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Abstract— Feature selection is essential in many machine
learning problem, but it is often not clear on which grounds
variables should be included or excluded. This paper shows
that the mean squared leave-one-out error of the first-nearest-
neighbour estimator is effective as a cost function when selecting
input variables for regression tasks. A theoretical analysis of the
estimator’s properties is presented to support its use for feature
selection. An experimental comparison to alternative selection
criteria (including mutual information, least angle regression,
and the RReliefF algorithm) demonstrates reliable performance
on several regression tasks.

I. INTRODUCTION

With evolving technology and the continuing development
of more efficient data mechanisms, the size and complexity
of interesting regression modelling tasks has grown con-
siderably. The number of input variables which can be
measured might be large, and it may be difficult to recognise
which variables are important for a given task. Occasionally
variables are irrelevant for the output, and at other times
they contain redundant information already available in other
variables. Hence the concept of feature selection has become
increasingly important [1]. Being able to discard the unneces-
sary ones is beneficial for the performance and stability of the
model. Identifying the most essential variables also provides
a better understanding of the problem and interpretability of
the data. In a sense, feature selection improves the signal-to-
noise ratio by getting rid of some of the noisy components.

For linear problems, the issue can be solved by simple
covariance or cross-correlation methods [2], [1]. In the case
of nonlinear problems, the situation is less straightforward,
and there are many specialised methods to pick from, often
requiring parameters which are nontrivial to tune. Some
methods only rank variables, but cannot tell you how many
to choose. The ranking of variables also might fail to
identify situations where some variables are useful only in
combination with others.

In more general feature selection procedures, some opti-
misation scheme is applied to search the space of subsets
of variables in order to minimise a given cost function.
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However, there are few generally applicable cost functions,
and using specialised or model-specific choices is often
inconvenient. In this paper, the Delta test (the mean squared
leave-one-out error of the first-nearest-neighbour estimator)
is studied and shown to be generally efficient as a cost
functions, both in retaining all the important variables as well
as excluding irrelevant and redundant variables. The Delta
test has no parameters to tune, making it reliable and easy
to use. Previously, the Delta test has been used for noise
variance estimation, and in a sense represents the lowest
attainable mean squared error by quantifying the extent of
the “random” part of the data [3]. The idea here then is to
use the noise variance estimate given by the Delta test to
evaluate a subset—or selection—of variables.

We initially introduced the method in [4], and it has
been used with success in several cases [5], [6], [7], [8],
[9], [10], [11], [12]. This paper presents further theoretical
justification to explain why the method works as well as it
does. Experimental evidence comparing to alternative meth-
ods is also provided. Choosing an efficient search scheme for
high-dimensional tasks is mostly left as a practical matter
of implementation, and several papers specifically about
optimising the Delta test have also been published in the
literature [13], [14], [15], [16], [17], [18], [19].

A similar method for variable selection has previously
been proposed in [20], using a weighted k-NN estimator,
but has two parameters to optimise (k and a decay factor β).

The sequel of this article is organised as follows: Section II
reviews the concepts of variable selection and noise variance
estimators and describes the Delta test algorithm. Section
III provides the main contribution which is the theoretical
justification for the methodology, also discussing why the
Delta test cannot simply be replaced by a more accurate noise
variance estimator. In Section IV, the use of the method from
a practical point of view is considered including how the
method can be used with different search schemes. Sections
V and VI include several experiments which illustrate the
behaviour of the method in different situations and compar-
isons to other methods.

II. PROBLEM DEFINITION: VARIABLE SELECTION

In modern modelling problems it is not uncommon to
have an overwhelming number of input variables. Many of
them may turn out to be irrelevant for the task at hand, but
without external information it is often difficult to identify
these variables. Variable selection (also known as feature
extraction, subset selection, or attribute selection [20]) is
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the process of automating this task of choosing the most
representative subset of variables for some modelling task.

Variable selection is a special case of dimensionality
reduction. It can be used to simplify models by refining
the data through discarding insignificant variables. Since
many regression models and other popular data analysis
algorithms suffer from the so-called curse of dimensionality
[21] to some degree, it is necessary to perform some kind of
dimensionality reduction to facilitate their effective use.

In contrast to general dimensional reduction techniques,
variable selection provides additional value by distinctly
specifying which variables are important and which are not
[1]. This leads to a better insight into the relationship between
the inputs and outputs, and assigns interpretability to the
input variables. In cases where the user has control over some
inputs, variable selection emphasises which variables to focus
on and which are likely to be less relevant. Furthermore,
discarding the less important inputs may result in cost
savings in cases where measuring certain properties could
be expensive (such as chemical properties of a sample).

A. The Delta Test

The Delta test is traditionally considered a method for
residual noise variance estimation. In the kind of regression
tasks considered here, the data consist of M input points
{xi}Mi=1 and associated scalar outputs {yi}Mi=1 [22]. The
assumption is that there is a functional dependence between
them with an additive noise term: yi = f(xi) + εi.

The function f is often assumed to be smooth, or at least
continuous, and the additive noise terms εi are i.i.d. with
zero mean and finite variance. Noise variance estimation is
the study of how to find an a priori estimate for Var(ε) given
some data without considering any specifics of the shape of
f . Having a reliable estimate of the amount of noise is useful
for model structure selection and determining when a model
may be overfitting.

The original formulation [23] of the Delta test was based
on the concept of variable-sized neighbourhoods, but an
alternative formulation [24] with a first-nearest-neighbour
(NN) approach has later surfaced. In this treatment, specif-
ically this 1-NN formulation will be used as it is entirely
non-parametric, conceptually simple, and computationally
efficient. The Delta test could be interpreted as an extension
of the Rice variance estimator [25] to multivariate data.

The NN of a point is defined as the unique point in a data
set which minimises a distance metric to that point:

N(i) := argmin
j 6=i

∥∥xi − xj

∥∥2 . (1)

It may occur that the nearest neighbour is not unique, and in
that case it is sufficient to randomly pick one from the set
of nearest neighbours. In this context, the Euclidean distance
is used, but in some cases it may be justified to use other
metrics to get better results if some input variables are known
to have specific characteristics that the Euclidean metric
fails to account for appropriately. Knowing if other metrics
are more appropriate generally requires external knowledge

about the source or behaviour of the data. For instance, data
representing class labels are best handled by the discrete
metric, and “time-of-day” or “time-of-year”-type variables
by taking into account their cyclic behaviour.

The Delta test, initially introduced in [23] and further
developed in [24], is usually written as

δ =
1

2M

M∑
i=1

(
yi − yN(i)

)2
, (2)

i.e., the differences in the outputs associated with neigh-
bouring (in the input space) points are considered. This is
a well-known estimator of Var(ε) and it has been shown—
e.g., in [26]—that the estimate converges to the true value
of the noise variance in the limit M → ∞. Although it is
not considered to be the most accurate noise estimator, its
advantages include reliability, simplicity, and computational
efficiency [22]. The method appears not to be particularly
sensitive to mild violations of the assumptions made about
the data, such as independence and distributions of the noise
terms.

