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Abstract—In this work, we introduce a complex-valued sin-
gular spectrum analysis for the analysis of electroencephalo-
gram (EEG), which typically exhibits noncircular probability
distribution. To exploit such prior knowledge, our technique
makes use of recent advances in complex-valued statistics to
exploit the power difference or the correlation between the data
channels, in contrast to current methods which cater only for
the restrictive class of circular data. In particular, the principal
component analysis-like technique was employed to detect the
onset of P300, and tracked this event-related potential. In
this way, the classification of EEG can be made possible to
differentiate between a healthy subject and a schizophrenic
patient. In particular, we illuminate how features such as P3a
and P3b can be used to perform such classification.

I. INTRODUCTION

PRINCIPAL component analysis (PCA) is a well-
established statistical algorithm known for its

applications in dimensionality reduction, classification
and pattern recognition. In 1980s, interests in dynamical
systems paved the way for the extension of PCA to singular
spectrum analysis (SSA) [1]. Despite being introduced three
decades ago in the Statistics community, this technique is
relatively unknown to the IEEE Computational Intelligence
community, apart from the work in [1].
Singular spectrum analysis (SSA) is a powerful model-
free technique which does not need any prior statistical
assumption such as normality or Gaussianity of the data [2].
Its application includes single-channel source separation,
non-parametric signal decomposition, smoothing and
forecasting [2], [3], [4]. SSA has been applied in various
areas such as bio-signal processing, image processing, earth
science, economics and finance [4], [2], [5]. This work
introduces a biomedical application which implements an
enhanced version of complex-valued SSA for EEG analysis,
particularly for event-related potential (ERP) analysis.
Event-related potentials (ERPs) are specific electro-
encephalogram (EEG) waveforms in response to different
brain stimulations. ERPs have relatively smaller amplitudes
compared with the background EEG, thus traditionally
ERPs are elucidated using signal-averaging procedure [6].
Analysis of different types of ERPs, such as in visual
or auditory stimuli, provides important information for
clinical diagnosis of psychiatric diseases such as dementia,
alzheimer or schizophrenia [6], [7].
Although ERPs offer fine-grained temporal resolution, they
suffer from limited spatial resolution. Furthermore, some of
the ERP components are likely to overlap which makes it
difficult to distinguish between specific stages of the signal.
A common example is the composite P300 wave, which

is a positive ERP component with a latency of about 300
milliseconds after a task-relevant stimuli [6], [7]. P300 is
distributed over the midline electrodes (Fz, Cz and Pz)
and it generally has larger magnitude towards the parietal
electrodes (positioned at the back of the head) [8]. The P300
consists of two major overlapping subcomponents known
as P3a and P3b. P3a represents an automatic switch of
attention to a novel stimuli regardless of the task, however,
P3b is elicited by infrequent task relevant events. P3b wave
is mostly central-parietal while P3a has a frontal-central
distribution and it is characterized with a shorter latency
and more rapid habituation than P3b [6], [9].
Along with other clinical examinations, analysis of P300
could be used as a potential diagnostic procedure. For
this purpose, a reliable method for separating P300
subcomponents must be employed. One of the most
common methods for P300 detection is the traditional ERP
averaging [7]. Averaging over the large number of trials
could significantly enhance the P300 wave by reducing
the background EEG, however, it suffers from several
limitations. For example, averaging assumes that P300
latencies are constant over the time while it is not the case
in reality. In addition, this method ignores the effect of brain
rapid habituation on P3a [10]. In other words, the person
gets used to the stimuli. Thus, it cannot distinguish the small
differences between subcomponents which are temporally
overlapped [9]. In order to overcome these drawbacks and
elucidate the P300 subcomponents, averaging can be applied
over the smaller window frames with 50% temporal overlap.
This is similar to the concept of single-trial averaging.
This method, compared to the overall averaging, would
not reduce the background EEG significantly. Therefore, it
would be beneficial to apply a robust smoothing algorithm
to mitigate the effect of unwanted EEG while extracting the
desirable P300 subcomponents.
There are several nonlinear noise reduction algorithms
among which singular value decomposition (SVD) based
method is widely accepted as an effective method for this
purpose [2]. Since SSA is an SVD-based algorithm, it has
the potential to be used as a smoothing technique. This work
has exploited a novel augmented complex SSA (A-CSSA)
rather than traditional SSA to improve the extraction of
P300 subcomponents [11]. Complex-valued algorithms
can take advantage of the correlation between two similar
signals. It is not a surprise, therefore, that they have found
many applications in machine learning and EEG analysis.
For example, a complex blind source extraction algorithm
(C-BSS) was introduced to remove eye artifacts [12].
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Moreover, an augmented complex common spatial pattern
(AC-CPS) has been developed in [13] for the classification
of non-circular EEG during motor imagery tasks. Similarly,
this work adapts the recently introduced augmented complex
algorithm [11] to detect and track the P300 subcomponents
in the classification of healthy and non-healthy subjects.
This paper is organised as follows: a comprehensive
overview of the augmented complex SSA algorithm is
provided, which is followed by its pseudo-code. We then
illustrate how we can make use of this algorithm to
enhance the detection of P300 in EEG signals. Finally, the
experimental results are provided in section IV and the
conclusion in section V.

