
 
 

 

  

Abstract—This paper addresses the problem of exponential 
synchronization via boundary control for a class of networked 
linear spatiotemporal dynamical networks consisting of N 
identical nodes, in which the spatiotemporal behavior of the 
each node is described by parabolic partial differential 
equations (PDEs). The purpose of this paper is to design 
boundary controllers ensuring the exponential synchronization 
of the networked parabolic PDE system. To do this, Lyapunov’s 
direct method, the vector-valued Wirtinger’s inequality, and the 
technique of integration by parts are employed. A sufficient 
condition on the existence of the boundary controllers is 
developed in term of standard of linear matrix inequality (LMI). 
Finally, numerical simulation results on a numerical example 
are presented to illustrate the effectiveness of the proposed 
design method. 

I. INTRODUCTION 
OMPLEX dynamical networks (CDNs) can be used to 

describe the most systems in real world, where the nodes 
and edges represent individuals in the system and the 

connections among them. Typical examples include 
ecosystems, electrical power systems, social systems, the 
Internet, the WWW (World Wide Web) and so on. Since their 
wide and important applications, the topology and dynamical 
behavior of various CDNs have been intensively studied over 
the past few decades [1]-[8].  

One of the interesting and significant phenomena in CDNs 
is the synchronization of all dynamical nodes in the network. 
Synchronization is a typical collective behavior and basic 
motion in nature. Since the pioneering work of Pecora and 
Carroll [9], synchronization of CDNs has been received 
increasing attention [10]-[13] due to its potential applications 
in secure communications, chemical reactions, biological 
systems, etc. In the case when the whole network cannot 
synchronize by itself, some controllers may be designed and 
applied to guide the network to synchronize. Therefore, a 
large amount of work has been devoted to the investigation of 
the synchronization on CDNs through designing appropriate 
controllers [14]-[18]. It must be pointed out that these results 
[9]-[18] are developed for the CDNs whose the node 
dynamics only depends on time and is assumed to be 
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described by ordinary differential equations (ODEs) or delay 
differential equations (DDEs). In practice, the node dynamics 
in some CDNs like biological systems [19] is spatiotemporal 
in nature so that its behavior must depend on time as well as 
spatial position and is described by partial differential 
equations (PDEs).  

Some authors have paid attention to the investigation of 
control and synchronization of spatiotemporal dynamical 
networks [20]-[22]. For example, pinning control and global 
as well as local control were respectively reported in [20] and 
[21] for spatiotemporal chaos, where the spatiotemporal 
chaos dynamics is approximately described by ODE model. 
Motivated by the results in [20] and [21], a robust H∞ 
controller has been more recently developed in [22] to 
achieve synchronization of the coupled PDE systems with 
spatial coupling delay. Due to the truncation before the 
controller design, however, the results in [20]-[22] fail to take 
advantage of natural property of the systems. Moreover, the 
order of the model truncation is a tradeoff between model 
accuracy and real time computation.  

Considering the fact that the aforementioned drawbacks 
resulting from the truncation before control design, some 
synchronization approaches have been developed based on 
the original PDE model to overcome the aforementioned 
drawbacks [23]-[27]. For example, based on the original PDE 
model, sufficient conditions on stability and passivity were 
presented in [23] and [24] by employing the Lyapunov’s 
direct method for a class of reaction-diffusion neural 
networks. An approach via the original PDE model was 
proposed in [25] to examine the synchronization via an active 
controller of the coupled semi-linear parabolic PDE systems. 
Hu et al. [26] provided some sufficient conditions dependent 
on the diffusion coefficients guaranteeing the global 
exponential stability and synchronization for the 
reaction-diffusion delayed neural networks under the 
impulsive controllers. Wang and Wu [27] employed the 
Lyapunov’s direct method and the inequality techniques to 
develop simple design methods for adaptive control laws 
ensuring synchronization and H∞ synchronization of coupled 
reaction-diffusion neural networks with hybrid coupling. 
Notice that the controllers used in [25]-[27] are difficult to be 
implemented since their implementation needs arrays of 
actuators and sensors distributed over the entire spatial 
domain. Different from the controllers considered in 
[25]-[27], the implementation of boundary controllers only 
requires only few actuators located at the boundary of the 
spatial domain and is thus relatively easy.  However, to the 
best authors’ knowledge, few results are available for the 
exponential synchronization of CDNs through boundary 
control, which motivates this study. 
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This paper considers the problem of exponential 
synchronization via boundary control for a class of networked 
linear parabolic PDE systems consisting of N identical nodes 
in one spatial dimension, where actuators of each node are 
only located at the one end of the spatial domain. By using the 
Lyapunov’s direct method and the vector-valued Wirtinger’s 
inequality, a simple design for the boundary controllers is 
developed for the networked linear parabolic PDE system and 
presented in term of standard linear matrix inequality (LMI). 
The suggested controllers can ensure the exponential 
synchronization of the networked parabolic PDE systems and 
are easily implemented since a finite number of actuators 
located at the boundary of the one dimensional spatial domain 
are required. Moreover, the design method can be directly 
implemented via the polynomial-time interior-point method 
[28] and [29]. Finally, a numerical example is given to 
illustrate the effectiveness of the proposed design method.  