B. The Delta Test for Variable Selection

The Delta test was originally intended to be used for
estimating residual variance. Following [7], [9] this paper
examines a different use: to use it as a cost function for
variable selection by choosing that selection of variables
which minimises the Delta test. Each subset of variables
can be mapped to a value of the estimator by evaluating the
expression in eq. (2) so that the nearest neighbours N(i)
are determined according to the distance in the subspace
spanned by the subset of variables. The sequel of this paper
intends to show that choosing the subset which provides
the smallest value for the Delta test constitutes an effective
variable selection procedure for regression modelling.

An exhaustive search over the 2d − 1 non-empty subsets
of d variables is a possibility, but there are more efficient
approximate search schemes as discussed in Section IV.

III. THEORETICAL CONSIDERATIONS

In this section, a theoretical treatment is provided to
support the claim that the Delta test is able to identify the best
subset of input variables for modelling with high probability
under appropriate conditions. As the purpose of the Delta
test is to deal with noisy data, it is impossible to formulate
a mathematically solid statement showing that the Delta test
could always choose the perfect variables, due to the random
effects of the noise. Hence the assertions presented here
consider the expectation of the Delta test, and show that the
expectation is minimised for the best selection of variables
for a finite number M of data points.

A. Analysis of the Delta Test

Some assumptions concerning the distribution of the data
are required in order for the results to hold true. These
continuity assumptions detailed below are designed to be
similar to and compatible with the assumptions many popular
non-linear modelling techniques make about the data. This
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enhances the usability of the Delta test as a preprocessing
step for practically any non-linear regression task.

Assume a set {Xi}Mi=1 of random variables which are
independently and identically distributed according to some
probability density function p(x) for 1 ≤ i ≤M . Here p(x)
is a continuous probability density on some open, bounded
C ⊂ Rd and p(x) > 0 for x ∈ C.

Let f : C → R be differentiable and the random
variables Yi = f(Xi) + εi, where εi are independently
distributed according to some distribution with mean 0 and
finite variance σ2. Denote by xi a realisation of Xi and by
yi a realisation of Yi. The component k of a vector x is
denoted by x(k).

Let I = {1, . . . , d} denote the full set of input variables,
and consider subsets Ĩ of I corresponding to possible selec-
tions of input variables. If Ĩ ⊂ I then x̃i =

(
x
(Ĩ1)
i , x

(Ĩ2)
i , . . .

)
is the projection of each point to the subspace corresponding
to the selected variables. Similarly x̃′i includes the com-
ponents not in Ĩ and is the projection onto the subspace
corresponding to I \ Ĩ .

Define f̃(x̃i) as the conditional expectation of the output
with partial information:

f̃(x̃i) = E
[
Yi | X̃i = x̃

]
. (3)

Now f̃(x̃i) is the best possible approximation of yi (in terms
of mean squared error) when using only the variables in
Ĩ . In particular, if f̃(x̃) = f(x) for all x ∈ C, it can be
said that the variables in Ĩ hold all the information for fully
determining f(x).

Using P
(
I
)

to denote the power set of I , define the Delta
test δ : P

(
I
)
→ R as

δ(Ĩ) := 1
2M

M∑
i=1

(
yi − yNĨ(i)

)2
(4)

where
NĨ(i) := argmin

j 6=i

∥∥xi − xj

∥∥2
Ĩ
, (5)

and the semi-norm∥∥xi − xj

∥∥2
Ĩ
:=
∑
k∈Ĩ

(
x
(k)
i − x(k)j

)2
. (6)

The argument is split into two lemmas which together
imply the main result. Even if the results specifically deal
with the expectation of the Delta test, they provide insight
into how the method behaves even for a single realisation of
data. In the following, the phrase “for any sufficiently large
M ...” should be interpreted as “∃M0 < ∞ s.t. ∀M ≥ M0

...”. The symbol # is used for the cardinality of a set.
Lemma 1: If Ĩ is such that ∃x0 ∈ C for which f̃(x̃0) 6=

f(x0) (i.e., the variables in Ĩ are not sufficient to explain f )
then for any sufficiently large M

E
[
δ
(
Ĩ
)]
> E

[
δ
(
I
)]
.

Proof: According to [26], the estimate for an incom-
plete selection of variables converges to the residual noise

lim
M→∞

E
[
δ
(
Ĩ
)]

= E
[(
Yi − f̃(X̃i)

)2]
(7)

and, correspondingly,

lim
M→∞

E
[
δ
(
I
)]

= E
[(
Yi − f(Xi)

)2]
. (8)

Furthermore,

E
[(
Yi− f̃(X̃i)

)2]
= E

[(
Yi− f(Xi)+ f(Xi)− f̃(X̃i)

)2]
= E

[(
Yi − f(Xi)

)2]
+ E

[(
f(Xi)− f̃(X̃i)

)2]
since the cross terms cancel by the independence of the noise.
Now

E
[(
f(Xi)− f̃(X̃i)

)2]
=

∫
C

(
f(x)− f̃(x̃)

)2
p(x) dx > 0

(9)
where the integral is positive because the continuities of f ,
f̃ , and p together imply that there is an open subset of C
around x0 where f̃(x̃) 6= f(x) and p(x) > 0. Since the term
is independent of M , the difference

lim
M→∞

E
[
δ
(
Ĩ
)]
−E
[
δ
(
I
)]

=

∫
C

(
f(x)− f̃(x̃)

)2
p(x) dx > 0

is positive even in the limit M → ∞, implying there exists
an M0 such that the expression is positive for any M ≥
M0. Hence, for sufficiently large M , the first term is larger,
proving the lemma.

Lemma 2: If Ĩ and Î are such that ∀i : f̃(x̃i) = f̂(x̂i) =
f(xi)—i.e., they are both sufficient to explain f—and #Ĩ <
#Î , then for any finite and sufficiently large M

E
[
δ
(
Ĩ
)]
< E

[
δ
(
Î
)]
.

Proof:

E
[
δ
(
Ĩ
)]

= 1
2 E
[(
Yi − YNĨ(i)

)2]
= 1

2 E
[(
f(Xi) + εi − f(XNĨ(i)

)− εNĨ(i)

)2]
= 1

2 E
[
ε2i + ε2NĨ(i)

]
+ 1

2 E
[(
f(Xi)− f(XNĨ(i)

)
)2]

as the noise terms are independent, and further, as f = f̃ ,

= σ2 + 1
2 E
[(
f̃(X̃i)− f̃(X̃NĨ(i)

)
)2]

where the first term is obviously identical for Ĩ and Î .
According to [27] the second term is of order M−2/#Ĩ . So,
for a sufficiently large M , this will be the dominating term,
implying that a smaller selection produces a smaller Delta
test estimate, proving the lemma.