II. AUGMENTED COMPLEX SSA ALGORITHM

The objective of SSA is to represent the original signal
as sum of a small number of components which can be
identified as a trend, periodic or quasi-periodic component or
noise1. This is achieved by mapping a given signal in terms of
eigenvectors and eigenvalues of a matrix generated from the
original signal [14]. Fig. 1 illustrates a signal decomposed
using basic SSA. It is shown that eigenvalues are placed
in decreasing order where top eigenvalues represent the
dominant components (Fig. 1,b).
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Fig. 1. Simple example for a signal decomposition using basic SSA.
According to the eigenvalue subspaces, signal decomposed to the trend (c),
periodic and quasi-periodic components (d, e, f) and noise (h). Similar to
the concept of PCA, dimensionality is reduced by considering the dominant
eigen-subspaces and the smoothed version is shown in (g).

In this work, however, the augmented complex complex SSA
(A-CSSA) was utilised rather than basic SSA. Typically,
the statistics of complex domain are considered as the

1Observe the similarity to the Empirical Mode Decomposition (EMD),
however SSA is a closed form technique, unlike the empirical nature of
EMD [14].

direct extension of real domain statistics. For example, the
covariance matrix of a zero mean complex vector f can be
formulated by replacing the standard transpose operator (.)𝑇

with the Hermitian transpose (.)𝐻 , i.e. ff𝑇 → ff𝐻 . However,
recent works have shown that basic complex covariance
matrix ignores the correlation between the real and imaginary
part of the signal; yet this information can be obtained
using the pseudo-covariance matrix2 [15], [16]. Therefore,
“augmented” statistics have been established to generalize
the optimal second-order statistics for complex domain [15]
in which both covariance (C) and pseudo-covariance (P) are
considered:

f𝑎 = [f , f∗]𝑇 → C𝑎 = 𝐸[f𝑎f
𝐻
𝑎 ] = 𝐸

[
C P
P∗ C∗

]
(1)

To incorporate the latest advances in complex-valued statis-
tics into the CSSA framework, this paper employed the
augmented complex SSA (A-CSSA) [11]. SSA algorithm
makes use of a special matrix called the trajectory matrix,
which can be expressed as follow:

W =

⎛
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⎜
⎜
⎝

𝑓1 𝑓2 𝑓3 ... 𝑓𝑛
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⎞

⎟
⎟
⎟
⎠

(2)

The first column in (2) is a segment of the original signal
and second column is the one-step lagged version of the first
column and so on. All steps of A-CSSA are summarised in
Algorithm 1 [14].

Algorithm 1: Augmented complex SSA algorithm
Decomposition
1. Consider the input as a complex-valued vector f𝑠
with length 𝑠.
2. Define the embedding dimension 𝑙 as 1 < 𝑙 < 𝑠 and
𝑛 = 𝑠− 𝑙 + 1.
3. Generate a trajectory matrix W𝑙,𝑛 using the lagged
version of the original signal (Eq. 1).
4. Obtain the augmented version of the trajectory
matrix W2𝑙,𝑛

𝑎 by considering its conjugate (Eq. 2).
5. Calculate the augmented covariance matrix W𝑎W

𝐻
𝑎 .