The remainder of this paper is organized as follows. 
Section II gives preliminaries and problem formulation. The 
sufficient condition on exponential synchronization of the 
networked parabolic PDE system is provided in Section III. 
Section IV presents an example to illustrate the effectiveness 
of the proposed method. Finally, Section V offers some 
concluding remarks. 

II. PRELIMINARIES AND PROBLEM FORMULATION 

Notations: ℜ , nℜ  and m n×ℜ  denote the set of all real 
numbers, n-dimensional Euclidean space and the set of all 
m n×  matrices, respectively. ⋅  and ,

ℜ
⋅ ⋅ n  denote the 

standard Euclidean norm and inner product for vectors, 
respectively. ⊗A B  means the Kronecker product of two 
matrices A  and B . Identity matrix of n n×  dimension will 
be denoted by nI . For a symmetric matrix M , ( , )0> < ≤M  
means that it is positive definite (negative definite, 
semi-negative definite, respectively). min ( )λ ⋅  and max ( )λ ⋅  
stand for the minimum and maximum eigenvalues of a square 
matrix, respectively. 2 ([0, ]; )nL ℜL  is a Hilbert space of 
n-dimensional square integrable vector functions ( ) nx ∈ℜω , 

[0, ]x L∈ ⊂ ℜ  with the inner product and norm: 
 

1 2 1 20
, ( ), ( ) n

L
x x dx

ℜ
= ∫ω ω ω ω  and 1/2

1 1 12
,=ω ω ω , 

 
where 1ω , 2 2 ([0, ]; )nL∈ ℜLω . ,2 ([0, ]; )l nL ℜW  is a 
Sobolev space of absolutely continuous n-dimensional vector 
functions ( ) : [0, ] nx L → ℜω  with square integrable 

derivatives ( )l

l
d x

dx
ω  of the order 1l ≥  and with the norm 

( ) ( ),2

2 ( ) ( )
00

( )
i i

l i i

TL l d x d x
i dx dx

dx
=

⋅ = ∑∫W
ω ωω . The superscript ‘T’ is 

used for the transpose of a vector or a matrix. The symbol ‘ ∗ ’ 
is used as an ellipsis in matrix expressions that are induced by 
symmetry, e.g., 
 

[ ]+ + + ∗⎡ ⎤
⎢ ⎥∗⎣ ⎦

S M N X
Y

[ ]⎡ ⎤+ + + +
⎢ ⎥
⎣ ⎦

T T

T

S M N M N X
X Y

. 

 
Consider a networked linear parabolic PDE system 

consisting of N identical nodes in one spatial dimension, in 
which the spatiotemporal dynamics of the i-th node is 
described by the following state-space model: 
 

, , 1

, ,0

,0

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( ), ( , ) 0

( ,0) ( ), {1, 2, , }

N
i t i xx i ij jj

i x i i xx x L

i i

x t x t x t g x t x t

x t t x t

x x i N

=

= =

⎧ = + + +
⎪
⎪ = =⎨
⎪

= ∈⎪⎩

∑y y Ay y J

y Bu y

y y

Θ

N

 

(1) 
where 1( , ) [ ( , ) ( , )]T n

i i inx t y x t y x t ∈ℜy  is the state of 
the i-th node, the subscripts x  and t  stand for the partial 
derivatives with respect to x , t , respectively, [0, ]x L∈ ⊂ ℜ  
and [0, )t ∈ ∞  are the spatial position and time, respectively, 
and ( ) m

i t ∈ℜu  is the boundary control input of the i-th node. 
n n×∈ℜΘ , n n×∈ ℜA , and n m×∈ℜB  represent the dispersal 

rate, connection matrices, and the control input matrix, 
respectively, 1( , ) [ ( , ) ( , )]T n

nx t J x t J x t ∈ℜJ  is the 
external input, ( )ij N Ng ×G  is the constant matrix describing 
the topological structure of network and the coupling strength 
between nodes for configuration. The parameter ijg  is 
defined as follows: if there exists a connection from node i to 
node j ( )i j≠ , then 0ijg ≠ ; otherwise 0ijg = ( )i j≠  and 