Theorem 1: For any finite and sufficiently large M , the
expectation of the Delta test is minimised by the smallest
subset of I which can fully explain f on C.

Proof: Provided the number of points is sufficiently
large, by Lemma 1 the minimising selection must be able
to fully explain f , and by Lemma 2 it must be the smallest
such selection.

It is shown in [26] that the variance of the Delta test
converges to 0 with increasing M . As the expectation of the
Delta Test under the above assumptions is strictly minimised
by the “best” selection, this means that the probability of
the method choosing this selection generally increases by
increasing the number of available samples.
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B. On other noise estimators

While the motivation for using the Delta test for variable
selection appears to originate from its role as a noise variance
estimator, it can not simply be replaced by a more accurate
estimator—such as those presented by [22], [24], [28], [29].
On some level, it is intuitively sensible to optimise a model
by “minimising the noise”, but it is far from obvious whether
the proposed scheme is justified beyond that. In Section III-
A, it is shown to hold for the Delta test, but it is worth
investigating if other noise estimators can be used in this
way.

As in the proof of Lemma 2 previously, the expectation
of the Delta Test can be expanded as

E
[
δ
(
Ĩ
)]

= σ2 + 1
2 E
[(
f(Xi)− f(XNĨ(i)

)
)2]

. (10)

Here it is clearly seen that unless f is constant, the Delta Test
has a positive bias in its role as a noise variance estimator
(for a finite M ; in the limit M → ∞, the bias naturally
converges to 0). This makes the estimator relatively poor
for estimating noise compared to more sophisticated, less
biased alternatives. However, the proposed method works for
variable selection effectively by exploiting this bias. All noise
estimators should be able to identify the important variables
(since excluding one would inflate the noise estimate) but the
Delta test has the unique ability to also prune unnecessary
variables. This is because improved noise estimators are
generally designed to be unbiased, so they do not have the
property that the bias increases with the number of selected
variables.

IV. PRACTICAL CONSIDERATIONS

When using the Delta test, it is important to consider
standardising the data beforehand. In particular, the variance
of the input variables needs to be of the same order for the
method to be effective. Otherwise, the variables with larger
variance will have an artificially inflated significance in the
selection. For this reason, standardising the variables to unit
variance is generally advisable.

The naïve implementation of the Delta test is to sepa-
rately find the nearest neighbour of each point, leading to a
complexity of O(M2) per evaluation. However, this can be
improved by using k-d trees [30] to determine the nearest
neighbours, leading to an expected complexity of M logM ,
even if the worst case complexity is still M2. On the other
hand, performing an exhaustive search over the space of all
possible selections requires 2d − 1 evaluations. Our rule of
thumb is that on a conventional, reasonably modern, desktop
computer an exhaustive search takes a few seconds for a
data set with M = 1000 points and d = 10 variables.
The exhaustive search is then practical up to 10 or at most
20 variables. However, many interesting problems are much
larger than this.

Due to the nature of the noise variance estimator, it is
often not necessary to find the selection providing the global
minimum test value. Rather, a pragmatic approach is that
reducing the estimate generally results in a better selection.

Based on this notion it is beneficial to use different heuristics
for searching the space of all possible selections:
• The sequential forward selection [7] method, which

starts from the empty selection and proceeds by se-
quentially adding that variable which results in the best
improvement of the Delta test. Similarly, the sequential
backward elimination method starts from the full se-
lection and iteratively removes variables. Each method
requires at most d evaluations of the Delta test.

• The forward-backward (or stepwise) search [7], which
if started from an empty initialisation is like the forward
search, but in addition to adding variables, it also
considers the option of removing each of the previously
selected variables, and makes the change which im-
proves the target metric the most. This addition/removal
of single variables is continued until convergence. The
search can also be started from the full selection, or any
number of random initialisation, to more extensively ex-
plore the search space. The method appears to converge
in O(d) steps, requiring O(d2) evaluations, and has been
found to often be effective.

• Tabu search [31], which is similar to the forward-
backward search, but with additional conditions allow-
ing it to efficiently get out of local minima, leading
to better results. This search methodology has been
successfully applied to optimising the Delta test for
variable selection in [16], [13].

A general overview of search strategies for feature selection
by filter methods is found in [1, Chapter 4].

As the Delta test is an estimate of the residual noise, it
represents the lowest generalisation error that a model is
expected to be able to reach [3]. Alternatively, it can be
seen as the lowest possible training error without resorting
to overfitting. In fact, as the Delta test has a bias which is
always slightly positive, it can be considered a safe choice
to train a model until its training error matches the Delta
test estimate. Consequently, it is often useful to store the
final value of the Delta test in addition to the set of selected
variables when using the method.

Another interpretation of the Delta test is that it is half
of the leave-one-out error of the 1-NN regression model.
This provides another useful metric to compare to when
performing model structure selection, since any sophisticated
model should be able to perform better than the simple 1-NN
model. Essentially, if Ĩ is the set of variables that are selected,
and δ(Ĩ) is the respective value of the Delta test, the leave-
one-out or generalisation error of a good non-linear model
using the variables Ĩ should be between δ(Ĩ) and 2δ(Ĩ), and
preferably close to the lower limit.

V. SYNTHETIC EXPERIMENT

To illustrate the effectiveness of the procedure, an artificial
experiment is conducted to compare the Delta test (DT) to
variable selection by mutual information (MI). A synthetic
experiment is appropriate as it allows repeatable instances
of identical setups, and illustrates how the accuracy of the
methods improves with increasing sample sizes.
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Fig. 1. The convergence of choosing the correct input selection. The vertical
axis represents the ratio of cases where each method correctly identified
the optimal selection from a total of 1000 tests for each point. Note the
logarithmic scale for M .

Mutual information is a quantity which measures the
mutual dependencies between two random variables, and the
extent to which they can be used to explain each other.
Maximising the mutual information has been used as a
criterion for variable selection in [32], [7]. The method of
[33]—which is also based on nearest neighbours—is used for
estimating the mutual information, using the recommended
value of k = 6 for the number of neighbours.

For this synthetic test, a very non-linear function is inten-
tionally chosen:

f(x) = cos(2πx(1)) cos(4πx(2)) exp(x(2)) exp(2x(3))
(11)

with x distributed uniformly on the unit cube [0, 1]6 ⊂ R6.
Obviously, the optimal selection of variables for training a
model is I = {1, 2, 3}. To make the task challenging, the
signal-to-noise ratio of the data is made to be 1:1 by choosing
the variance of the noise to be equal to the variance of f(x):

Var
[
ε
]
= Var

[
f(x)

]
≈ 10.77.

The estimators were given all 26 − 1 non-empty input
selections, and the one which minimises the DT or maximises
the MI is chosen. The results are presented in Figure 1, where
the vertical axis represents the fraction of cases where the
correct selection was chosen. The experiment was performed
as a Monte Carlo simulation with 1000 repetitions for each
value of the data set size M .