6. Apply SVD on the generated covariance matrix and
produce several eigentriple sets (𝜆𝑗 ,q𝑗 ,v𝑗)3.

Reconstruction
7. Select the appropriate subgroups of the eigentriples
based on the desirable output.
8. Generate the new trajectory matrix W̃𝑎 using only
selected eigentriples.
9. Reconstruct the desired complex-valued signal f̃ by
Hankelization algorithm4.

2To illustrate the correlation, consider a complex variable 𝑧 = 𝑎+ 𝚥𝑏.
Its covariance (𝑐) can be calculated as 𝑐 = 𝐸[𝑧𝑧∗] = 𝐸[𝑎2 + 𝑏2] and its
pseudo-covariance (𝑝) can be defined as 𝑝 = 𝐸[𝑧𝑧] = 𝐸[𝑎2 − 𝑏2 + 𝚥2𝑎𝑏].
The correlation is captured by the term 𝐸 = [𝚥2𝑎𝑏]

503



III. PROPOSED METHOD

Overall averaging can significantly enhance the P300 wave
by reducing the background EEG. However, since it is overall
average, this method cannot track the temporal changes and
distinguish the small differences between subcomponents
which are temporally overlapped, such as P3a and P3b.
On the other hand, single-trials could track these temporal
changes, but they suffer from high EEG background.
Therefore, our proposed method aimed to merge the concept
of overall averaging with single-trial analysis. For this pur-
pose, the temporal single-trials were used in parallel with the
overall averaged signal known as the reference signal. Thus,
each subject has its specific reference (x) calculated from
the overall averaging of all the target events. This signal is
then combined with a single-trial ERP (y) to construct a one-
dimensional complex-valued vector (f ) that is, f = x+ 𝑗y.
Then, the generated complex-valued vector f needs to be
filtered using the proposed A-CSSA method. As augmented
statistics takes into account the correlation between the
real and imaginary parts of a signal, the reference signal
from the real part of f emphasizes the temporal location of
P300 in single-trial ERPs by empowering the corresponding
eigentriples. Furthermore, as single-trials are measured for
short time intervals, it is likely to detect and track the
overlapping P300 subcomponents more accurately.

IV. EXPERIMENTAL RESULT

The proposed method was applied to 12 EEG recorded for
8 healthy subjects and 4 schizophrenic patients during an
auditory two-stimuli oddball experiment5. In the traditional
oddball paradigm an infrequent target randomly occurs in a
background of frequent standard stimuli and the subject is
told to press a button when the target appears [8], [17].
All experiments were performed on channel Cz. Three main
reasons for selecting Cz are: (i) Cz is central channel, so it
contains the effect of both P3a and P3b which are distributed
frontocentral and centroparietal respectively, (ii) as Cz is
found on the central line, it can reflect P300 wave even
for abnormal cases with uni-lateral brain difficulties and
(iii) posterior alpha wave (8-13Hz) has slightly less effect
on the central channel Cz.
The reference signal was obtained by temporally averaging
over 35 target events which randomly appeared over a
period of 320 seconds. On the other hand, single-trials were
calculated over the moving window of 8 target stimuli with
50% temporal overlap. All stimuli, including standards and
targets, occurred every 2 seconds. However, in order to
increase the chance of P3a generation for the first target,
standard stimuli were repeated consecutively for about 50

3SVD of the W𝑎W𝐻
𝑎 produces the corresponding eigenvalues (𝜆) and

eigenvectors (v,q) of the W𝑎. Thus, W𝑎 can be rewritten as the sum of
its eigentriples W𝑎 =

∑
𝑗

√
𝜆𝑗q𝑗v𝑗

𝐻 [14].

4Hankelization refers to averaging cross-diagonals elements of matrix
(W̃𝑔), i.e. averaging along elements with indices (𝑖+ 𝑗 = const).

5Data were previously recorded and used in [7]. EEG was originally
recorded with a sampling frequency of 2000Hz and it was downsampled to
200Hz for simulation purposes.

seconds and the first target appeared there after to switch the
subjects’ attention. For more details, see Fig. 2.