1,

N
ii ijj j i

g g
= ≠

= −∑ , i ∈N . The coupling matrix G  is not 

required to be symmetric or irreducible.  
Notice that a solution 1( , ) [ ( , ) ( , )]T

nx t s x t s x t ∈s  
nℜ  of an isolated node satisfies the following parabolic PDE: 

 

0

0

( , ) ( , ) ( , ) ( , )
( , ) ( , ) 0

( ,0) ( ).

t xx

x xx x L

x t x t x t x t
x t x t

x x
= =

= + +⎧
⎪ = =⎨
⎪ =⎩

s s As J
s s

s s

Θ
                                   (2) 

 
Here, ( , )x ts  may be an equilibrium point, a periodic orbit, or 
even a chaotic orbit in the phase space. 

Define the error ( , ) ( , ) ( , )i ix t x t x t−e y s , i ∈N . From 
(1) and (2), we have the following error system of the i-th 
node: 
 

, , 1

, ,0

,0

( , ) ( , ) ( , ) ( , )

( , ) ( ), ( , ) 0

( ,0) ( ),

N
i t i xx i ij jj

i x i i xx x L

i i

x t x t x t g x t

x t t x t

x x

=

= =

⎧ = + +
⎪
⎪ = =⎨
⎪ =⎪⎩

∑e e Ae e

e Bu e

e e

Θ

          (3) 

 
where ,0 ,0 0( ) ( ) ( )i ix x x−e y s . 
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This paper considers the following identical state feedback 
controller for the i-th node of the networked PDE system (1): 
 

0
( ) ( , )

L

i it x t dx= ∫u Ke ,                                                                  (4) 

 
where m n×∈ ℜK  is the control gain matrix to be determined. 
Substituting (4) into (3) gives the closed-loop system of the 
i-th node 
 

, , 1

, ,0 0

,0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) , ( , ) 0

( ,0) ( ),

N
i t i xx i ij jj

L

i x i i xx x L

i i

x t x t x t g x t

x t x t dx x t

x x

=

= =

⎧ = + +
⎪
⎪ = =⎨
⎪

=⎪
⎩

∑

∫

e e Ae e

e B Ke e

e e

Θ

          (5) 

 
Obviously, the origin is an equilibrium point of the system 
(5). 

The objective of this study is to find a state feedback 
controller of the form (4) such that the networked parabolic 
PDE system (1) exponentially synchronizes the trajectory (2), 
i.e., the closed-loop networked parabolic PDE system (5) is 
exponentially stable. To this end, the following definition and 
lemmas are useful for the development in the sequel: 
 
Definition 1. For some given boundary control inputs ( )i tu , 
i ∈N , the networked parabolic PDE system (1) is said to be 
exponential synchronization, if there exists constants 0ρ >  
and 0σ >  such that the following inequality holds for any 
i ∈N : 
 

22
,02 2

( , ) exp( ) ( )i it tσ ρ⋅ ≤ − ⋅e e , 0t∀ ≥ . 
 
Lemma 1. [30] Given matrices , , ,A B C D  with appropriate 
dimensions, one has 
 
(1) ( )T T T⊗ = ⊗A B A B , 
(2) ( )( ) ( ) ( )⊗ ⊗ = ⊗A B C D AC BD . 
 
Lemma 2. [31] Let 1,2 ([0, ]; )nL∈ ℜz W  be a vector function 
with (0) 0=z  or ( ) 0L =z . Then, for a matrix 0>S , one 
has the following integral inequality: 
 

( ) ( )2 2

0 0
( ) ( ) 4 ( ) ( )

L L TT s s ds L d s ds d s ds dsπ −≤∫ ∫z Sz z S z .  (6) 

III. EXPONENTIAL SYNCHRONIZATION 
The aim of this section is to present an LMI-based 

sufficient condition on the exponential synchronization of the 
networked parabolic PDE system (1). We consider the 
following Lyapunov functional for the closed-loop system 
(5):  
 