It is clear that with increasing data size, the Delta test
is eventually able to reliably choose the correct selection,
as the curve tends towards 1. The necessary size of about
1000 points in this case might seem high, but recall that
the situation was deliberately chosen to be problematic with
the high amount of noise. The mutual information method is
less successful. Although the success rate does increase with
M , the accuracy is much lower for smaller values of M
when compared to the Delta test. The method also requires
a significantly larger number of points to converge to 1.

VI. REAL WORLD DATA

In this section, the Delta test is benchmarked on six
benchmark datasets consisting of real-world measurements.
All the features including the target output are standardised
to zero mean and unit variance as a pre-processing step.

The Delta test method is compared to variable selection
by mutual information [32], variable ranking by least angle
regression (LARS) [34], and the RReliefF algorithm [35].
The resulting selections are evaluated by training a least
squares support vector machine (LS-SVM) [36] non-linear
model using LS-SVMlab v1.8 and calculating the leave-one-
out (LOO) mean squared error (MSE). This provides a fair
and unbiased method to compare the performance of each
method for regression modelling.

LARS is a non-parametric method to rank variables [34].
It provides an exact solution for the optimal variables for the
L1 constrained ordinary least squares regression, but is also
commonly used as a feature selection filter for non-linear
regression problems.

The Relief algorithm [37] is another popular method
for feature selection for classification problems, and has
been extended to regression in the RReliefF algorithm [35].
The output of the algorithm is a set of weights for the
input variables, which can be converted to a ranking of the
variables in order of importance. We apply the method with
k = 10 nearest neighbours, and a distance scaling factor of
σ = 50.

The LS-SVM is an adaptation of support vector machines
with two parameters to choose: the width σ of the Gaus-
sian kernel and a regularisation parameter γ. These hyper-
parameters are obtained for each model by running the
author-supplied function tunelssvm which performs a grid
search with initial boundaries specified by certain heuristics
and was started with the initial values σ2 = 1 and γ = 1.
The function uses a series of random cross-validations to
tune the parameters, which unfortunately introduces a certain
degree of variability in the results. To eliminate discrepancies
caused by random effect where the optimisation gets stuck
in local minima, all the LS-SVM models were tuned and
evaluated 100 times, and the median error value is used. The
leave-one-out error of the LS-SVM is chosen as the measure
of performance since the LS-SVM provides an efficient and
exact method to calculate it [38], and it is a fair measure of
the suitability of the selected variables for modelling.

For the data sets in sections VI-A and VI-B, where the
number of variables is low, the minimum DT and maximum
MI selections are found by an exhaustive search over all non-
empty feature subsets. In the remaining sections, the multi-
start sequential search strategy of [17] is used to optimise
both DT and MI.

As both the LARS and RReliefF methods only provide a
ranking, and not a particular subset, the LS-SVM is sequen-
tially evaluated for each number of variables, successively
choosing the top-ranked ones until all variables are selected.

A. Boston Housing

The Boston housing data set [39] is a set with 14 attributes
for 506 objects, and the modelling task is to predict the
value of a house/apartment from the 13 other properties. The
variables selected by DT, MI, LARS, and RReliefF, as well
as the median LOO-errors of the LS-SVM are all presented
in Table I. There are no obviously redundant variables in
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TABLE I
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE BOSTON

HOUSING DATA. DT VALUE IS 0.0710.

1 2 3 4 5 6 7 8 9 10 11 12 13 MSE

DT • • • • • • • • • • 0.0892
MI • • • • 0.1342
LARS 1–01 • 0.3236
LARS 1–02 • • 0.2323
LARS 1–03 • • • 0.2037
LARS 1–04 • • • • 0.1909
LARS 1–05 • • • • • 0.1772
LARS 1–06 • • • • • • 0.1544
LARS 1–07 • • • • • • • 0.1435
LARS 1–08 • • • • • • • • 0.1331
LARS 1–09 • • • • • • • • • 0.1360
LARS 1–10 • • • • • • • • • • 0.1290
LARS 1–11 • • • • • • • • • • • 0.1162
LARS 1–12 • • • • • • • • • • • • 0.1047
Relief 1–01 • 0.4257
Relief 1–02 • • 0.2323
Relief 1–03 • • • 0.1901
Relief 1–04 • • • • 0.1739
Relief 1–05 • • • • • 0.1829
Relief 1–06 • • • • • • 0.1569
Relief 1–07 • • • • • • • 0.1379
Relief 1–08 • • • • • • • • 0.1317
Relief 1–09 • • • • • • • • • 0.1150
Relief 1–10 • • • • • • • • • • 0.1066
Relief 1–11 • • • • • • • • • • • 0.1053
Relief 1–12 • • • • • • • • • • • • 0.0953
All • • • • • • • • • • • • • 0.0926

the data set, as is evidenced by the constantly decreasing
error when successively choosing the variables ranked by
LARS and RReliefF. The DT, also, selects all but three of
the available variables. Observing the leave-one-out errors
still reveals that the selection by the DT provides a solid
improvement in the model accuracy compared to the MI or
any of the LARS or RReliefF selections.

The final value of the Delta test is δ(Ĩ) = 0.0710 here.
The resulting median LOO error of 0.0892 falls appropriately
between δ(Ĩ) and 2δ(Ĩ), while being close to the lower value,
being in line with what is expected in Section IV.

B. Time Series Prediction: Santa Fe A Laser Data

One interesting application where variable selection is
often required is in auto-regressive time series prediction,
and hence the methods are also tested on a well known time
series problem from the Santa Fe Time Series Competition:
the laser data known as Santa Fe A [40], [41]. The series
contains 1000 samples of intensity data of a a far-infrared-
laser in a chaotic state, and the task is to perform one-step-
ahead prediction. It has been shown that a regressor size of
12 should suffice to train an efficient model. The variable
selection then pertains to which of the delayed regressors
(up to a delay of 12) should be used to build the model.

The results are shown in Table II. The best accuracy by
a significant margin is obtained by choosing the top three
variables as ranked by RReliefF. The Delta test performs
decently, leading to a better model than MI, while choosing
only three of the regressor variables, and is on par with the
model with four of the top ranked RReliefF variables and

TABLE II
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE SANTA FE A

DATA. DT VALUE IS 0.0165.