Fig. 2. Each frame has an individual complex-valued signal generated as
f = x+ 𝑗y. Note that overall average (y) is the same for all frames.

The first frame (50-130sec) for a schizophrenic patient is
illustrated in Fig. 3. The frame covers 80 seconds after the
first target stimuli. As shown in Fig. 3, P3a and P3b are
clearly visible using the proposed A-CSSA method (bottom-
right) and their shape was in agreement with the literature [6].
Similar results were observed for 10 subjects.
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Fig. 3. Original data for a schizophrenic patient recorded from central
electrode Cz (top). Original data zoomed in for 1-500msec after the target
(bottom left). P300 subcomponents were clearly visible after using A-CSSA
(bottom right).

Although P300 subcomponents have the predefined duration
ranges, there is no specific narrow-band frequency range
to separate them from the strong alpha wave. One of the
main advantages of the proposed method, compared to the
traditional filtering algorithms, is that A-CSSA does not
depend on frequency. Thus, it does not require any prior
knowledge of frequency range and it can be applied for either
patients or healthy subjects regardless of their P300 features.
In order to track the changes in P300 subcomponents,
Figure 4 illustrates 250 seconds after the first target for
a schizophrenic patient (top middle) and a healthy subject
(bottom). Each row in Figure 4 contains four subplots that
represent different time frames. According to prior knowl-
edge, P300 is expected within first 500 milliseconds after the
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target onset. Hence, all the subplots are zoomed in for this
range [7], [8]. Each subplot includes a complex-valued signal
in which the real part (dashed line) was a reference signal
obtained by averaging of all target stimuli and the imaginary
part (solid line) was the average of 8 targets covering the
period of 80 seconds. Note that each subject6 had a unique
constant reference for all subplots, see Figure 4.
Remark#1: Fig. 4 illustrates the rapid habituation of P3a
over time after the first target event. This is the reason
why the overall average has less P3a amplitude than frame
averaged signal, see Fig. 4 (b and c).
Remark#2: As the patient gets used to the stimulus (habit-
uation), which is exhibited by the manifestation of P3a, the
P3b visibility improves. Generally, healthy subjects showed
faster habituation than schizophrenic patients. Illustratively
this is clear from Fig. 4 (c) where P3b is stronger than P3a
in the last temporal frame.
Remark#3: According to [18], significant reduction of P300
particularly in auditory experiments, is one of the most
consistent biological findings in schizophrenia. This work
was also in agreement with the literature and it is shown
that P3b has constantly lower magnitude in schizophrenic
patients (compare Row b and c).
Remark#4: In addition to the amplitude differences,
schizophrenic patients showed longer P300 latency than
healthy subjects (compare Row b and c).
Similar results were observed for 10 subjects, however these
are not included due to space limitation. Comparisons were
performed by manual observation. However, in future works,
we aim to automate the classification process by defining a
specific threshold constraints on amplitude and latency of
P300 subcomponents.

V. CONCLUSIONS

In this work, we have shown how biologically meaningful
features can be extracted from EEG signal for the classi-
fication of healthy subjects and schizophrenic patients. In
particular, we have exploited prior knowledge such as known
latency of 300 milliseconds to extract these features and
made use of recent advances in complex statistics to do
so. Moreover, we have introduced the augmented complex-
valued singular spectrum analysis (A-CSSA) to combine the
traditional averaging method with single-trial ERP analysis
in order to attenuate EEG background from the event-related
potential P300 so that its tracking can be made possible.
Experimental results support our proposed method and are
in agreement with the literature.
Future work goes on to (i) develop an automatic detection of
P300 subcomponents by defining some constraints based on
prior knowledge, (ii) find the optimal window length 𝑙 based
on the individual datasets and (iii) implement the proposed
approach on larger number of data and provide a quantitative
evaluation.

6These subjects were of the same sex.

Tracking the P300 subcomponents for a schizophrenic patient vs. a healthy subject
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(a) Original signal for a schizophrenic patient (Cz channel)
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Fig. 4. Original data for a schizophrenic patient (top). Highlighted P300
subcomponents after A-CSSA for the same patient (middle) and a healthy
subject (bottom).
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