0
1

( ) ( , ) ( , )
N L T

i i
i

V t x t x t dx
=

=∑∫ e Pe                                                     (7) 

 
where 0 n n×< ∈ℜP  is a real matrix to be determined. The 
time derivative of ( )V t  given by (7) along the solution of the 
i-th node of the closed-loop networked parabolic PDE system 
(5) is given by 
 

,0
1

,0
1

0
1

( ) 2 ( , ) ( , )

2 ( , ) ( , )

( , )[ ] ( , )

N L T
i i t

i
NL T

i i xx
i

NL T
i i

i

V t x t x t dx

x t x t dx

x t x t dx

=

=

=

=

=

+ + ∗

∑∫

∑∫

∑∫

e Pe

e P e

e PA e

Θ  

0
1 1

2 ( , ) ( , )
N NL T

i ij j
i j

x t g x t dx
= =

+ ∑ ∑∫ e P e .                                 (8) 

 
By integrating by parts and taking into account the boundary 
condition of (5), we can find that for any i ∈N , 
 

,0
( , ) ( , )

L T
i i xxx t x t dx∫ e P eΘ  

, , ,0 0
( , ) ( , ) ( , ) ( , )

Lx LT T
i i x i x i xx

x t x t x t x t dx
=

=
= − ∫e P e e P eΘ Θ  

, ,0 0
(0, ) ( , ) ( , ) ( , )

L LT T
i i i x i xt x t dx x t x t dx= − −∫ ∫e P B Ke e P eΘ Θ  

 
which implies 
 

,0 0
2 ( , ) ( , ) 2 (0, ) ( , )

L LT T
i i xx i ix t x t dx t x t dx= −∫ ∫e P e e P B KeΘ Θ  

, ,0
( , )[ ] ( , )

L T
i x i xx t x t dx− + ∗∫ e P eΘ .  (9) 

 
Then, we have the following theorem: 
 
Theorem 1. For the networked parabolic PDE system (1), if 
there exist a n n×  matrix 0>Q  and a m n×  matrix Z  
satisfying the following LMI: 
 

2 2

22

0.25 [ ]
0N NL π−⎡ ⎤− ⊗ + ∗ ⊗

Ψ <⎢ ⎥∗ Ψ⎣ ⎦

I Q I BZΘ Θ
             (10) 

 
where  
 

22 [ ( ) ]NΨ ⊗ − + ⊗ + ∗I AQ BZ G QΘ ,  
 
then there exists a state feedback controller of the form (4) 
such that the networked parabolic PDE system (1) 
exponentially synchronizes the trajectory (2), i.e., the 
closed-loop networked parabolic PDE system (5) is 
exponentially stable. In this case, the gain matrix K  of the 
controller (4) can be given as 
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1−=K ZQ                                                                                      (11) 
 
Proof. Assume that LMI (10) is satisfied for matrices 0>Q  
and Z . Set 
 

1−=Q P , =Z KQ .                                                                          (12) 
 
By employing Lemma 1, pre- and post-multiplying both sides 
of the matrix Ψ  by the block diagonal matrix 

1 1diag{ , }N N
− −⊗ ⊗I Q I Q , respectively and using (12), we 

can get 
 

1 1 1 1diag{ , } diag{ , }N N N N
− − − −Ψ ⊗ ⊗ Ψ ⊗ ⊗I Q I Q I Q I Q  

2 2

22

0.25 [ ]N NL π−⎡ ⎤− ⊗ + ∗ ⊗
= ⎢ ⎥∗ Ψ⎣ ⎦

I P I P BKΘ Θ
,             (13) 

 
where  
 

22 [ ( ) ]NΨ ⊗ − + ⊗ + ∗I PA P BK P GΘ . 
 

From (12) and (13), we can get from LMI (10) that 0Ψ <  
since 0>Q . The inequality 0Ψ <  implies [ ]N ⊗ + ∗I PΘ  

0> . We can thus further obtain  
 
[ ] 0+ ∗ >PΘ .                                                                                 (14) 
 
Using Lemma 2 and considering (14), we can get for any 
i ∈N  
 

, ,0
( , )[ ] ( , )

L T
i x i xx t x t dx− + ∗∫ e P eΘ  

2

2 0
( , )[ ] ( , )

4
L T

i ix t x t dx
L

π≤ − + ∗∫ e P eΘ .            (15) 

 
where ( , ) ( , ) (0, )i i ix t x t t−e e e . 