1 2 3 4 5 6 7 8 9 10 11 12 MSE

DT • • • 0.0143
MI • • • 0.0811
LARS 1–01 • 0.3743
LARS 1–02 • • 0.1250
LARS 1–03 • • • 0.1044
LARS 1–04 • • • • 0.0200
LARS 1–05 • • • • • 0.0137
LARS 1–06 • • • • • • 0.0138
LARS 1–07 • • • • • • • 0.0140
LARS 1–08 • • • • • • • • 0.0152
LARS 1–09 • • • • • • • • • 0.0157
LARS 1–10 • • • • • • • • • • 0.0198
LARS 1–11 • • • • • • • • • • • 0.0209
Relief 1–01 • 0.6538
Relief 1–02 • • 0.0208
Relief 1–03 • • • 0.0086
Relief 1–04 • • • • 0.0144
Relief 1–05 • • • • • 0.0151
Relief 1–06 • • • • • • 0.0245
Relief 1–07 • • • • • • • 0.0225
Relief 1–08 • • • • • • • • 0.0177
Relief 1–09 • • • • • • • • • 0.0219
Relief 1–10 • • • • • • • • • • 0.0240
Relief 1–11 • • • • • • • • • • • 0.0241
All • • • • • • • • • • • • 0.0245

the best performing selections by LARS.

C. AnthroKids

The AnthroKids data contains anthropological measure-
ments of children in the USA in 1977 [42]. The full original
data included a total 122 measurements of 3900 individuals.
As that data has several missing values, it has been converted
to a regression problem in [8] by assigning the weight to
be the target, and retaining 53 variables and 1019 samples
without missing values. In addition to physical attributes,
the data contains general information about the individuals
and the measurement event. As there are several entirely
redundant variables, variable selection should prove effective
in improving the performance of the model.

The selected variables with resulting LOO errors are
presented in Table III. For LARS and RReliefF, the results
are shown only for the 20 highest ranked variables, as the
addition of any further variables did not notably decrease the
LOO error. The variables selected by the Delta test lead to
an error on par with the best selections by RReliefF. MI and
LARS result in somewhat less accurate models.

D. Triazines

The regression task is to model the activity level of
different drugs (triazines) based on their chemical attributes
[43], [44]. There are 186 drug samples and 58 features (after
discarding two variables which are constant for all samples).
The data contains perfectly collinear sets of attributes, lead-
ing to a rank-deficient input matrix. As a result, the LARS
algorithm only returns 16 variables.

The results are presented in table IV. The features as
selected by the Delta test result in the most accurate LS-
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TABLE III
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE ANTHROKIDS

DATA. DT VALUE IS 0.0084.

MSE

DT 1,2,3,4,17,19,20,21,27,35,36,37,38,39,40,41 0.0091
MI 1,35,37,39 0.0130
LARS 1–01 35 0.0473
LARS 1–02 35,39 0.0283
LARS 1–03 21,35,39 0.0273
LARS 1–04 21,35,37,39 0.0189
LARS 1–05 17,21,35,37,39 0.0171
LARS 1–06 2,17,21,35,37,39 0.0140
LARS 1–07 2,3,17,21,35,37,39 0.0140
LARS 1–08 2,3,17,21,35,36,37,39 0.0131
LARS 1–09 2,3,17,19,21,35,36,37,39 0.0131
LARS 1–10 2,3,17,19,21,33,35,36,37,39 0.0124
LARS 1–11 2,3,17,19,20,21,33,35,36,37,39 0.0100
LARS 1–12 2,3,17,19,20,21,33,35,36,37,39,48 0.0098
LARS 1–13 2,3,17,19,20,21,33,35,36,37,39,44,48 0.0098
LARS 1–14 2,3,17,19,20,21,33,35,36,37,39,44,48,49 0.0097
LARS 1–15 2,3,17,19,20,21,33,35,36,37,39,44,48,49,51 0.0096
LARS 1–16 2,3,17,19,20,21,33,35,36,37,39,44,48,49,51,53 0.0097
LARS 1–17 2,3,17,19,20,21,33,35,36,37,39,44,48,49,51,52,53 0.0099
LARS 1–18 2,3,17,19,20,21,33,35,36,37,39,44,46,48,49,51,52,53 0.0099
LARS 1–19 2,3,16,17,19,20,21,33,35,36,37,39,44,46,48,49,51,52,53 0.0100
LARS 1–20 2,3,16,17,19,20,21,33,35,36,37,39,40,44,46,48,49,51,52,53 0.0100
Relief 1–01 38 0.1075
Relief 1–02 36,38 0.0858
Relief 1–03 36,37,38 0.0505
Relief 1–04 19,36,37,38 0.0327
Relief 1–05 3,19,36,37,38 0.0329
Relief 1–06 3,19,36,37,38,39 0.0263
Relief 1–07 3,19,35,36,37,38,39 0.0196
Relief 1–08 3,19,21,35,36,37,38,39 0.0179
Relief 1–09 3,17,19,21,35,36,37,38,39 0.0167
Relief 1–10 3,17,19,21,35,36,37,38,39,52 0.0169
Relief 1–11 2,3,17,19,21,35,36,37,38,39,52 0.0132
Relief 1–12 2,3,4,17,19,21,35,36,37,38,39,52 0.0098
Relief 1–13 2,3,4,17,19,21,33,35,36,37,38,39,52 0.0094
Relief 1–14 2,3,4,17,19,21,33,35,36,37,38,39,41,52 0.0092
Relief 1–15 2,3,4,17,19,21,24,33,35,36,37,38,39,41,52 0.0092
Relief 1–16 1,2,3,4,17,19,21,24,33,35,36,37,38,39,41,52 0.0091
Relief 1–17 1,2,3,4,17,18,19,21,24,33,35,36,37,38,39,41,52 0.0092
Relief 1–18 1,2,3,4,17,18,19,21,24,33,35,36,37,38,39,41,52,53 0.0092
Relief 1–19 1,2,3,4,17,18,19,21,24,26,33,35,36,37,38,39,41,52,53 0.0091
Relief 1–20 1,2,3,4,17,18,19,21,24,26,30,33,35,36,37,38,39,41,52,53 0.0091
All All 1–53 1.0010

SVM model, compared to selection by mutual information,
or any of the LARS or RReliefF rankings.

E. Wisconsin Breast Cancer

The data includes several measurements of cancer patients,
with the goal to predict the recurrence time [44]. There are
194 patients and 32 continuous variables.

The results in table V reveal that the regression task is
difficult to model accurately: even the best model achieves a
MSE as high as 0.816, compared to an error of 1.0 achieved
by predicting the mean of the output. Interestingly, the LARS
ranking for variables results in the best accuracy, compared
to around 0.85 for the DT, MI and RReliefF ranked variable
sets.

F. Tecator

The Tecator data set consists of 240 samples of near
infrared spectra with the task being to model the fat content

TABLE IV
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE TRIAZINES

DATA. DT VALUE IS 0.1655.

