-order Markov chains in order to model
nucleotide dependencies. Other possibility is the use of a
wider number of classifiers, allowing for a detailed discussion
on the specific bias of each learner. One can also compare
other approaches, such as non-supervised, semi-supervised
or positive sample only learning, to the classical supervised
methodology [2], [4], [10].
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