Substituting (15) into (9), gives 
 

,0
2 ( , ) ( , )

L T
i i xxx t x t dx∫ e P eΘ  

0
2 (0, ) ( , )

LT
i i it x t dx≤ − ∫e P B K eΘ                                         

2

2 0
( , )[ ] ( , )

4
L T

i ix t x t dx
L

π− + ∗∫ e P eΘ .                          (16) 

 
Hence, from (16), the expression (8) can be rewritten as 
 

0
1

0
1

2

2 0
1

( ) 2 (0, ) ( , )

( , )[ ] ( , )

( , )[ ] ( , )
4

N LT
i i

i

NL T
i i

i

N L T
i i

i

V t t x t dx

x t x t dx

x t x t dx
L

π

=

=

=

≤ −

+ + ∗

− + ∗

∑ ∫

∑∫

∑∫

e P B Ke

e PA e

e P e

Θ

Θ

 

0
1 1

0
1

0
1

2

2 0
1

0
1 1

2 ( , ) ( , )

2 ( , ) ( , )

( , )[ ] ( , )

( , )[ ] ( , )
4

2 ( , ) ( , )

N NL T
i ij j

i j

N L T
i i

i
NL T

i i
i

N L T
i i

i
N NL T

i ij j
i j

x t g x t dx

x t x t dx

x t x t dx

x t x t dx
L

x t g x t dx

π
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=

=

=

= =

+

=

+ − + ∗
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0
( , ) ( , )

L T x t x t dx= Ψ∫ e e .                                             (17) 

 
where ( , ) [ ( , ) ( , )]T T Tx t x t x te e e . 

According to the matrix theory, one can find a scalar 
0ρ >  such that the matrix inequality 0Ψ <  can be written 

as  
 

0ρΨ + ≤I .                                                                                   (18) 
 
Substitution of (18) into (17), derives 
 

2 2

2 2
( ) ( , ) ( , )V t t tρ ρ≤ − ⋅ ≤ − ⋅e e .                                                (19) 

 
Since 0>P , it is easily observed that ( )V t  given by (7) 

satisfies the following inequality: 
 

2 2
1 22 2

( , ) ( ) ( , )p t V t p t⋅ ≤ ≤ ⋅e e                                          (20) 
 
where 1 min ( )p λ P  and 2 max ( )p λ P  are two positive 
scalars. Using (20), the inequality (19) can be represented as 
 

2 1
1 22

( , ) ( ) (0) exp( )p t V t V p tρ−⋅ ≤ ≤ −e  
2 1

2 0 22
( ) exp( )p p tρ−≤ ⋅ −e                       (21) 

 
Therefore, we have 
 

2 21 1
2 1 0 22 2

( , ) ( ) exp( )t p p p tρ− −⋅ ≤ ⋅ −e e , 0t ≥ .                         (22) 
 
From (22) and Definition 1, we can conclude that the 
closed-loop networked parabolic PDE system (5) is 
exponentially stable, i.e., the control law (4) can guide the 
networked parabolic PDE system (1) to exponentially 
synchronize the trajectory (2). From (12), we have (11). The 
proof is complete.  

Theorem 1 presents an LMI-based condition for the 
existence of an identical state feedback controller of the form 
(4) for the exponential synchronization of the networked 
parabolic PDE system (1). The corresponding control gain 
matrix K  can be constructed as (11) via the feasible 

3984



 
 

 

solutions to LMI (10), which can be solved efficiently using 
the existing LMI optimization techniques [28] and [29]. 

 
Remark 1. Notice that an LMI-based fuzzy boundary control 
design has more recently proposed in [32] for a class of 
semi-linear parabolic PDE systems. Different from the fuzzy 
boundary control design in [32], this paper provides an 
LMI-based sufficient condition on the exponential 
synchronization via boundary control of a linear networked 
parabolic PDE system with N identical nodes in one spatial 
dimension.  
 
Remark 2. In comparison to the existing results on the 
synchronization of complex dynamical reaction-diffusion 
networks [26] and [27], the main difference of this paper lies 
in that this paper utilizes a boundary control law to achieve 
the exponential synchronization whereas the results [26] and 
[27] employ the distributed controllers (i.e., actuators and 
sensors are distributed over the entire spatial domain) to force 
the network synchronize. Moreover, although this paper only 
considers a linear networked parabolic PDE system with N 
identical nodes in one spatial dimension, the result in this 
paper can be extended to address more general networked 
PDE systems with N nodes, like networked PDE systems with 
N non-identical nodes in two/three spatial dimensions. This 
important issue will be addressed in future study. 
 