MSE

DT 1,3,4,5,8,9,26,31,32,33,34,35,40,44 0.4901
MI 4,5,8,9,32,33,35,40,48 0.6009
LARS 1–01 8 0.9372
LARS 1–02 8,10 0.8270
LARS 1–03 8,10,11 0.7988
LARS 1–04 8,10,11,40 0.7909
LARS 1–05 8,10,11,33,40 0.6319
LARS 1–06 8,10,11,33,40,42 0.6502
LARS 1–07 8,10,11,33,40,42,54 0.6508
LARS 1–08 8,10,11,26,33,40,42,54 0.6498
LARS 1–09 8,10,11,26,33,36,40,42,54 0.6669
LARS 1–10 8,10,11,26,33,36,37,40,42,54 0.6526
LARS 1–11 5,8,10,11,26,33,36,37,40,42,54 0.6378
LARS 1–12 1,5,8,10,11,26,33,36,37,40,42,54 0.6483
LARS 1–13 1,5,8,10,11,15,26,33,36,37,40,42,54 0.6563
LARS 1–14 1,5,8,10,11,15,23,26,33,36,37,40,42,54 0.6581
LARS 1–15 1,5,8,10,11,15,23,24,26,33,36,37,40,42,54 0.6561
LARS 1–16 1,5,8,10,11,15,23,24,25,26,33,36,37,40,42,54 0.6579
Relief 1–01 10 0.9413
Relief 1–02 5,10 0.9472
Relief 1–03 4,5,10 0.8784
Relief 1–04 4,5,6,10 0.8236
Relief 1–05 2,4,5,6,10 0.7979
Relief 1–06 2,3,4,5,6,10 0.7928
Relief 1–07 2,3,4,5,6,8,10 0.7951
Relief 1–08 2,3,4,5,6,8,10,31 0.7834
Relief 1–09 2,3,4,5,6,8,10,31,32 0.6405
Relief 1–10 2,3,4,5,6,8,10,31,32,33 0.5218
Relief 1–11 2,3,4,5,6,8,10,31,32,33,36 0.5708
Relief 1–12 2,3,4,5,6,8,10,11,31,32,33,36 0.5544
Relief 1–13 2,3,4,5,6,8,10,11,31,32,33,36,37 0.5770
Relief 1–14 2,3,4,5,6,8,9,10,11,31,32,33,36,37 0.5588
Relief 1–15 2,3,4,5,6,8,9,10,11,21,31,32,33,36,37 0.5558
Relief 1–16 2,3,4,5,6,8,9,10,11,21,31,32,33,36,37,38 0.5291
Relief 1–17 2,3,4,5,6,8,9,10,11,12,21,31,32,33,36,37,38 0.5717
Relief 1–18 1,2,3,4,5,6,8,9,10,11,12,21,31,32,33,36,37,38 0.5704
Relief 1–19 1,2,3,4,5,6,8,9,10,11,12,15,21,31,32,33,36,37,38 0.5705
Relief 1–20 1,2,3,4,5,6,8,9,10,11,12,15,21,31,32,33,36,37,38,40 0.5725
All All 1–58 1.0054

of food products [45]. The spectrum is measured as 100 chan-
nels of different wavelengths, and consequently neighbouring
channels are highly correlated.

The results of the feature selection and LS-SVM are
presented in table VI. The most accurate model is obtained
by the features selected by the Delta test. An interesting
observation is that the 15 highest ranked variables by RRe-
liefF correspond exactly to the range of channels 32–46.
While all these variables are useful individually, selecting so
many consecutive variables leads adds little new information,
suggesting that the RReliefF method is unable to discriminate
against features which provide only redundant information
that is already contained in previously selected variables.

The value of the DT statistic itself in this case is exception-
ally high, several times larger than the MSE of the resulting
LS-SVM model. This implies that the 1-NN estimator is
a rather poor prediction model, which is not surprising
considering the high dimensionality and low number of
samples. In spite of this, the method works well as a variable
selection criterion, where only the relative accuracy matters.
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TABLE V
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE BREAST

CANCER DATA. DT VALUE IS 0.4979.

MSE

DT 2,3,9,12,15,21,32 0.8517
MI 1,2,3,7,8,9,10,11,12,14,19,23,24,25,26,27 0.8584
LARS 1–01 4 0.8968
LARS 1–02 4,31 0.8732
LARS 1–03 3,4,31 0.8342
LARS 1–04 3,4,30,31 0.8331
LARS 1–05 3,4,13,30,31 0.8255
LARS 1–06 3,4,11,13,30,31 0.8269
LARS 1–07 1,3,4,11,13,30,31 0.8261
LARS 1–08 1,3,4,10,11,13,30,31 0.8297
LARS 1–09 1,3,4,10,11,13,18,30,31 0.8304
LARS 1–10 1,3,4,10,11,13,18,28,30,31 0.8244
LARS 1–11 1,3,4,10,11,13,16,18,28,30,31 0.8158
LARS 1–12 1,3,4,10,11,13,16,18,28,30,31,32 0.8187
LARS 1–13 1,3,4,6,10,11,13,16,18,28,30,31,32 0.8221
LARS 1–14 1,3,4,6,10,11,13,16,18,19,28,30,31,32 0.8242
LARS 1–15 1,3,4,6,8,10,11,13,16,18,19,28,30,31,32 0.8206
LARS 1–16 1,3,4,6,7,8,10,11,13,16,18,19,28,30,31,32 0.8198
LARS 1–17 1,3,4,6,7,8,10,11,13,16,18,19,26,28,30,31,32 0.8252
LARS 1–18 1,3,4,6,7,8,10,11,13,16,18,19,20,26,28,30,31,32 0.8289
LARS 1–19 1,3,4,6,7,8,10,11,13,16,18,19,20,25,26,28,30,31,32 0.8336
LARS 1–20 1,3,4,6,7,8,10,11,13,16,18,19,20,22,25,26,28,30,31,32 0.8368
Relief 1–01 3 0.9424
Relief 1–02 3,26 0.9167
Relief 1–03 3,23,26 0.9221
Relief 1–04 3,23,26,30 0.9045
Relief 1–05 3,23,26,30,31 0.8888
Relief 1–06 3,23,26,27,30,31 0.8540
Relief 1–07 3,11,23,26,27,30,31 0.8601
Relief 1–08 3,7,11,23,26,27,30,31 0.8397
Relief 1–09 3,7,10,11,23,26,27,30,31 0.8443
Relief 1–10 3,7,10,11,23,26,27,28,30,31 0.8361
Relief 1–11 3,7,10,11,16,23,26,27,28,30,31 0.8449
Relief 1–12 3,7,10,11,16,22,23,26,27,28,30,31 0.8536
Relief 1–13 3,7,10,11,16,22,23,24,26,27,28,30,31 0.8526
Relief 1–14 2,3,7,10,11,16,22,23,24,26,27,28,30,31 0.8475
Relief 1–15 2,3,6,7,10,11,16,22,23,24,26,27,28,30,31 0.8501
Relief 1–16 2,3,4,6,7,10,11,16,22,23,24,26,27,28,30,31 0.8468
Relief 1–17 2,3,4,6,7,10,11,16,21,22,23,24,26,27,28,30,31 0.8531
Relief 1–18 2,3,4,6,7,10,11,16,21,22,23,24,26,27,28,29,30,31 0.8552
Relief 1–19 2,3,4,6,7,10,11,16,20,21,22,23,24,26,27,28,29,30,31 0.8467
Relief 1–20 2,3,4,6,7,10,11,16,18,20,21,22,23,24,26,27,28,29,30,31 0.8458
All All 1–32 1.0052

VII. CONCLUSIONS AND DISCUSSION

This paper presents the use of the “Delta test” 1-NN
noise variance estimator for input variable selection. The
theoretical analysis and experimental results support the
notion that the method can provide desirable results in a wide
variety of regression modelling problems. As the technique is
simple it can be recommended as a suggested preprocessing
step for nearly any regression task.

The theoretical claims presented in Section III involve
minimising the expectation of the Delta test, which may
seem insufficient considering that data often consists of a
single realisation of some random process. However, as the
variance becomes sufficiently small with a sufficient number
of data points, using a single realisation is still effective.

For large problems, the computational cost of the method
may become intractable with a naïve implementation. Hence
care should be taken to appropriately implement both the
evaluation of the nearest-neighbour search as well as how to

TABLE VI
THE SELECTED INPUTS AND MEDIAN LOO MSE FOR THE TECATOR

DATA. DT VALUE IS 0.0819.

MSE

DT 5,12,16,38,39,40,41,42,49,50 0.0122
MI 7,40,41,42,43,48,50,53 0.0184
LARS 1–01 41 0.7137
LARS 1–02 7,41 0.0914
LARS 1–03 7,8,41 0.0882
LARS 1–04 7,8,41,63 0.0350
LARS 1–05 7,8,41,62,63 0.0440
LARS 1–06 7,8,41,56,62,63 0.0511
LARS 1–07 7,8,41,56,62,63,100 0.0226
LARS 1–08 7,8,41,56,59,62,63,100 0.0184
LARS 1–09 7,8,41,55,56,59,62,63,100 0.0357
LARS 1–10 7,8,41,55,56,59,62,63,64,100 0.0377
LARS 1–11 7,8,9,41,55,56,59,62,63,64,100 0.0320
LARS 1–12 7,8,9,41,54,55,56,59,62,63,64,100 0.0219
LARS 1–13 7,8,9,41,54,55,56,59,62,63,64,99,100 0.0159
LARS 1–14 7,8,9,41,53,54,55,56,59,62,63,64,99,100 0.0150
LARS 1–15 7,8,9,15,41,53,54,55,56,59,62,63,64,99,100 0.0148
LARS 1–16 7,8,9,15,41,42,53,54,55,56,59,62,63,64,99,100 0.0136
LARS 1–17 7,8,9,15,17,41,42,53,54,55,56,59,62,63,64,99,100 0.0139
LARS 1–18 5,7,8,9,15,17,41,42,53,54,55,56,59,62,63,64,99,100 0.0142
LARS 1–19 5,7,8,9,15,16,17,41,42,53,54,55,56,59,62,63,64,99,100 0.0166
LARS 1–20 5,7,8,9,15,16,17,41,42,52,53,54,55,56,59,62,63,64,99,100 0.0176
Relief 1–01 41 0.7137
Relief 1–02 40,41 0.6621
Relief 1–03 40,41,42 0.0500
Relief 1–04 39,40,41,42 0.0505
Relief 1–05 38,39,40,41,42 0.2482
Relief 1–06 38,39,40,41,42,43 0.0513
Relief 1–07 37,38,39,40,41,42,43 0.1844
Relief 1–08 37,38,39,40,41,42,43,44 0.1499
Relief 1–09 36,37,38,39,40,41,42,43,44 0.1486
Relief 1–10 35,36,37,38,39,40,41,42,43,44 0.1451
Relief 1–11 35,36,37,38,39,40,41,42,43,44,45 0.1218
Relief 1–12 34,35,36,37,38,39,40,41,42,43,44,45 0.1214
Relief 1–13 33,34,35,36,37,38,39,40,41,42,43,44,45 0.1205
Relief 1–14 32,33,34,35,36,37,38,39,40,41,42,43,44,45 0.1196
Relief 1–15 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.1044
Relief 1–16 9,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.0141
Relief 1–17 9,10,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.0144
Relief 1–18 8,9,10,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.0147
Relief 1–19 8,9,10,11,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.0150
Relief 1–20 7,8,9,10,11,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 0.0156
All All 1–100 1.0042

explore the search space efficiently.
Further work regarding the use of the Delta test for

variable selection involves exploring the precise extent of
situations where the Delta test constitutes an appropriate
method for variable selection. New, more efficient, search
schemes for large data sets are also being developed. It is
additionally of interest to study how the idea can be extended
to other forms of dimensionality reduction, such as scaling or
linear projection. Investigating the method’s performance for
variable selection in classification tasks is another appealing
extension.

REFERENCES

[1] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Eds., Feature
Extraction: Foundations and Applications. Springer, 2006.

[2] C. J. Stone, A Course in Probability and Statistics. Duxbury Press,
1995.

4221



[3] D. Evans and A. J. Jones, “Non-parametric estimation of residual
moments and covariance,” Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Science, vol. 464, no. 2099, pp.
2831–2846, 2008.

[4] E. Eirola, E. Liitiäinen, A. Lendasse, F. Corona, and M. Verleysen,
“Using the Delta test for variable selection,” in Proceedings of ESANN
2008, European Symposium on Artificial Neural Networks, Bruges
(Belgium), Apr. 2008, pp. 25–30.

[5] F. M. Pouzols and A. B. Barros, “Automatic clustering-based iden-
tification of autoregressive fuzzy inference models for time series,”
Neurocomputing, vol. 73, no. 10–12, pp. 1937–1949, 2010, subspace
Learning / Selected papers from the European Symposium on Time
Series Prediction.

[6] S. Ben Taieb, A. Sorjamaa, and G. Bontempi, “Multiple-output mod-
eling for multi-step-ahead time series forecasting,” Neurocomputing,
vol. 73, no. 10–12, pp. 1950–1957, 2010, subspace Learning / Selected
papers from the European Symposium on Time Series Prediction.

[7] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Methodol-
ogy for long-term prediction of time series,” Neurocomputing, vol. 70,
no. 16–18, pp. 2861–2869, Oct. 2007.

[8] F. Mateo and A. Lendasse, “A variable selection approach based on
the delta test for extreme learning machine models,” in Proceedings
of the European Symposium on Time Series Prediction, Sep. 2008, pp.
57–66.

[9] Q. Yu, E. Séverin, and A. Lendasse, “A global methodology for
variable selection: Application to financial modeling,” in Mashs 2007,
Computational Methods for Modelling and learning in Social and
Human Sciences, Brest (France), May 2007.