Remark 3. Even though the result in Theorem 1 is developed 
only for the case the boundary condition of (1), the same 
design method can be directly obtained in a similar manner 
for the case of boundary conditions , 0

( , ) ( )i x ix
x t t

=
=y Bu  and 

( , ) 0i L t =y , i ∈N , the case of boundary conditions 

, 0
( , ) 0i x x
x t

=
=y  and , ( , ) ( )i x ix L

x t t
=

=y Bu , i ∈N , or the 

case of boundary conditions (0, ) 0i t =y  and , ( , )i x x L
x t

=
=y  

( )i tBu , i ∈N . 

IV. NUMERICAL SIMULATION 
In this section, in order to illustrate the effectiveness of the 

proposed theoretical result, we consider the exponential 
synchronization problem of the following networked linear 
parabolic PDE system with five identical nodes in one spatial 
dimension: 
 

5
, , 1

, ,0 1

,0

( , ) ( , ) ( , ) ( , )

sin( )sgn(cos( ))

( , ) ( ), ( , ) 0

( ,0) ( )

i t i xx i ij jj

i x i i xx x

i i

y x t y x t y x t g y x t

x t

y x t u t y x t

y x y x

π
=

= =

⎧ = + +
⎪
⎪ +⎪
⎨

= =⎪
⎪ =⎪⎩

∑
                 (23) 

 
where ( , )iy x t ∈ ℜ , {1,2, ,5}i ∈ . The coupling matrix G  
is chosen as  
 
 

0 0.4 0.8 1.2 1.6
0

1

2

3

4

 

 
           
  
  
 
  

 
 
Fig. 1 Open-loop trajectories of 

2
( , )iy t⋅ , {1,2, ,5}i ∈  

 

 
 

Fig. 2 Closed-loop error profiles of evolution of ( , )ie x t , {1, 2, ,5}i ∈  
 

2.4746 0.6557 0.0357 0.8491 0.9340
0.6787 2.5718 0.7577 0.7431 0.3922
0.6555 0.1712 1.5645 0.7060 0.0318
0.2769 0.0462 0.0971 1.2437 0.8235
0.6948 0.3171 0.9502 0.0344 1.9966

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

G . 

 
Let the initial conditions be 1,0 ( ) 0.5 0.3cos( )y x xπ= + , 

2,0 ( ) 0.3y x = , 3,0 ( ) 0.4cos( )y x xπ= , 4,0 ( ) 0.2cos( )y x xπ= , 
and 5,0 ( ) 0.8y x = , [0,1]x ∈ , respectively. When ( ) 0iu t = , 

{1,2, ,5}i ∈ , Fig. 1 gives the open-loop trajectories of 

x t 

e1 

x t 

e2 

x t 

e3 

x t 

e4 

x t 

e5 

t 

1 2

2 2

3 2

4 2

5 2

( , )
( , )
( , )
( , )
( , )

y t
y t
y t
y t
y t

⋅
⋅
⋅
⋅
⋅

 

3985



 
 

 

2
( , )iy t⋅ , {1,2, ,5}i ∈  under these initial conditions. It is 

clear from Fig. 1 that the nodes of the networked PDE system 
(1) are not synchronized. 

Set 1L = , 1=Θ , 1=A , and 1=B . Solving LMIs (10) 
and using (11), the control gain parameter K  is derived as 

4.2689=K . Applying the controller (4) with this control 
parameter to the system (23), Fig. 2 shows the closed-loop 
error profiles of evolution of ( , )iy x t , {1,2, ,5}i ∈  under 
the same initial conditions. Obviously, the proposed control 
law (4) can guide the networked parabolic PDE system (23) 
to synchronize. Fig. 3 indicates the corresponding trajectories 
of control inputs ( )iu t , {1,2, ,5}i ∈ . 
 

0 2 4 6
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0.5

1

1.5

 

 
       

 
 
Fig.3 Trajectories of control inputs ( )iu t , {1, 2, ,5}i ∈  

V. CONCLUSIONS 
In this paper, we have addressed the exponential 

synchronization problem of a networked linear parabolic 
PDE system with N identical nodes in one spatial dimension. 
It has been proved in detail that some boundary controllers 
can guide the spatiotemporal dynamical networks to 
synchronize if the network coefficients satisfy a given LMI 
condition. The control gain parameter is easily obtained via 
feasible solutions to the given LMI. Furthermore, suggested 
boundary controllers are easily implemented since only few 
actuators located at the boundary of the one-dimensional 
spatial domain are utilized. Finally, a numerical example is 
simulated, and the achieved simulation results verify well the 
theoretical result. 
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