[10] F. Liébana-Cabanillas, R. Nogueras, L. Herrera, and A. Guillén,
“Analysing user trust in electronic banking using data mining meth-
ods,” Expert Systems with Applications, vol. 40, no. 14, pp. 5439–5447,
2013.

[11] R. Garcia-del Moral, A. Guillén, L. Herrera, A. Cañas, and I. Rojas,
“Parametric and non-parametric feature selection for kidney trans-
plants,” in Advances in Computational Intelligence, ser. Lecture Notes
in Computer Science, I. Rojas, G. Joya, and J. Cabestany, Eds.
Springer Berlin Heidelberg, 2013, vol. 7903, pp. 72–79.

[12] Q. Yu, M. van Heeswijk, Y. Miche, R. Nian, B. He, E. Séverin,
and A. Lendasse, “Ensemble delta test-extreme learning machine (DT-
ELM) for regression,” Neurocomputing, vol. 129, pp. 153–158, 2014.

[13] A. Guillén, D. Sovilj, F. Mateo, I. Rojas, and A. Lendasse, “Minimiz-
ing the Delta test for variable selection in regression problems,” In-
ternational Journal of High Performance Systems Architecture, vol. 1,
no. 4, pp. 269–281, 2008.

[14] F. Mateo, D. Sovilj, R. Gadea, and A. Lendasse, “RCGA-S/RCGA-
SP methods to minimize the delta test for regression tasks,” in
Bio-Inspired Systems: Computational and Ambient Intelligence, ser.
Lecture Notes in Computer Science. Springer, 2009, vol. 5517, pp.
359–366.

[15] F. Mateo, D. Sovilj, and R. Gadea, “Approximate k-NN delta test
minimization method using genetic algorithms: Application to time
series,” Neurocomputing, vol. 73, no. 10-12, pp. 2017–2029, 2010,
subspace Learning / Selected papers from the European Symposium
on Time Series Prediction.

[16] D. Sovilj, A. Sorjamaa, and Y. Miche, “Tabu search with delta test for
time series prediction using OP-KNN,” in Proceedings of the European
Symposium on Time Series Prediction, Sep. 2008, pp. 187–196.

[17] D. Sovilj, “Multistart strategy using delta test for variable selection,”
in ICANN 2011, Part II, ser. Lecture Notes in Computer Science,
T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds., vol. 6792.
Springer, June 14–17 2011, pp. 413–420.

[18] A. Guillén, M. van Heeswijk, D. Sovilj, M. G. Arenas, L. J. Herrera,
H. Pomares, and I. Rojas, “Variable selection in a GPU cluster using
delta test,” in IWANN (1), 2011, pp. 393–400.

[19] A. Guillén, M. I. García Arenas, M. van Heeswijk, D. Sovilj,
A. Lendasse, L. J. Herrera, H. Pomares, and I. Rojas, “Fast feature
selection in a gpu cluster using the delta test,” Entropy, vol. 16, no. 2,
pp. 854–869, 2014.

[20] A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia, “Nearest neighbor
based feature selection for regression and its application to neural
activity,” in Advances in Neural Information Processing Systems 18.
Cambridge, MA: MIT Press, 2006, pp. 995–1002.

[21] D. François, High-dimensional data analysis: from optimal metrics to
feature selection. VDM Verlag Dr. Muller, 2008.

[22] A. J. Jones, “New tools in non-linear modelling and prediction,”
Computational Management Science, vol. 1, no. 2, pp. 109–149, 2004.

[23] H. Pi and C. Peterson, “Finding the embedding dimension and variable
dependencies in time series,” Neural Computation, vol. 6, no. 3, pp.
509–520, 1994.

[24] Aðalbjörn Stefànson, N. Koncar, and A. J. Jones, “A note on the
gamma test,” Neural Computing & Applications, vol. 5, no. 3, pp.
131–133, 1997.

[25] J. Rice, “Bandwidth choice for nonparametric regression,” The Annals
of Statistics, vol. 12, no. 4, pp. 1215–1230, 1984.

[26] E. Liitiäinen, M. Verleysen, F. Corona, and A. Lendasse, “Residual
variance estimation in machine learning,” Neurocomputing, vol. 72,
no. 16–18, pp. 3692–3703, 2009.

[27] M. D. Penrose, “Laws of large numbers in stochastic geometry with
statistical applications,” Bernoulli, vol. 13, no. 4, pp. 1124–1150, 2007.

[28] V. Spokoiny, “Variance estimation for high-dimensional regression
models,” Journal of Multivariate Analysis, vol. 82, no. 1, pp. 111–
133, 2002.

[29] U. U. Müller, A. Schick, and W. Wefelmeyer, “Estimating the error
distribution function in nonparametric regression with multivariate
covariates,” Statistics & Probability Letters, vol. 79, no. 7, pp. 957–
964, 2009.

[30] J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[31] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[32] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” Neural Networks, IEEE Transactions on,
vol. 5, no. 4, pp. 537–550, Jul. 1994.

[33] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical Review E, vol. 69, no. 6, 2004.

[34] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, pp. 407–499, 2004.

[35] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical
analysis of ReliefF and RReliefF,” Machine Learning, vol. 53, no.
1-2, pp. 23–69, Oct. 2003.

[36] J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and
J. Vandewalle, Least Squares Support Vector Machines. Singapore:
World Scientific, 2002.

[37] K. Kira and L. A. Rendell, “A practical approach to feature selection,”
in Proceedings of the ninth international workshop on Machine
learning, ser. ML92. Morgan Kaufmann, 1992, pp. 249–256.

[38] G. C. Cawley and N. L. C. Talbot, “Fast exact leave-one-out cross-
validation of sparse least-squares support vector machines,” Neural
Networks, vol. 17, no. 10, pp. 1467–1475, 2004.

[39] A. Asuncion and D. J. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/ mlearn/MLRepository.html

[40] A. S. Weigend and N. A. Gershenfeld, Eds., Time Series Prediction:
Forecasting the Future and Understanding the Past. Reading, MA:
Addison-Wesley, 1994.

[41] “The Santa Fe time series competition data,” 1991. [Online]. Available:
http://www-psych.stanford.edu/ andreas/Time-Series/SantaFe.html

[42] “AnthroKids — Anthropometric data of children,” 1977. [Online].
Available: http://ovrt.nist.gov/projects/anthrokids/

[43] J. D. Hirst, R. D. King, and M. J. E. Sternberg, “Quantitative structure-
activity relationships by neural networks and inductive logic pro-
gramming. II. The inhibition of dihydrofolate reductase by triazines,”
Journal of Computer-Aided Molecular Design, vol. 8, pp. 421–432,
1994.

[44] L. Torgo, “Regression datasets,” 2012, University of Porto. [Online].
Available: http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html

[45] H. H. Thodberg, “Tecator data set,” 1995. [Online]. Available:
http://lib.stat.cmu.edu/datasets/tecator

4222




